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REFERENCE DIGRAPHS OF NON-SELF-REFERENTIAL
PARADOXES

MING HSIUNG

School of Philosophy and Social Development
South China Normal University

Abstract. All the known non-self-referential paradoxes share a reference pattern of Yablo’s
paradox in that they all necessarily contain infinitely many sentences, each of which refers to
infinitely many sentences. This raises a question: Does the reference pattern of Yablo’s paradox
underlie all non-self-referential paradoxes, just as the reference pattern of the liar paradox
underlies all finite paradoxes? In this regard, Rabern et al. [J Philos Logic 42(5): 727–765,
2013] prove that every dangerous acyclic digraph contains infinitely many points with an infinite
out-degree. Building upon their work, this paper extends Rabern et al.’s result to the first-order
arithmetic language with a primitive truth predicate, proving that all reference digraphs for
non-self-referential paradoxes contain infinitely many sentences of infinite out-degree (called
“social sentences”). We then strengthen this result in two respects. First, among these social
sentences, infinitely many appear in one ray. Second, among these social sentences, infinitely
many have infinitely many out-neighbors, none of which will eventually get to a sink. These
observations provide helpful information towards the following conjecture proposed by Beringer
and Schindler [Bull. of Symb. Logic 23(4): 442–492, 2017]: every dangerous acyclic digraph
contains the Yablo digraph as a finitary minor.

§1. Introduction. It has long been realized that there is a close relationship between
the truth-theoretic paradoxes and reference patterns of sentences. Through a series
of graph-theoretic analyses of paradoxes, people recently have gained a fairly clear
understanding of the above relationship. First, it has been proved that if a finite set
of sentences is paradoxical, there must be a circular reference pattern between these
sentences. In terms of (di)graph theory, a finite reference digraph (for a set of sentences)
is dangerous (in the sense that these sentences lead to a paradox) iff it contains a directed
cycle. From this, we can prove that a finite reference digraph is dangerous iff it contains
a subdivision of the liar digraph as a sub-digraph.1 Thus, the characterization problem
of reference patterns has been completely solved for finite paradoxes.

As for the infinite paradoxes, the characterization problem is far more challenging.
What complicates the matter is that for some infinite sets of paradoxical sentences,
there may not be any cyclic pattern between these sentences at all. That is, there are
(infinite) paradoxes that are non-self-referential or non-circular. The first and also the
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1 This result is first proved by Rabern et al. [22, p. 751] in a specific infinitary propositional
language. Rabern et al.’s discovery is extended to a first-order language by Beringer &
Schindler [2, p. 474].
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2 MING HSIUNG

best-known example is Yablo’s paradox.2 After the invention of Yablo’s paradox, more
and more non-self-referential paradoxes have been constructed.3 Moreover, people
have been able to prove formally that Yablo’s paradox and other related ones are
indeed non-self-referential by the aforementioned graph-theoretic methods.4

With the advancement of research, many people have noticed that all the known
non-self-referential paradoxes share a reference pattern of Yablo’s paradox in that they
all necessarily contain infinitely many sentences, each of which refers to infinitely many
sentences. So, people [2, p. 474] ask: is this just an accidental phenomenon, or does the
reference pattern of Yablo’s paradox underlie all non-self-referential paradoxes, just as
the reference pattern of the liar paradox underlies all finite paradoxes?

Concerning the above question, we must mention a theorem proved by Rabern et al.
[22, pp. 756–757]: every dangerous acyclic digraph contains infinitely many points
with an infinite out-degree. As far as the author knows, this is the first significant result
related to the above question. However, Rabern et al.’s result, as Beringer & Schindler
[2, p. 445] point out, is formulated in an infinitary propositional language so that the
definition of the so-called reference graphs, an highly crucial part of Rabern et al.’s
[22] framework, “no longer yields satisfactory results when we move to first-order
languages.” (ibid., p. 445).

This paper extends Rabern et al.’s result to the standard language of studying
truth and paradoxes, namely, the first-order arithmetic language with a primitive
truth predicate. Within this language, we employ the notion of dependency relation
introduced by Leitgeb [19] to define reference digraphs for paradoxes. Based on
this framework, we prove that every non-self-referential paradox contains infinitely
many sentences (called “social sentences”), each of which depends on infinitely many
sentences. This result is an equivalent formulation of Rabern et al.’s result in the first-
order language. We then strengthen this result by proving that there are infinitely many
of these social sentences in a ray. Furthermore, as we will see, the social sentences
appearing in a ray can meet an even stronger condition: each of them depends on
infinitely many sentences, none of which eventually gets to a sink.

Our study yields some insights into the reference patterns of non-self-referential
paradoxes, revealing a structural similarity shared by all such paradoxes with Yablo’s
paradox. Our observation prompts a conjecture proposed by Beringer & Schindler:
“A reference [di]graph is dangerous iff it contains a subdivision of the liar-graph
as a subgraph or the Yablo-graph as a final minor.” The non-trivial aspect of this

2 On the one hand, the non-self-referentiality of Yablo’s paradox is considered so self-evident
by many (including Yablo himself) that it requires no more explanation. For instance, in
Yablo [29, 30], although Yablo takes what he constructs as a “paradox without self-reference”,
he never explains a single word about its non-self-referentiality. On the other hand, Priest
[21], among others, disagrees that Yablo’s paradox is non-self-referential. Priest’s point of
view is irrelevant to our current study. The circularity of Yablo’s paradox he discusses is not
associated with the referential structure of sentences on which the present article focuses. We
refer the reader to Leitgeb [18] for more information.

3 Among all the known constructions, we highlight Cook’s [5, p. 770] unwinding, a method
that can systematically generate paradoxes similar to Yablo’s paradox. A specific unwinding
variant, now known as the ∃∀-unwinding variant, is given by Yablo [31, p. 144]. This method
has been further developed by Cook [6] himself, Schlenker [23], and Hsiung [15] in various
directions. Additionally, it is worth noting that Butler [4] provides a procedure to construct
continuum-many variants of Yablo’s paradox.

4 See, for instance, [5, p. 770], [19, p. 170], and [14, pp. 902–903].
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REFERENCE DIGRAPHS OF NON-SELF-REFERENTIAL PARADOXES 3

conjecture lies in the claim that all dangerous acyclic digraphs contain the Yablo
digraph as a finitary minor. While this paper has not yet proven this conjecture, our
research endeavors to contribute helpful information that may ultimately lead to its
confirmation.

As mentioned above, we carry out our research in the first-order language of Peano
arithmetic with a primitive truth predicate. In this language, we define the notion of
reference digraphs by employing the notion of semantic dependence relation proposed
by Leitgeb [19] (§2). We establish a version of Rabern et al.’s theorem in the first-
order arithmetic language and give a strengthening involved in rays in §3. Then, in §4,
we prove that those infinitely many social sentences can meet the stronger condition
mentioned above. Based on the above results, we give a series of characterizations
about the dangerous digraphs in §5. Finally, in the concluding, we briefly discuss
a potential approach to Beringer & Schindler’s conjecture based on the existing
findings.

Graph-theoretic Preliminaries. Let G be a digraph (without parallel edges), that is,
a pair 〈D,≺〉, where is D is a non-empty set and ≺ is a binary relation on D. For two
points u and v of D, u≺v is read as “u ‘see’ v”. Let u0 u1 ... ul be a finite sequence of
points of G. If for all 0 ≤ i < l , at least one of ui and ui+1 can see the other, then we call
this sequence a walk in G. u0 and ul are also called the two endpoints of this walk. l is
called its length. This walk is directed, if ui sees ui+1 for all 0 ≤ i < l . In that case, ul is
reachable from u0. A walk is a path, if no point of it is repeated except possibly its two
endpoints. Note that a (directed) walk always contains a (directed) path connecting
two endpoints of this walk.

A walk is closed if its endpoints are the same point. A directed cycle is a closed
directed path. A loop is a directed cycle of length 1. A digraph is acyclic, if it contains
no directed cycles (equivalently, no closed directed walks). An acyclic digraph, that is,
a directed acyclic graph, is also called a DAG. A digraph is loop-free, if it contains no
loops.

Whenever u sees v, we also say v is an out-neighbor of u (and u is an in-neighbor of v).
The out-degree of a point is the size (cardinality) of the set of its out-neighbors. A
point of out-degree zero is called a sink. A digraph is locally finite, if each of its points
has a finite out-degree.

A digraph G = 〈D,≺〉 is conversely well-founded, if every non-empty subset S of D
has a ≺-maximal element, that is, an element of S having no out-neighbor in S. A
digraph is conversely ill-founded, if it is not conversely well-founded. A ray G is an
infinite ≺-increasing sequence of points in G, u0≺u1≺ .... Note that under the axiom
of choice, a digraph G is conversely ill-founded, iff there is a ray in G.

The relation ≺∗ is the transitive closure of ≺, if it meets the requirements: u≺∗v, iff v
is reachable from u by a directed path. For any u, we use ≺∗(u) for the set {v | u≺∗v}.
Also, we use � for the reflexive closure of ≺. That is, u�v, iff u≺v or u = v. Thus, �∗

is the transitive closure of �. It can be seen as the reflexive and transitive closure of ≺.
Note that whenever D′ is a subset of D, the sub-digraph 〈D′,≺ �D′〉 is usually

denoted by 〈D′,≺〉 for brevity’s sake.

§2. Paradoxes and Their Reference Digraphs. Let LT be the first-order language
of Peano arithmetic (PA) with a unary predicate symbol T. It is well known that we
can formulate the paradoxical and other pathological sentences in LT by a routine
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4 MING HSIUNG

diagonal method.5 For instance, we can construct a sentenceL such thatL↔ ¬T �L�
is provable in PA.L is the very liar sentence.T �L� is a shorthand forT (�L�), in which
�L� is the numeral corresponding to the Gödel number ofL. If no confusion arises, we
also use it to denote the Gödel number ofL itself. Another important example is the set
of sentences Y0, Y1, ... satisfying that for all number n, Yn ↔ ∀x (x > n̄ → ¬T �Yẋ�)
is provable in PA.6 Y0, Y1, ... are Yablo’s sentences.

In this article, we always fix the standard structure N of natural numbers as the
ground model for LT . So, by a structure for LT , we mean a pair 〈N, X 〉, where
X ⊆ N is an interpretation for T. We denote the valuation of a sentence A by VX (A),
which is a shorthand for V〈N,X 〉. When VX (A) = 1/0, we say A is true/false under
the interpretation X. Sometimes, we identify a sentence with its Gödel number. For
instance, for any set Σ of sentences, the “Σ” in the notation VΣ is not Σ itself but the set
of the Gödel numbers of sentences in Σ.

By Tarski’s undefinability theorem of truth, it is impossible to find an interpretation
X ⊆ N of T such that all instances of Tarski’s T-schema T �A� ↔ A are true under
X. The reason is that the liar sentence L or any other paradox Σ would lead to a
contradiction provided that the instances of the T-schema T �A� ↔ A obtained from
L or the sentences in Σ were true. So, the following is a folk definition of paradoxicality.7

Definition 2.1. X ⊆ N is a truth predicate for a set Σ of sentences, if VX (T �A�) =
VX (A) holds for any A ∈ Σ. Σ is paradoxical, if no X ⊆ N is a truth predicate for Σ.

By definition, we can see that the liar sentence L (i.e., the singleton {L}) is
paradoxical, so is the set of Yablo’s sentences Yn’s. We leave the details to the reader.

Next, we introduce Leitgeb’s [19] semantic dependence relation, which is a
fundamental concept of studying the (self-)reference relation between sentences in
this article. From now on, we use Σ(A) instead of VΣ(A) to make the notation more
compact.

Definition 2.2 (Leitgeb [19]). A sentence A depends on a set Σ of sentences, if for any
sets Γ1, Γ2 of sentences, whenever Σ ∩ Γ1 = Σ ∩ Γ2, VΓ1(A) = VΓ2(A).

Intuitively, A depends on Σ, iff the truth value of A is only relevant to “the presence
or absence of the sentences that are contained in Φ [here, Σ] in/from the extension of
the truth predicate.” [19, p. 160] The following are three primary properties about the
dependence relation (ibid., p. 161).

Lemma 2.3. The dependence relation has the following properties:

(1) Any sentence depends on LT , i.e., the set of all the sentences.
(2) If A depends on Σ and Σ ⊆ Σ′, then A depends on Σ′.
(3) If A depends on both Σ and Σ′, then A depends on Σ ∩ Σ′.

For example, we can verify that the liar sentence depends on {L}, which is the
smallest one among all the sets on which L depends. In this sense, L is essentially

5 See, for instance, [3, pp. 53–54] for more information about this method.
6 n is the numeral denoting the the number n. ẋ is Feferman’s [9] dot notation, by which we

allow the scope of the quantifier ∀x covers the formula Yx , even though Yx hides behind a
closed term.

7 See also [14, p. 893].
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REFERENCE DIGRAPHS OF NON-SELF-REFERENTIAL PARADOXES 5

depends on {L} (ibid., p. 162). Also, for any number n, Yn essentially depends on the
set {Yk | k > n}.

Definition 2.4 (Beringer & Schindler [1]). f is a dependence function on LT , if it is
a function which assigns to any sentence a set of sentences, such that A depends on f(A)
for any A. ≺f , a binary relation on LT , is defined by: A≺fB , iff B ∈ f(A). The digraph
〈LT ,≺f〉 is called the reference digraph (ofLT ) induced from f.8

Let Σ be a set of sentences. The digraph 〈Σ,≺f〉, or more precisely, 〈Σ,≺f �Σ〉, is
called a reference digraph of Σ (induced from f ). What is more, ≺f is called a reference
relation on Σ. The following theorem establishes a fundamental connection between a
paradox and its reference digraphs.9

Theorem 2.5. If a set of sentences is paradoxical, then any of its reference digraphs is
conversely ill-founded.

Proof. Let Σ be a set of sentences. Suppose that there is a dependence function f
such that 〈Σ,≺f〉 is conversely well-founded. We prove that Σ is not paradoxical. Note
that since the relation ≺f is conversely well-founded on Σ, we have a rank function on
Σ, say �, along its converse.

For any ordinal α, define inductively Σα as follows.10 First, let Σ0 be Σ. Second, let
Σα+1 be the set of sentences A in Σ such that Σα(A) = 1. Finally, for a limit α, let Σα
be the limit inferior of the sequences

〈
Σ� | � < α

〉
, that is,

Σα = {A | ∃� < α∀�(� ≤ � < α → A ∈ Σ�)} .
Claim. For any A ∈ Σ, whenever α > �(A), A ∈ Σα , iff A ∈ Σ�(A)+1.

If this claim is proved, then let � be the least upper bound of the ordinals �(A) for
allA ∈ Σ. Then, for allA ∈ Σ,A ∈ Σ�+1, iffA ∈ Σ�+2. Hence, Σ�+1(T �A�) = Σ�+1(A)
holds for all A ∈ Σ. Consequently, Σ is not paradoxical.

Proof of Claim. The proof is a transfinite induction on the rank of A.

First, when�(A) = 0, we can seef(A) ∩ Σ = ∅. Also, for anyα ≥ 0, Σα is a subset of
Σ, and so, f(A) ∩ Σα = ∅. By the definition of dependence relation, we have Σα(A) =
Σ(A). Hence, for all α ≥ 1, A ∈ Σα , iff A ∈ Σ1.

Next, fix a sentence A in Σ, and suppose that the claim is true for all B ∈ Σ with
�(B) < �(A). We prove the claim for A. We consider two cases. If α = � + 1, it suffices
to prove that for any � ≥ �(A), Σ�(A) = Σ�(A)(A). For this, we only need to prove
thatf(A) ∩ Σ� = f(A) ∩ Σ�(A). FixB ∈ f(A) arbitrarily. SinceA≺fB , �(B) < �(A).
Also, we know � ≥ �(A), and so � > �(B). Now, by the induction hypothesis, B ∈ Σ� ,
iffB ∈ Σ�(B)+1. By the induction hypothesis again, the latter is equivalent toB ∈ Σ�(A).
We thus obtain B ∈ Σ� , iff B ∈ Σ�(A). The desired equation follows.

8 The notion of reference digraph is initially introduced by Rabern et al. [22, p. 737] in the
context of an infinite propositional language. Our definition is a slightly modified version of
Beringer & Schindler [1]. See also [2, p. 453].

9 An equivalent result with a different form has been found by Rabern et al. [22, pp. 749–750]
in a setting of infinitary propositional language. Note that their proof is non-constructive
due to Zorn’s lemma.

10 This definition applies a revision rule proposed independently by Gupta [10, p. 10] and
Herzberger [13, p. 68].
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6 MING HSIUNG

If α is a limit greater than �(A), then by definition of Σα , it suffices to find an ordinal
� < α such that for all � with � ≤ � < α, A ∈ Σ� holds, iff A ∈ Σ�(A)+1. Let � be the
supremum of all the ordinal �(B) + 1 for B ∈ f(A), that is, � =

⋃
B∈f(A)(�(B) + 1).

Note that A≺fB , and so �(B) < �(A), and �(B) + 1 ≤ �(A). It follows � ≤ �(A) <
α. Now, if � ≤ � < α, then for all B ∈ f(A), � > �(B). By the inductive hypothesis,
B ∈ Σ� , iff B ∈ Σ�(B)+1. On the other hand, we also have B ∈ Σ�(A), iff B ∈ Σ�(B)+1
because �(A) > �(B). To sum up, we find an ordinal� < α, such that for anyB ∈ f(A)
and any � with � ≤ � < α, B ∈ Σ� , iff B ∈ Σ�(A). Thus, Σ� ∩ f(A) = Σ�(A) ∩ f(A),
which implies Σ�(A) = Σ�(A)(A). Consequently, � satisfies that for all � with� ≤ � < α,
A ∈ Σ� , iff A ∈ Σ�(A)+1.

We now relate the reference digraph to the notion of self-reference. The following
definition of self-reference, given by Hsiung [14, p. 895], is a generalization of Leitgeb’s
[19, p. 168] notion of (direct) self-reference.

Definition 2.6. A set Σ of sentences is self-referential, if each reference digraph of Σ
contains at least a closed directed walk. That is, for any dependence function f, there are
sentences A1, ...An in Σ, such that A1≺fA2≺f ...≺fAn and A1 = An.

It can be proved that Σ is self-referential, iff each of its reference digraphs contains at
least a closed directed path (a directed cycle), that is, a closed directed walk in which none
of the points is repeated except the two endpoints (A1 = An). See [14, pp. 895–896] for
the proof.

Suppose ≺ be a conversely ill-founded relation on a set Σ, then by the axiom of
choice, it is not hard to find an infinite increasing sequence of elements of Σ, say,
A0≺A1≺A2≺ .... If Σ is finite, this sequence must contain a directed cycle. A ray is an
infinite increasing sequence in which no points are repeated. The following corollary is
straightforward by Theorem 2.5.

Corollary 2.7.

(1) If a paradoxical set of sentences is finite, it is self-referential.
(2) If a paradoxical set of sentences is non-self-referential, each of its reference

digraphs contains a ray.

In the proof of Theorem 2.5, Σ�+1, the set witnessing the non-paradoxicality of Σ,
is a subset of Σ. So, as to Corollary 2.7 (1), if a finite set Σ is non-self-referential, we
can find a subset of Σ such that it is a truth predicate for Σ. This result has been proved
in [14, Theorem 1, pp. 896–897]. Theorem 2.5 is indeed a generalization of the latter.
We will further strengthen Corollary 2.7 (2) by showing that for a non-self-referential
paradox, each of its referential digraphs contains a ray in which there are infinitely
many “social” sentences (to be made clear later).

We close this section with three examples. First, the liar sentence is evidently self-
referential. Second, the set of Yablo’s sentences Yn (n ≥ 0) is non-self-referential. For
this, only note that for any numbers n,m and any dependence function f, Yn≺fYm,
iff n < m. Thus, it is impossible to find a finite sequence Yn1≺fYn2≺f ...≺fYnk with
Yn1 = Ynk . At last, we consider sentences Mn (n ≥ 0) such that M0 ↔ ∃x¬T �Mẋ�
andMn+1 ↔ T �Mn� (n ≥ 0) are provable in PA. Let us call these sentences “McGee’s
sentences” for the construction of them is due to McGee [20, p. 400]. M0 essentially
depends on {Mn | n ≥ 0}, and so the set of McGee’s sentences is self-referential. Also,
it is paradoxical. We leave the details to the reader.
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REFERENCE DIGRAPHS OF NON-SELF-REFERENTIAL PARADOXES 7

§3. Social Sentences. The three examples given at the end of the previous section
represent three categories of paradoxes. The liar sentence is a typical finite paradox
(i.e., a paradoxical set containing only finitely many sentences). By the first result
of Corollary 2.7, all finite paradoxes are self-referential. Both Yablo’s paradox and
McGee’s paradox are infinite paradoxes. Also, we notice a difference between them:
the former contains infinitely many sentences which only depend on infinite sets, while
there is only such sentence, namely M0, in the latter. All known non-self-referential
paradoxes, such as various variants of Yablo’s paradox, satisfy the property we just
point out about Yablo’s paradox. So, a natural question is whether there is any infinite
paradox in which only finitely many sentences depend on infinite sets.

Definition 3.1. Let G = 〈D,≺〉 be a digraph. A point u ∈ D is social in G, if u is a
point of infinite out-degree in G. That is to say, u has infinitely many out-neighbors in D.
G is locally finite, if no point of D is social in G.

The following theorem gives a negative answer to the above question.

Theorem 3.2. If a paradoxical set is non-self-referential, any of its reference digraphs
contains infinitely many social sentences.

Let us say that a set of sentences is locally finite, if it has a locally finite reference
digraph. One specific case of Theorem 3.2 is as follows. Our proof of Theorem 3.2
depends on the proof of this specific case.

Theorem 3.3 (Hsiung [14]). If a paradoxical set of sentences is locally finite, it is self-
referential.

Note that Theorem 3.2 is a strengthening of Theorem 3.3, as the latter is equivalently
to say that for any non-self-referential paradoxical set of sentences, its reference
digraphs always contain at least one social sentence. Later, we will further strengthen
Theorem 3.2 to assert that for any non-self-referential paradoxical set of sentences, its
reference digraphs always contain infinitely many social sentences, each of which can
“see” infinitely many ungrounded points (see Theorem 4.3).

The proof of Theorem 3.3 is based on the first result of Corollary 2.7. We refer the
reader to [14, pp. 897–898] for details.

Before proving Theorem 3.2, we still need to utilize two lemmata.

Lemma 3.4. Suppose 〈Σ,≺〉 is a reference digraph of Σ and Δ is a ≺-closed subset of Σ.
If Δ has a truth predicate, then it has one which is a subset of Δ.

Proof. Let X be a truth predicate for Δ, we prove thatX ∩ Δ is also a truth predicate
for Δ. First note that when A ∈ Δ, A ∈ X ∩ Δ, iff A ∈ X . The latter is equivalent to
VX (A) = 1. Let ≺ = ≺f for some dependence function f. Then, by ≺-closedness of Δ,
f(A) is included in Δ. Thus, A depends on Δ. We get VX (A) = 1, iff VX∩Δ(A) = 1.
Consequently, A ∈ X ∩ Δ, iff VX∩Δ(A) = 1.

The following lemma is a version of a result proved by Rabern et al. [22, p. 755] in
a propositional logic setting. In our proof of the lemma, the idea of applying Zorn’s
lemma to closed sets is credited to Rabern et al., but in the setting of first-order
language, we need to rely on the properties of dependence relations to find the required
truth predicate.
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8 MING HSIUNG

Lemma 3.5. Suppose 〈Σ,≺〉 is a reference digraph of Σ. If Σ is paradoxical, then there
is a non-empty subset Δ of Σ such that any non-empty ≺ �Δ-closed subset of Δ is also
paradoxical.

Proof. Let ≺ = ≺f for some dependence function. Assume that for any non-empty
subset Δ of Σ, there is a non-empty ≺ �Δ-closed subset of Δ such that it is not
paradoxical. We consider the collection of all pairs 〈Θ, X 〉 such that Θ is a ≺ �Δ-
closed subset of Δ for some Δ ⊆ Σ and X is a truth predicate for Θ. By Lemma 3.4, we
can suppose X ⊆ Θ. We denote this collection by S. Define a binary relation ≤ on S
as follows: 〈Θ, X 〉 ≤ 〈Θ′, X ′〉, iff Θ ⊆ Θ′ and X = X ′ ∩ Θ. We can easily prove that ≤
is a partial order on S. We leave the details to the reader.

To apply Zorn’s lemma to 〈S,≤〉, we first note that S is non-empty since the pair
〈∅, ∅〉 is apparently a member of it. Now, suppose 〈Θ0, X0〉 ≤ ... ≤ 〈Θα, Xα〉 ≤ ... is a
chain in 〈S,≤〉, where α belongs to an index set I. For each α ∈ I , we have that Θα is
≺ �Δα -closed, with Δα being a subset of Σ. We define ΘI as the union of all Θα with
α ∈ I , and ΔI as the union of all Δα with α ∈ I . Moreover, we define a subset XI of
ΘI as follows: for any A ∈ ΘI , let α be the smallest ordinal with A ∈ Θα , then include
A in XI if and only if A ∈ Xα .

Now, we claim that 〈ΘI , XI 〉 is an upper bound for the given chain.
It is clear that ΘI is ≺ �ΔI -closed. 〈ΘI , XI 〉 is an upper bound of all 〈Θα, Xα〉 for

α ∈ I . For this, note that by our definition of XI , for any A ∈ Θα , A ∈ XI , iff A ∈ Xα .
That is, XI ∩ Θα = Xα .

We will next verify thatXI is a truth predicate for ΘI . Let’s fixA ∈ ΘI . As mentioned
earlier, let α be the least ordinal withA ∈ Θα . Due to the closedness of ≺ �Δα , we know
that f(A) is a subset of Θα , and so A depends on Θα . Therefore, we have the following
chain of equivalences:

A ∈ XI , iff A ∈ Xα, (by definition of α)

iff VXα (A) = 1, (Xα is a truth predicate for Θα)

iff VXI∩Θα (A) = 1, (Xα = XI ∩ Θα)

iff VXI (A) = 1. (A depends on Θα).

As a result, every chain in 〈S,≤〉 has an upper bound. Zorn’s lemma gives us a
maximal element in 〈S,≤〉, denoted as 〈Θ, X 〉. We claim that Θ = Σ. If this claim is
true, our proof is complete.

Let’s assume the contrary, i.e., Θ �= Σ. In that case, the set Σ \ Θ is non-empty.
Consequently, we can find a non-empty subset Θ′ of Σ \ Θ such that Θ′ is closed under
≺ �Σ\Θ and is not paradoxical. Let X ′ ⊆ Θ′ be a truth predicate for Θ′.

We prove that 〈Θ ∪ Θ′, X ∪ X ′〉 is a member of S. First, it is clear that Θ ∪ Θ′ is
clearly ≺ �Δ-closed. To see that X ∪ X ′ is a truth predicate for Θ ∪ Θ′, we observe that
if A ∈ Θ, then A depends on Θ. Thus, since (X ∪ X ′) ∩ Θ = X , we have VX∪X ′(A) =
VX (A). Similarly, if A ∈ Θ′, we can get VX∪X ′(A) = VX ′(A). From this, it follows
that for all A ∈ Θ ∪ Θ′, we have A ∈ X ∪ X ′, iff VX∪X ′(A) = 1. Consequently, we can
conclude that X ∪ X ′ is a truth predicate for Θ ∪ Θ′.

SinceX ′ ∩ Θ = ∅, we can immediately see that 〈Θ, X 〉 ≤ 〈Θ ∪ Θ′, X ∪ X ′〉 and they
are not equal. 〈Θ, X 〉 is not maximal, a contradiction.

Proof of Theorem 3.2. Suppose 〈Σ,≺〉 is a reference digraph of Σ and it is a DAG.
It suffices to prove that for any natural number n, if there are at most n social points in
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REFERENCE DIGRAPHS OF NON-SELF-REFERENTIAL PARADOXES 9

〈Σ,≺〉, then Σ is not paradoxical. We prove this result by induction. The case for n = 0
is Theorem 3.3.

Consider the case when there are at most n + 1 social points in 〈Σ,≺〉. We will apply
Lemma 3.5 to the proof. For this, for any non-empty subset Δ of Σ, fix a point in Δ,
namely A. Consider the set ≺∗(A). If it contains no social points, then by Theorem 3.3,
this set is not paradoxical. Thus, ≺∗(A) ∩ Δ is a non-paradoxical and ≺Δ-closed subset
of Δ. If it contains at least a social point, fix one of these social points and let it be
B. Now the set ≺∗(B) contain at most n social point since B is out of this set. By the
inductive hypothesis, ≺∗(B) is not paradoxical. Again, we obtain a ≺Δ-closed subset
of Δ, namely, ≺∗(B) ∩ Δ, which is non-paradoxical. To sum up, for any non-empty
subset Δ of Σ, we can find a non-empty ≺ �Δ-closed subset of Δ such that it is not
paradoxical. By Lemma 3.5, Σ is not paradoxical.

From Theorem 3.2, together with Lemma 3.5, we can deduce the following important
consequence.

Theorem 3.6. Suppose 〈Σ,≺〉 is a reference digraph of Σ. If Σ is a non-self-referential
and paradoxical set, then there is a ray A0≺∗A1≺∗A2≺∗ ... in some sub-digraph 〈Δ,≺〉
of 〈Σ,≺〉 such that for all natural number n, An is social in 〈Δ,≺〉.

Proof. Recall that by 〈Δ,≺〉, we mean 〈Δ,≺ �Δ〉. By Lemma 3.5, we can fix a sub-
digraph 〈Δ0,≺〉 of 〈Σ,≺〉 such that any non-empty ≺ �Δ0-closed subset of Δ0 is also
paradoxical. Since 〈Δ0,≺〉 is a DAG, by Theorem 3.2, we can find a social point in
〈Δ0,≺〉. Let it be A0 and Let Θ0 denote �∗(A0) ∩ Δ0. Note that since A0 is social in
〈Δ0,≺〉, A0 is also social in 〈Θ0,≺〉. Since Θ0 is a ≺ �Δ0-closed set in 〈Δ0,≺〉, it must
be paradoxical by our choice of the digraph 〈Δ0,≺〉. Hence, by Lemma 3.5 again, we
can fix a sub-digraph 〈Δ1,≺〉 of 〈Δ0,≺〉 such that any non-empty ≺ �Δ1-closed subset
of Δ1 is also paradoxical. By Theorem 3.2 again, we can fix a social point in 〈Δ1,≺〉,
namelyA1. Let Θ1 denote �∗(A1) ∩ Δ1. Note thatA1 is social in 〈Θ1,≺〉. Besides, since
Θ1 ⊆ Θ0, A1 is also social in 〈Θ0,≺〉.

Repeating the above process, we can obtain a rayA0≺∗A1≺∗A2≺∗ ..., and a sequence
Δ0 � Δ1 � Δ2 � ... such that for all n ≥ 0, Θn = �∗(An) ∩ Δn is ≺ �Δn -closed in
Δn, and An is social in 〈Θn,≺〉. It is clear that every An is social in 〈Θ0,≺〉 since
Θ0 ⊇ Θn.

Theorem 3.2 tells us that there are infinitely many social sentences in any reference
digraph for this paradox. Now by Theorem 3.6, we know, among the infinitely many
social sentences we find in any reference digraph for this paradox, there are infinitely
many appearing in a ray. So, Theorem 3.6 provides us with more information than
Theorem 3.2. By the way, Theorem 3.6 is also a strengthening of Corollary 2.7 (2).

We conclude this section with a generalization of Theorem 2.5.

Definition 3.7. Let G = 〈D,≺〉 be a digraph. The social part of G is the set of all points
u ∈ D with u�∗v for some social point v in D.

Theorem 3.8. If a paradoxical set is non-self-referential, then for any reference digraph,
its social part is conversely ill-founded.

Proof. Let Σ be a non-self-referential set of sentences. Then there exists a dependence
function f such that the corresponding reference digraph 〈Σ,≺f〉 is acyclic. Suppose
there is a reference digraph 〈Σ,≺f′〉 whose social part is conversely well-founded. Let
f′′ be a function on LT defined by f′′(A) = f(A) ∩ f′(A). Then f′′ is a dependence
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10 MING HSIUNG

function on LT . By replacing f with f′′, we can suppose f meets the conditions (i)
〈Σ,≺f〉 is a DAG, and (ii) the social part of 〈Σ,≺f〉 are conversely well-founded.

We need to prove that Σ is not paradoxical. To this end, we must find a set, say Γ� ,
such that Γ�(T �A�) = Γ�(A) holds for all sentence A in Σ.

We now divide Σ into two parts. Let Σs be (the domain of) the social part of the
digraph digraph 〈Σ,≺f〉. Let Σc be Σ \ Σs , i.e., the complement of Σs relative to Σ.
Note that Σc is closed to ≺f . That is, if A ∈ Σc and A≺fB , then B ∈ Σc .

By our supposition (ii), the restriction of 〈Σ,≺f〉 to Σs , i.e., 〈Σs ,≺f �Σs 〉, is
conversely well-founded. Hence, there is a rank function � over the set Σs for (the
converse) of ≺f .

Since every sentence in Σc is locally finite and non-self-referential, by Theorem 3.3,
there exists Γ such that for all A ∈ Σc , Γ(T �A�) = Γ(A). For each ordinal α, we
inductively define a set Γα as follows: Γ0 = Γ, Γα+1 = {A ∈ Σ | Γα(A) = 1}, and for a
limit α, Γα is the limit inferior of the sequences

〈
Γ� | � < α

〉
.

Claim 1. For any A ∈ Σc and any ordinal α, A ∈ Γα , iff A ∈ Γ.

Proof of Claim 1. Fix A ∈ Σc , we prove by transfinite induction on α. The base
case α = 0 is evident. For the case α = � + 1, it is sufficient to show Γ�(A) = Γ(A).
For this, we only need to prove Γ� ∩ f(A) = Γ ∩ f(A). Whenever B ∈ f(A), we have
A≺fB . Since Σc is closed to ≺f , A ∈ Σc implies B ∈ Σc . By the induction hypothesis,
B ∈ Γ� , iff B ∈ Γ. The desired result follows immediately.

If α is a limit, let � =
⋃
B∈f(A)(�(B) + 1). Then, for any B ∈ f(A), if � ≤ � < α,

then �(B) < � < α, and by the induction hypothesis, B ∈ Γ� , iff B ∈ Γ. Therefore,
Γ� ∩ f(A) = Γ ∩ f(A). For any � with � ≤ � < α, we obtain A ∈ Γ�+1, iff A ∈ Γ. We
can conclude that A ∈ Γα , iff A ∈ Γ.

Claim 2. For any A ∈ Σs and any α > �(A), A ∈ Γα , iff A ∈ Γ�(A)+1.

Proof of Claim 2. Again, the proof is a transfinite induction on the rank of A ∈ Σs .
First, when �(A) = 0, we need to prove for any α > 0, A ∈ Γα , iff A ∈ Γ1. In this case,
A must be a social sentence, and f(A) ⊆ Σc . If α = � + 1, then for any B ∈ f(A), by
Claim 1, B ∈ Γ� , iff B ∈ Γ. It follows Γ� ∩ f(A) = Γ ∩ f(A). Thus, Γ�(A) = Γ(A),
and soA ∈ Γα , iffA ∈ Γ1. If α is a limit, let � =

⋃
B∈f(A)(�(B) + 1). Then, by Claim 1

again, we can prove for any � with � ≤ � < α, Γ� ∩ f(A) = Γ ∩ f(A), and thus,
Γ�(A) = Γ(A). We can obtain that A ∈ Γα , iff A ∈ Γ1.

Next, suppose the claim is true for any B ∈ Σs with �(B) < �(A). We must prove it
is true for A ∈ Σs . The proof is still a transfinite induction on α, which is the same as
the basis case �(A) = 0, except that we appeal to the inductive hypothesis instead of
Claim 1. We omit the details.

Let � be the least upper bound of the ordinals �(A) + 1 for all A ∈ Σs . By the above
two claims, we can conclude that for any sentence A of Σ, if α ≥ �, then A ∈ Γα , iff
A ∈ Γ� . In particular, A ∈ Γ�+1, iff A ∈ Γ� . That is, Γ�(T �A�) = Γ�(A).

§4. Strongly Social Sentences. In this section, we continue to strengthen the
theorems we have obtained in the previous section.

We first introduce the notion of grounded points.
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REFERENCE DIGRAPHS OF NON-SELF-REFERENTIAL PARADOXES 11

Definition 4.1. Let G = 〈D,≺〉 be a digraph. A point u of D is called a grounded point
in G, if �∗(u) is conversely well-founded; otherwise, it is ungrounded. The grounded
part of G is the set of all grounded point in G.

Note that a sink is a point of out-degree zero. Thus, a sentence is grounded in
a reference digraph, iff any of the walks starting from it eventually reaches a sink.11

Recall that in a digraphG = 〈D,≺〉, a point u ∈ D is a social point, if u can see infinitely
many points.

Definition 4.2. Let G = 〈D,≺〉 be a digraph. u ∈ D is a strongly social point in G, if
u can see infinite many ungrounded points in G. A weakly social point (in G) is a social
point whose sociality (in G) is not strong.

We must emphasize that the notion of sociality given by Definition 4.2 is relative
to a specific digraph. In particular, the distinction between strong social points and
weakly social ones makes sense only if we have specified to which digraph these points
belong. For some sentences, when we say that they are strongly (or weakly) social, we
mean that they are so in some reference digraph fixed in the context.

The following is a strengthening of Theorem 3.2.

Theorem 4.3. If a paradoxical set is non-self-referential, any of its reference digraphs
contains infinitely many strongly social sentences.

The following theorem is a specific case of Theorem 4.3. We first prove it by König
infinity lemma before proving Theorem 4.3. The proof is a generalization of the proof
given by Hsiung [14, pp. 897–898].

Theorem 4.4. If a paradoxical set is non-self-referential, the social sentences in any of
its reference digraphs cannot be all weak.

Proof. Let Σ be a non-self-referential set of sentences. Suppose it has a reference
digraph in which all social sentences are weak. So, we can find a dependence function
f such that 〈Σ,≺f〉 whose social points are all weak. Since Σ is non-self-referential, we
can, as we do in Theorem 3.2, further suppose 〈Σ,≺f〉 is a DAG. We will construct a
truth predicate for Σ.

Let Σg be the set of all grounded points in 〈Σ,≺f〉. Note that Σg is conversely well-
founded. Moreover, it is closed to ≺f . So, by Theorem 2.5 and Lemma 3.4, there exists
a subset Γg of Σg such that Γg is a truth predicate for Σg .

Let Σ∗ be Σ \ Σg , i.e., the complement of Σg to Σ. We apply König’s infinity lemma
to find a truth predicate for Σ. Let Σ∗ = {Ak | k ∈ N}, and for any k ∈ N, let Σ∗

k =
{Ai | i < k}. For any k ∈ N, we say a mapping s from {i ∈ N | i < k} to {0, 1} is a
k-sequence, if there is a set Γk such that (i) for any A ∈ Σ∗

k ∪ Σg , Γk (T �A�) = Γk(A),
(ii) s(i) = Γk(Ai), and (iii) if A ∈ Σg , then Γk(A) = Γg(A). k is the length of s. Note
that Γk is a truth predicate for Σ∗

k ∪ Σg . For convenience, it is called a “truth witness”
to the k-sequence s. Let T be the set of k-sequences for all k ∈ N, and let< be a binary
relation on T given by: s < s ′, iff the length of s is less than that of s ′, and for all i less
than the length of s, s(i) = s ′(i). See Figure 1 for an illustration of the idea.

11 The notion of groundedness originates from Herzberger [12, p. 148]. The present one is the
same as the one given by Halbach et al. [11, p. 193], who use the term “converse wellfounded”
instead. See also [17, p. 694], [28, p. 122], [19, p. 168], [22, p. 748], and [2, p. 452] for other
related but different notions of groundedness.
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12 MING HSIUNG

A0 A1

...
A2 A3 A4

Σ∗

...Σg

Figure 1. In this reference digraph, A1 and A3 are two weakly social sentences. By the shaded
area, we indicate which sentences need to be considered in order to obtain a truth witness for a
2-sequence.

It can be easily verified that 〈T , <〉 is a binary tree whose root is the empty sequence.
For any k ∈ N, since there are only finitely many social sentences in the set Σ∗

k ∪ Σg ,
by Theorem 3.2, there is a truth predicate for it, which is a truth witness to some
k-sequence. From this point, we can easily see that 〈T , <〉 is an infinite tree. By König’s
infinity lemma, 〈T , <〉 has a branch, namely �. � is a mapping from N to {0, 1}. Let Γ
be the union of Γg and {Ak ∈ Σ∗ | �(k) = 1}.

We prove that for any A ∈ Σ, A ∈ Γ, iff Γ(A) = 1. For convenience, for any k ∈ N,
we use �k for the restriction of � to the set {i ∈ N | i < k}. Fix A ∈ Σ, we consider the
following four cases.

Case 1: A ∈ Γg . We want Γ(A) = 1. First, note that Γg ⊆ Σg is a truth predicate for
Σg , and so Γg(A) = 1. Besides, Σg is closed to ≺f . Note Σg and Σ∗ are disjoint. So,
Γ ∩ f(A) equals Γg ∩ f(A). We get Γ(A) = Γg(A) = 1.

Case 2: A = Ak ∈ Σ∗ and �(k) = 1. Note that all social sentences of Σ are weak
in the reference digraph 〈Σ,≺f〉, and Σ∗ includes all ungrounded points in this
digraph. We can find a number nk > k such that f(Ak) ∩ Σ∗ ⊆ Σnk . By �(k) = 1,
we know �nk (k) = 1. Since �nk is an element of T with length nk , we can find
a corresponding truth witness Γnk to �nk . By �nk (k) = 1, it immediately follows
Γnk (Ak) = 1.

Our target is to prove Γ(Ak) = Γnk (Ak) = 1. For this, it suffices to show Γnk ∩
f(Ak) = Γ ∩ f(Ak). Suppose A ∈ Γnk ∩ f(Ak), then Γnk (A) = 1. We consider two
sub-cases. First, in case A ∈ Σg , then Γg(A) = Γnk (A) = 1. But Γg is a truth predicate
for Σg , so A ∈ Γg . Hence, A ∈ Γ. Second, in case A ∈ Σ∗, then by choice of nk , we
have known f(Ak) ∩ Σ∗ ⊆ Σnk , and hence A ∈ Σnk . That is, A = Ai for some i < nk .
Then, from Ai ∈ Γnk , it follows �nk (Ai) = Γnk (Ai) = 1. Again, we get A = Ai ∈ Γ. To
summarize, we obtain Γnk ∩ f(Ak) ⊆ Γ ∩ f(Ak).

It remains to prove Γ ∩ f(Ak) ⊆ Γnk ∩ f(Ak). SupposeA ∈ Γ ∩ f(Ak), then either
(i) A ∈ Γg or (ii) A = Ai and �(Ai) = 1. In case (i), Γnk (A) = Γg(A) = Γg(T �A�) =
1, and so, A ∈ Γnk . In case (ii), we notice A = Ai ∈ f(Ak) ∩ Σ∗ ⊆ Σnk . Hence
i < nk . By �(Ai) = 1, we know Γnk (Ai) = �nk (Ai) = 1. Again, we deduce Ai ∈ Γnk .
Consequently, we can conclude that Γ ∩ f(Ak) is a subset of Γnk ∩ f(Ak).

Case 3: A ∈ Σg \ Γg . This is the dual of Case 1. We can show Γ(A) = 0. We leave
the details to the reader.

Case 4: A = Ak ∈ Σ∗ and �(k) = 0. The proof is similar to the one in Case 2.
To sum up the above four cases, we can conclude that any sentence A belongs to Γ,

iff Γ(A) = 1. Thus, Γ is a truth predicate for Σ.
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REFERENCE DIGRAPHS OF NON-SELF-REFERENTIAL PARADOXES 13

Proof of Theorem 4.3. The proof is an almost verbatim version of the proof
for Theorem 3.2 except that to the basis step, we apply Theorem 4.4 rather than
Theorem 3.3. The details are omitted.

The following corollary is a strengthening of Theorem 3.6. Their proofs are also
similar.

Theorem 4.5. Suppose 〈Σ,≺〉 is a reference digraph of Σ. If Σ is a non-self-referential
and paradoxical set, then there is a ray A0≺∗A1≺∗A2≺∗ ... in some sub-digraph 〈Δ,≺〉
of 〈Σ,≺〉 such that for all natural number n, An is strongly social in 〈Δ,≺〉.

Among all social sentences, by Theorem 4.3, only those strongly social sentences
can determine the paradoxicality of a non-self-referential set of sentences. To take an
example, for any number n ≥ 0, let Yn be a sentence such that

Yn ↔ ¬T �Yn+1� ∧ ∀x ≥ n̄ T �ẋ = ẋ�
is provable in PA. Let Σ be the set of sentences Yn plus n̄ = n̄ (n ≥ 0), ≺ be a reference
relation of LT . Then, every Yn is weakly social in the reference digraph 〈Σ,≺〉. Thus,
Σ is not paradoxical even though it contains infinitely many social sentences.

Finally, it is worth pointing out that we can define the strongly social part of a
digraph as we do in Definition 3.7. Then, we can prove that in any reference digraph of
a non-self-referential and paradoxical set, the strongly social part must be conversely
ill-founded. The proof is similar to that of Theorem 3.8, except that we appeal to
Theorem 4.4 rather than Theorem 3.3.

§5. Dangerous Digraphs. In this section, we introduce the notion of the dangerous
digraph and recapitulate the features of reference digraphs for paradoxes in purely
graph-theoretic terms.

The notion of the dangerous digraph is originally given by Rabern et al. [22, p. 738]
in a propositional language. It is extended into the first-order language of arithmetic
with the truth predicate symbol T by Beringer & Schindler [2, p. 454].

Definition 5.1. A digraph is dangerous, if there is a paradoxical set of sentences such
that one of its reference digraphs is isomorphic to this digraph.

Note that if a set of sentences is locally finite, it must have a locally finite reference
digraph. The following result is immediate from Corollary 2.7(1) and Theorem 3.3.

Theorem 5.2.

(1) Any finite and dangerous digraph contains at least a directed cycle.
(2) Any locally finite and dangerous digraph contains at least a directed cycle.

Theorem 5.2 has been proved by Rabern et al. [22, pp. 751, 754]. See also
[2, p. 474]. It is well-known that for any n ≥ 0, the set {Lk | 0 ≤ k ≤ n} with the
provable equivalencesL0 ↔ ¬T �Ln� andLk+1 ↔ T �Lk� (1 ≤ k < n) is paradoxical.
From this observation, we can also prove that any finite digraph containing a directed
cycle must be dangerous. See also [22, pp. 750–751] for details.

Note that the reference digraph of the liar sentence is the minimal reflexive digraph
〈{0},=〉. It is called the liar digraph by Rabern et al. [22, p. 738]. A corollary of the
above theorem is that a finite digraph is dangerous, iff it contains a subdivision of the
liar digraph as a sub-digraph (ibid., p. 751). The proof is straightforward. The reader
can refer (ibid., p. 742) to the definition of subdivision.
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The first result of Theorem 5.2 is a particular case of the following. The latter one,
in turn, is a graph-theoretic version of Theorem 2.5.12

Theorem 5.3. Every dangerous digraph is conversely ill-founded.

Next, we turn to the dangerous digraphs containing no cycle. The following result
is immediate from Corollary 2.7(2) and Theorem 3.2.

Theorem 5.4.

(1) Every dangerous DAG contains at least a ray.
(2) Every dangerous DAG contains infinitely many social points (i.e., points of infinite

out-degree).

To take an example, 〈N, <〉 is (isomorphic to) a reference digraph for Yablo’s
paradox. It is one of the simplest dangerous DAGs. This linear structure is called
the Yablo digraph by Rabern et al. [22, p. 738].

Theorem 5.4, as mentioned before, is first proved by Rabern et al. [22, pp. 750,
756] in an infinitary propositional language. The present version is proved based on
Corollary 2.7(2) and Theorem 3.2, in which paradoxes are formulated in the first-order
language of arithmetic with T. In this sense, our theorem can be seen as an extension
of Rabern et al.’s [22, p. 756] corresponding result.

Theorem 3.6, as mentioned below its proof, is a strengthening of Corollary 2.7(2) and
Theorem 3.2 in the sense that those infinitely many social sentences may simultaneously
occur in a ray. We now reformulate Theorem 3.6 and Theorem 4.5 in terms of dangerous
digraphs.

Theorem 5.5. Every dangerous DAG contains a sub-digraph in which there are infinitely
many social points appearing in a ray. The same is true for strongly social points.

We close this section with four variants of Yablo’s paradox. In the following
examples, the sentences are arranged in non-linear structures so that their reference
digraphs are more and more complex than the Yablo digraph.

Example 5.6 (Two-dimensional Yablo’s paradox). Define the set of sentences Ym,n
for all m, n ∈ N such that Ym,n is the sentence saying that Yi,j is untrue for all i, j ∈ N

with m < i or n < j.

Example 5.7 (Nested two-dimensional Yablo’s paradox). Define the set of sentences
Ym,n for all m, n ∈ N such that Ym,n is the sentence saying that Yi,j is untrue for all but
finitely many i, j ∈ N with m < i or n < j.13

Recall that the Cantor tree (the infinite full binary tree) is 2<� , i.e., the set of the
finite sequences of 0’s and 1’s, ordered by the relation < such that a sequence is “less
than” another iff the latter is a proper extension of the former. More formally, for any
finite sequences s and t, s < t, iff s � t.14

Example 5.8 (Binary-tree Yablo’s paradox). Define the set of sentences Ys for all
s ∈ 2<� such that Ys is the sentence saying that Yt is untrue for all t ∈ 2<� with s < t.

12 An equivalent proposition of some different form has been obtained by Rabern et al. [22,
Lemma 9, p. 749]. Rabern et al.’s version is proved in the setting of an infinitary propositional
language.

13 The corresponding one-dimensional one is initially given by Yablo [31, p. 144]. It is also
called the ∃∀-unwinding variant of Yablo’s paradox. See also footnote 3.

14 See [16, pp. 27ff] for more information about the tree.
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Example 5.9 (Nested binary-tree Yablo’s paradox). Define the set of sentences Ys
for all s ∈ 2<� such that Ys is the sentence saying that Yt is untrue for infinitely many
t ∈ 2<� with s < t, that is, for any u ∈ 2<� with s < u, there exists at least one t ∈ 2<�

such that u < t and Yt is untrue.

All of the above four examples are paradoxical. We verify the third one. Our
verification is informal, but it is easy to transform it into a formal proof required
by Definition 2.1. We denote the empty sequence by 〈〉. Assume Y〈〉 is true, then Ys
is false for all s ∈ 2<� . In particular, Y〈0〉 is false. At the same time, we also know
Ys is false for all s with 〈0〉 < s . Thus, Y〈0〉 must be true, a contradiction. Hence,
the assumption implies a contradiction, so Y〈〉 must be false. In that case, for some
s ∈ 2<� , Ys is true. Similarly, we can derive a contradiction from the truth of Ys . As a
result, the set {Ys | s ∈ 2<�} is paradoxical.

We can formulate the sentences in the above examples into the language LT . Again,
we do it for the third one. First, note that the relation < on 2<� is a representable
relation. Besides, there is a computable function 	 from N to 2<� . The inverse mapping
	–1 encodes the finite sequences in 2<� . The number 	–1(s) is the coding number
of the sequence s.15 Next, define a binary relation � on N: n �m, iff 	(n) < 	(m).
� is a representable relation. Thus, by diagonalization, we can construct a sequence
of sentences Y ′

n such that Y ′
n ↔ ∀x (n � x → ¬T �Y ′

ẋ�) is provable. Finally, for any
s ∈ 2<� , let Ys = Y ′

	–1(s)
. Then, the binary-tree Yablo’s paradox is the set of sentences

Ys (s ∈ 2<�).
Note that the Yablo digraph occurs in all reference digraphs of the above four

examples as a finitary minor. Again, we only consider the set of sentences Ys for all
s ∈ 2<� in Example 4. We denote it by Σ. Suppose f is a dependence function such
that ≺f is a reference relation on Σ, thenf (Ys) is a co-finite subset of Σ. From this, we
can find infinitely many strongly social sentences in some branch. This branch forms a
sub-digraph of 〈Σ,≺f〉, which is isomorphic to the Yablo graph. We leave the details
to the reader.

As mentioned above, a primary difference between the above four examples and
Yablo’s paradox is that their sentences are not arranged by a linear ordering. In the
last two examples, the sentences are even arranged in a tree. Even if we try to spread
sentences onto such a non-linear structure, so long as these sentences form a paradox,
we can still find a ray in which there are infinitely many strongly social sentences.

§6. Concluding Remarks. This paper builds on the work by Rabern et al. [22] to
explore the reference digraphs of the paradoxes. The starting point of our research
is a result Rabern et al. establish in a specific infinitary propositional language: all
dangerous acyclic digraphs contain infinitely many points with an infinite out-degree.
We extend this result in the first-order arithmetic language with a primitive truth
predicate. The version that we prove is that any reference digraph of a non-self-
referential paradox contains infinitely many social sentences.

We strengthen the above result in two respects. On the one hand, among these
social sentences, infinitely many appear in one ray. On the other hand, among these
social sentences, infinitely many have infinitely many out-neighbors, none of which will
eventually get to a sink.

15 See, for instance, [7, p. 42].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020324000200
Downloaded from https://www.cambridge.org/core. IP address: 3.17.175.24, on 30 Jan 2025 at 05:00:13, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020324000200
https://www.cambridge.org/core


16 MING HSIUNG

Based on the above observations, we finally discuss Beringer & Schindler’s conjecture
briefly. As mentioned in the introductory section, the non-trivial part of their conjecture
states that all dangerous acyclic digraphs contain the Yablo digraph as a finitary minor.
For a formal definition of the notion of a finitary, we refer the reader to Beringer &
Schindler [2, p. 490]. For now, it is sufficient to understand that the essence of this
conjecture lies in that starting from any dangerous acyclic digraph, we can obtain the
Yablo digraph through a series of vertex deletions, edge deletions, or edge contractions
(in any order).

By Theorem 5.5, we have established that a dangerous DAG must contain two
of essential components of the Yablo graph: infinitely many strongly social points
and a ray passing through these points. However, Theorem 5.5 alone is insufficient
to address Beringer & Schindler’s conjecture, as a complete Yablo graph cannot
necessarily be constructed solely from these two components. To illustrate this,
consider the digraph whose domain is the union of natural numbers and rational
numbers of the form n + 1

2k
for all n ∈ N and k ≥ 1. The binary relation of this

digraph is the union of the successor relation on natural numbers and the relation{
〈n, n + 1

2k
〉, 〈n + 1

2k
, n + 1〉 | n ∈ N, k ≥ 1

}
. In this digraph, the sequence of natural

numbers forms a ray, with each natural number being a strongly social point. However,
it is evident that the Yablo graph cannot be obtained from this digraph through vertex
deletions, edge deletions, or edge contractions. In fact, it can be proved that such a
digraph is not even dangerous.16

To prove Beringer & Schindler’s conjecture, we need to further strengthen
Theorem 5.5. For this, we introduce the notion of domination between a point and
a ray. We say a point dominates a ray if there are infinitely many paths starting from
that point and terminating at the ray, such that these paths are pairwise disjoint except
for the common starting point. Moreover, no point between the starting point and
the terminating point (exclusive) in each of these paths occurs in the ray. A sufficient
condition for Beringer & Schindler’s conjecture is that every dangerous DAG contains
a sub-digraph in which there are infinitely many (strongly) social points dominating
a ray.17 Seeing this point, we would like to say that the information we extract from
Theorem 3.2 and Lemma 3.5 is not sufficiently comprehensive, despite the significant

16 This example is originally given by Walicki [26, p. 474] with a slight variation.
17 The notion of a point dominating a ray comes from Walicki [26, p. 476]. The author is

grateful to an anonymous reviewer of a previous version of this manuscript for bringing
this work to his attention and highlighting the application of kernel theory to paradoxes.
Roughly speaking, a kernel S is a set of points in a digraph such that any point in S has no
(out-)neighbor in S and any point outside S has at least an out-neighbor in S. The notion
of the kernel can be traced back to the notion of solution for binary relations introduced
by Von Neumann & Morgenstern [24]. As far as we know, it is Cook [5, p. 773] who first
applies kernel theory to analyze a specific class of paradoxes obtained by “unwinding”.
Recently, Cook’s ideas have been further developed in works such as Cook [6], Dyrkolbotn
& Walicki [8], Walicki [25], Walicki & Dyrkolbotn [27], and Walicki [26]. In particular,
the works of Walicki et al. have made significant contributions to the application of kernel
theory to all semantic paradoxes by transforming formulas into graph normal forms in an
infinitary propositional language. Additionally, it is worth noting that in Walicki [26, p. 476],
a digraph is defined as “safe” if it contains neither odd cycles nor any ray that is dominated
by infinitely many points within that ray. These unsafe digraphs are closely related to the
reference digraph of paradoxes in graph normal forms. Further investigation is needed to
explore the relationship between dangerous digraphs and Walicki’s unsafe digraphs.
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result of Theorem 3.6 obtained from these two statements. There remains a gap between
Theorem 3.6 and the aforementioned condition. Further investigation is required to
bridge this gap.
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