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ABSTRACT 
Design neurocognition is an emerging research area that can provide insights into the black box of 
designers’ cognitive processes. However, work to date has focused on neurocognition on its own, 
without integrating this with other design measures. 
 
This paper presents the results of a pilot study which brings together designer neurocognition with 
design output and assessment of the design process followed in a constrained prototyping activity 
comparing use of physical and digital Lego. This was achieved via EEG data capture, a TLX survey and 
measures of design output variance. 
 
Differences between physical and digital prototyping methods were found with respect to Task Related 
Powers of EEG signals and the design process followed with digital prototyping methods found to take 
longer, require more effort and cause more frustration. No differences were found with regard to design 
output. 
 
Whilst the sample size used (n=12) was small, future studies will use large sample sizes to increase their 
statistical power and will consider alternative EEG or fNIRS to capture brain activity due to challenges 
with the headset used in this study. 
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1 INTRODUCTION & BACKGROUND
Prototyping is an integral part of the product development process (Houde and Hill, 1997). Methods for
prototyping span a wide variety of techniques and tools, and can take place in both the physical and dig-
ital domains (Goudswaard et al., 2021b). Different prototyping methods will have different affordances
and as such can influence the quality of outputs. As a result, typical product development workflows
will use a range of methods from both the digital and physical domains, (Goudswaard et al., 2021a),
however there is no best prototyping method for a given activity, (Lim et al., 2008) and the choice of
tool and domain to use is not a simple one. Since the design tool does not often translate from the phys-
ical to the digital domain and vice versa, it can be difficult to compare the domain independently of the
design tool. Physical prototyping methods have been shown to increase creativity and communication
and encourage collaboration and design exploration, (Mathias et al., 2018; Donati and Vignoli, 2014;
Garde and van der Voort, 2016), whereas digital tools often lend themselves to detailed design work,
with the added risk of design fixation.

There have been various comparison studies of prototyping techniques, such as the comparison of
sketching, card modelling and digital tools (Isa et al., 2015), which found card modelling to illicit
more creativity and variation in designs. Physical methods have also been shown to increase the speed
of idea generation through a comparison of CAD sketching and foam modelling (Häggman et al., 2015).

While characterisation and comparison of prototyping methods have been widely performed, relatively
few studies have investigated the cognitive effects of prototyping domain on the designer. Multiple non-
invasive methods exist for capturing the neurocognitive activity in a designer’s brain, such as functional
Magnetic Resonance Imaging (fMRI), functional Near Infrared Spectroscopy (fNIRS), and Electroen-
cephalography (EEG). EEG records the electrical activity of the brain via electrodes placed on the scalp,
it is non-invasive and has a high temporal resolution. These attributes, coupled with its relative afford-
ability when compared to fNIRS or fMRI, mean that it is the most commonly used method for recording
brain activity (Schomer and Lopes da Silva, 2017).

EEG studies have been undertaken to compare the brain activity of mechanical engineers, industrial
designers and architects when completing both open and constrained design tasks. The results of these
studies provided evidence that there are differences between open and closed design tasks, as well as
differences between disciplines (Vieira et al., 2020, 2019b,a).

While the neurocognitive effects of the level of design constraint have been investigated, there exists a
gap in the knowledge in terms of how the use of media, and in this case physical or digital prototyping
methods, impacts design neurocognition. In addition to addressing this gap, this paper also looks to
examine the design process as well as its outputs in order to facilitate comparison of design outputs,
process and design cognition. As such, the research questions for this paper are as follows:
1. Can process differences between physical and digital prototyping methods be observed?
2. Can neurocognitive differences between physical and digital prototyping methods be observed?
3. Are there differences in outputs between prototypes made via digital and physical methods?
The remainder of the paper is structured as follows. Section 2 explains the paper’s methodology,
Section 3 presents the results which are then discussed in Section 4. The paper closes with conclusions
in Section 5.

2 METHODOLOGY
To investigate the research questions, participants were instructed to complete constrained design tasks
using both physical and digital prototyping methods. The experiment was approved by the University of
Bristol ethics committee (ref 2021-0298-265). Twelve participants took part in the experiment, 11 male
and 1 female, 9 were right handed. Participants had a mean age of 29, with a standard deviation of 6.3
years. All participants had at least 2 years of design experience and varied in education from masters
students to a professor of 20 years. Figure 1 shows an overview of the experimental methodology.
The following sections explore the corresponding elements of Section 2 and detail the study set up
(Section 2.1), design measures (Section 2.2), and analysis (Section 2.3).
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Figure 1. Overview diagram of the methodology used. Reference numbers correspond to section

headings.

2.1 Experimental and study setup

The experiment consisted of participants completing two consecutive design tasks, each completed
using a different prototyping tool. The task was to construct a Lego spaceship that complied with a pre-
determined set of design rules. Each brick colour represented a different component and had a constraint
associated with it. Three rule sets were generated, with different rule sets given to participants for each
design task to prevent learning bias. The rule sets were based on those proposed by (Mathias et al.,
2018). Each contained 14 bricks and an equal number of constraints that the design had to comply
with. The three different sets of rules were equally constrained to provide the same level of freedom to
the designers. Rule sets were distributed equally across participants, prototyping domains and order of
undertaking and were provided to participants on paper. The physical design tool was a collection of
Lego bricks corresponding to the colours in the ruleset. The digital design task mirrored the physical but
used LeoCAD, a Lego CAD software (LeoCAD, 2022), in place of the physical Lego bricks. Lego was
used as it translates well from a physical object to a digital representation, allowing the same prototyping
tool to be evaluated physically and digitally. Figure 2 shows the order that tasks were performed by
participants.

Figure 2. Data capture phases of experiment
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Half of the participants completed the physical design task first, while the other half completed the
digital design task first.Participants were given two minutes to familiarise themselves with the design
tool before beginning the design task. The design tasks had a time limit of ten minutes and rested for
two minutes before beginning the experiment. Table 2 shows a breakdown of the rulesets given to each
participant, which order they were completed in and the time taken for each task.

2.2 Design measures

The data capture stage is depicted in Fig. 1 and involves the collection of data used to quantify the dif-
ferences between the prototyping domains. Three data streams were captured to characterise this: i) the
design outputs (Section 2.2.1); ii) the design process (Section 2.2.2); and, iii) designer neurocognition
Section 2.2.3.

2.2.1 Measuring design output

To establish whether the design tool used had an impact on the quality and variation of the design
outputs, several metrics were determined to assess the outputs from each task. First, each output was
inspected for compliance with the ruleset presented to the participant. This inspection was completed
post-hoc, and the participant was not informed whether their design was compliant.
Variation in designs was determined by two measures: build volume and entropy.
The build volume for each design was calculated, using the studs on the Lego bricks to calculate the
build area multiplied by the number of brick layers as a measure of the height.
Entropy was calculated by following the method used by Mathias et al. (2018) and calculated by first
creating a Design Structure Matrix (DSM) (Eppinger and Browning (2012) for each spaceship. The
DSM contains the number of connections each brick type has with each other brick types (example
presented in Fig. 4).
For each DSM its entropy is calculated using the Shannon Entropy formula (Eq. (1)) providing a
measure of the level of inter-connectivity of each design with a low entropy value indicating few
connections.

H(X ) = −6n
i=1P(xi) log2 P(xi) (1)

where H(X ) is the entropy, P(xi) is the probability of the ith and and n is the number of elements in the
DSM. Calculating the entropy required normalisation of each DSM so that the sum of values was equal
to one. These values could then be input into Eq. (1) returning the entropy for each matrix.

2.2.2 Measuring design process

Design process was measured by asking each participant to complete a NASA Task Load index (TLX)
assessment (NASA, 2020) at the end of each trial. The TLX is a subjective workload assessment to
assess the perceived workload of a task. The results of the TLX questionnaires was combined with the
time taken to complete each task to gain an understanding of how the prototyping tool impacted the
designer’s performance and subjective workload. It consists of self-assessment on a 21-point scale of
mental demand, physical demand, temporal demand, performance, effort and frustration.

2.2.3 Measuring designer neurocognition

Before beginning the design tasks, an EEG headset was fitted to a participant’s head and electrodes
adjusted to ensure satisfactory signal acquisition. EEG data was collected using an Ultracortex “Mark
IV” headset from OpenBCI transferring data via Bluetooth at a sampling rate of 125Hz. 16 dry elec-
trodes were used, equally spaced across the scalp according to the international 10-20 system (Homan,
1988), to facilitate broad capture of brain activity. The locations of these electrodes can be seen in
Figure 3. An ear clip on the left earlobe was used as the ground and the Cz electrode, as defined in the
international 10-20 system, was used as the bias.
To capture the neurocognitive activity of designers during each task, EEG data was captured throughout
the experiment. The data captured was classified into three categories;
• Resting (2 mins): the participant is in a resting state with minimal movement and cognitive activity.
• Familiarisation (2 mins): the participant is using the design tool without a specific aim
• Design (10 mins max): the participant is using the tool to complete the assigned design task
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Figure 3. Electrode locations used to capture EEG data, locations based on the 10-20 system of

measurement

2.3 Analysis

This section will detail the EEG data processing and the statistical tests used to compare datasets.

2.3.1 EEG data processing

Analysis of the EEG data was performed using EEGLab in Matlab (Delorme and Makeig, 2004). The
captured data was band pass filtered from 2-48Hz to remove low amplitude artifacts and line noise. The
filtered data was subsequently manually inspected to remove periods of high amplitude. This resulted in
a mean percentage of data kept of 53.5%, SD=21.5%, with a maximum of 95.1% kept and a minimum
of 7.6%. This, in some cases large, proportion of data removal will be discussed further in Section 4.
Independent component analysis (ICA) was used to remove components of the signal associated with
undesired brain activity, such as muscle movements and blinks. ICA components were classified using
the ICLabel plugin for EEGLab, which returned a classification for each signal component (Pion-
Tonachini et al., 2019). Components were then manually inspected and removed if they contained large
components due to activity unrelated to brain activity. Of the 16 components returned by the ICA, the
mean number rejected was 5.1 across all participants, with a standard deviation of 2.2.

The cleaned data was used to compute the Task Related Power (TRP) across each electrode per partic-
ipant per task. TRP measures the difference in total transformed power, denoted Pow, between the task
and the resting state. This metric has been used in previous studies to calculate differences in brain acti-
vation between two groups with different backgrounds completing the same design task (Vieira et al.,
2020).
Pow is defined as the mean of the squared values of microvolts per second recorded from the headset.
TRP for each participant is calculated using Eq. (2),

TRPi = log(Powi,task)− log(Powi,ref ), i = 1,2...n (2)

where n is the number of the electrodes in use. Positive values of TRP indicate an increase in power
during the task compared with the reference. For the results presented in section 3, TRPs were calculated
for the physical and digital design tasks, with the resting state used as a reference.

2.3.2 Statistical analysis

Statistical analysis was undertaken in Graphpad Prism 9 software. A variety of statistical techniques
were used to analyse data from the study:
• To compare build times and design entropies, paired T-tests were used.
• To compare ordinal TLX data a Wilcoxon matched pairs signed rank test was used.
• To compare TRPs, an ordinary 2-way ANOVA with Šidák’s multiple comparison were used for

which hypothesis testing was used to correct for multiple comparisons.

3 RESULTS
In this section, the results of the analysis performed on the various data collected during the experiment
is presented.
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3.1 Design outputs

Table 1 presents the quantity of designs that were compliant with the required rulesets. No differences
are observed between prototyping domains and compliance.

Table 1. Table showing compliant and non-compliant builds per domain and ruleset

Physical Digital
Ruleset Compliant Non-compliant Compliant Non-compliant

1 4 0 3 1
2 3 1 3 1
3 2 2 3 1

Total 9 3 9 3

Figure 4. Sample spaceship and its corresponding DSM

Figure 4 demonstrates a sample spaceship with its corresponding design structure matrix which is used
to calculate entropy as defined in Section 2.
Figure 5a presents the impact of prototping domain on use of space during the design task and Fig. 5b
presents the impact of domain on build volume. In both cases, data were found to be normally dis-
tributed via means of a D’Agostino and Pearson test and were compared via means of paired T-tests.
No statistically significant differences were found (ie p>0.05) in either case suggesting that prototyping
domain does not impact design output in this case.

(a) (b) (c)

Figure 5. The effect of domain on design output in terms of build volume,entropy and build time.

(a) denotes build volume, expressed as length (studs) × width (studs) × height (#bricks).

(b) presents the Entropy for physical vs digital prototypes. (c) presents build time for digital vs

physical prototypes.

3.2 Design process

Summary TLX data for digital vs. physical are shown in Fig. 6. In all categories, from a user experience
perspective, physical prototyping methods were shown to perform better than digital. The data was
compared via means of a Wilcoxon matched pairs signed rank test. Statistically significant results were
found for Temporal Demand (p=0.001), Effort (p=0.0048) and Frustration (p=0.001).
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Table 2. Table showing the ruleset completed by each participant and the time taken to

complete each. Ruleset numbers marked with a * indicate the first task completed.

Participant number 1 2 3 4 5 6 7 8 9 10 11 12 Mean
Physical ruleset 1* 2 1* 1 2* 1 2* 2 3* 3 3* 3 -
Digital ruleset 3 1* 2 2* 1 3* 3 3* 1 1* 2 2* -
Digital duration (s) 510 600 375 460 510 368 277 511 600 440 473 425 462.4
Physical duration (s) 389 672 213 195 428 125 166 270 180 180 233 185 244.6

Figure 5c demonstrates the impact that domain has on build time. Data was found to be normally dis-
tributed via means of a D’Agostino and Pearson test and were compared via means of paired T-test.
Differences in build time were found to be statistically significant with p<0.0001, corroborating the
differences in temporal demand reported by participants in the TLX data.

Figure 6. TLX data summary. Factors marked with * were found to have statistical significance. For all

factors a low score is better as it corresponds to low demand, effort or frustration and high

performance.

3.3 Designer neurocognition

Task Related Powers (TRPs) were calculated for each electrode for digital and physical design tasks
with the resting activity used as a baseline for each. Figure 7 shows the mean calculated values of TRP
across all participants for each electrode. Table 3 shows an overview of the results of the two way
ANOVA tests conducted on the TRP data.

Table 3. ANOVA table for TRP comparisons between physical and digital design tasks

SS DF MS F (DFn, DFd) P value
Interaction 15.81 15 1.054 F(15, 352) = 0.4535 p=0.9614
Electrode 103.1 15 6.875 F(15, 352) = 2.958 p=0.0002
Design domain 22.18 1 22.18 F(15, 352) = 9.541 p=0.0002
Residual 818.2 352 2.324

A two-way ANOVA was performed to analyse the impact of electrode and design domain on TRP
(results in Table 3). The tests revealed that there was not a statistically significant interaction between the
effects of electrode and design domain F(15, 352) = 0.4535, p=0.9614. Main effects analysis showed that
electrode (F(15, 352) = 2.958 p=0.0002) and design domain (F(15, 352) = 9.541 p=0.0002) both had sta-
tistically significant impacts on TRP. These however only accounted for 10.75 and 2.3 % of the observed
variance respectively. Šidák’s multiple comparison tests were carried out to identify differences between
physical and digital design tasks but did not show statistical significance.
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Figure 7. Summary TRP data. Plots present median and interquartile range

4 DISCUSSION
The discussion section will consider the response to the research questions proposed, as well provide
comments on the experimental setup and consider further work.

4.1 Answers to research questions

Design processes, as reported by TLX and the time taken to complete the task, were shown to vary
substantially. The time taken to complete the digital design task was significantly longer than the phys-
ical task, with the mean digital task time being 47% greater than the mean physical task time. This
difference in task completion time correlates with the reported differences in the TLX responses among
participants. Temporal demand, effort and frustration were all significantly higher in the digital task
then the physical and these factors are likely to cause the time to increase. These differences could be
attributed to the ease of use of Lego or participants’ lack of familiarity with the LeoCad software, as
each was only given two minutes to become familiar with it with no participant having previous expe-
rience with the specific software. To answer research question 1), process differences can be observed
between physical and digital prototyping methods, with physical methods shown to be less frustrating,
and time consuming, than digital methods.

The results of the statistical analysis on the calculated TRP values suggests that small differences in
neurocognitive function can be observed overall. ANOVA shows that condition does have a significant
effect on TRP however no individual statistical differences between electrodes means it is difficult to
link this difference to specific cognitive functions. Between participant differences were far greater than
electrode or condition suggest that there may be problems with data capture. To answer research ques-
tion 2), the results show that differences may occur, however the methods of data capture utilised in this
study may have been insufficient to identify these differences.

Design outputs were found to be similar, with no statistical differences in terms of build volume and
entropy. Compliance to the rulesets also showed no differences across prototyping domains, with the
same number of compliant designs in each domain. Therefore in response to research question 3), the
results do not suggest evidence that there are quality differences between the outputs of physical and
digital prototyping methods.

4.2 General comments

Whilst no specific differences were found in activity at individual electrodes, if designers are frustrated
and report differences in their design experience it seems counter-intuitive that more specific neurocog-
nitive differences are not occurring during design. This could suggest issues around neurological data
capture with regard to the suitability of the equipment used for the study. Small amounts of movement
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was required from participants during the task as participants operate either the computer or manipulate
Lego bricks indicating that movement artefacts beyond those removed by the ICA could remain in the
analysed signals. The headset used dry electrodes that had difference in signal strength dependent on
contact quality with participants’ scalps, often due to amount and thickness of head hair. Whilst these
differences should be accounted for in the TRP calculation, with each design activity using resting activ-
ity as a baseline, it is possible that this effect is not fully accounted for. Alternative EEG headsets or an
fNIRS are considered as alternative options that may be more appropriate for this kind of longitudinal
design study.

4.3 Limitations and further work

This study has several limitations that should be highlighted. First, while all participants were involved
in the field of mechanical engineering, the level of experience in design, and familiarity with digital
design tools varied significantly. Future iterations of the work would seek to use a more homogeneous
groups of participants
Second, the results found from the design tasks using Lego may not translate to other prototyping
analogues. Digital and physical design tools take a large number of forms, so the use of Lego is not nec-
essarily representative of all physical and digital design tools. Lego is considered a good starting design
medium due to there being direct digital and physical analogues. Future work will look to compare
additional digital and physical design media.
As mentioned in the previous section, data capture could be improved by exploring alternate methods of
capturing the neurocognitive activity of designers. Alternative approaches, such as a wet electrode EEG
device, fNIRS headset or multi-modal (EEG + fNIRS) device could provide better capture of designers’
neurocognition during tasks such as that undertaken in this study.
In addition to changes in data capture, greater samples sizes would be required for statistically significant
results. Neuroscience focused studies in the field of design research have mean sample sizes of 20.97
(SD=14.55) and in the field of neuroscience 27.44 (SD=12) (Balters et al., 2022). These indicate the
typical sizes of study required for a full run of the study presented in this paper.

5 CONCLUSIONS
This paper presented the results of a pilot study with the aim of determining if there are observable dif-
ferences in process, output and neurocognition when comparing the same prototyping method executed
physically and digitally. The study involved 12 participants completing a constrained design task using
physical and digital Lego. Within the study, participant brain activity was monitored via a 16 electrode
EEG headset, and the quality and variety of the design outputs was quantified by calculating the build
volume and entropy of the designs as well as compliance to the rules of the design task. Design process
was evaluated using the time taken to complete each task, and the results of a NASA TLX questionnaire.
TRP values were calculated per participant for each electrode between the physical and digital design
tasks and the resting state. The effect of the prototyping domain was shown to be significant, but no
observable differences were found between individual electrodes. No significant differences were found
between the outputs of the physical and digital methods, however the results of the TLX showed that
digital methods were more frustrating and mentally demanding. Digital methods also took significantly
longer (47%) than the physical equivalent to complete the design activity. These findings indicate that
there are benefits to prototyping physically. Limitations in the capture of EEG data were identified,
which could explain the lack of significant differences observed for individual electrodes. Addressing
these issues via use of alternative EEG or fNIRS headsets is a focus of future work and could potentially
allow for improved deduction of neurocognitive differences between physical and digital prototyping
methods.
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