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DISTANCE-TRANSITIVE GRAPHS OF VALENCY FIVE
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1. Introduction

If u and v are vertices of the (finite, connected) graph F, let d(u, v) denote the length of
the shortest path joining u to v in F. The graph F is said to be distance-transitive if
whenever d(u,v) = d(u',v'), there exists an automorphism g of F such that u9 = u' and
if = v'. Distance-transitive graphs of valency 3 and 4 were originally classified [2, 11, 12,
13] by using a computer to generate all "feasible intersection arrays" (cf. [1,
Chapter 20]). In both cases a classification has since been given by hand [4, 5]. We
continue this latter tradition and prove the following theorem—which was recently
proved independently by Ivanov et al. using a computer [10].

Theorem. A distance-transitive graph of valency five is one of the following: K6,
(2.K6)2, (2.X6)4, Hlu Q5, D5, Ky5, 5.K5>5, O5, 2.05, 2.rj s , Z6, P3(4), P4(4).

K6 is the complete graph, and Ks 5 the complete bipartite graph, of valency five. Q5 is
the 5-dimensional cube, and Ds is the antipodal quotient of Q5. O5 is the odd graph of
valency five. f/u is the incidence graph of points and blocks in the unique symmetric
2-(l 1,5,2) design. Z6 has as vertices the thirty-six subgroups of order 20 in S6, two such
being adjacent when they intersect in a subgroup of order 4 ([1, p. 153]). P3(4) and
P4(4) are the incidence graphs respectively of the projective plane of order 4 and the
classical generalised quadrangle of order (4,4) associated with PSp(4,4). If A is a graph
of diameter d, then r.A denotes an r-fold antipodal covering of A with diameter Id,
whereas (r.A),, denotes an r-fold antipodal covering of A with diameter 2d+l in which
the parameter cd+l=y. The antipodal covers occurring in the theorem are all unique.
(For the definitions and basic properties of the parameters ah bh c, associated with the
distance-transitive graph F see [1, Chapter 20]. For information about antipodal
coverings see [6].)

2. The two outstanding cases

Given a group G acting distance-transitively on the graph F we introduce an extra
parameter "s". An s-arc in F is a sequence (u(0),u(l),..., u(s)) of s+1 vertices, each
adjacent to the next and such that u(i— l)=fcu(i+ 1) (0<i<s). The group G is s-arc-
transitive on F if G acts transitively on the set of s-arcs of F, but not on the set of

l)-arcs.

* This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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74 A. GARDINER AND C. E. PRAEGER

Lemma 1. ([3, Lemma 2.4 and Proposition 3.5]). Let F be a distance-transitive graph
of valency 5 and girth g. Let {u,v} be an edge of F. Then G = AutF is s-arc-transitive on
F for some s _ 1 and one of the following holds:

(i) g = 3 and F = K6, or F = (2.K6)2—the icosahedron;
(ii) g = 4, F = (2.K6)4,ands=lor2;

(Hi) g = 4, s = 2, and F = H1U r = Q5, r = D 5 , or F = K55;
(iv) g = 4, s = 3, and F = K5 5;

(v) g = 5, s = 2, and either (a) G , (K)=1 , G{u) = F54, A5, or S5, or (b) Gt(ui;) =
1 ± Gi(u) = Z2, G(u) = F54 kZA = F5 4 x Z2;

(vi) g = 6, F = 5.K5 5, and s = 2 or 3;
(vii) g = 6, s = 3, and F = 05, or F = 2.O5;

(viii) g = 6, s = 4, and r = P3(4);

(ix) g = 7, s = 3, and either (a) Gl{uv)=\^Gl(u) = Z4, G(u) = F5^ xZ4, or (b) G1(ut;) =
1 ^=G1(M) = ^ 4 or S4, G(u) = /15 x /14, S5 A S4, or S5 xS4;

(x) ^ ^ 8 , s^4.

Here G(u) denotes the stabiliser of the vertex u in G, G^u) denotes the pointwise
stabiliser of u and each of its neighbours, and Gl(uv) = Gl(u) n G^v). F5A is the
Frobenius group of order 20.

Of the three outstanding cases (v), (ix), and (x) in Lemma 1, the last may appear the
most intractable. The program proposed in [3] was based on the assumption that this
case was likely to be the first to be resolved in complete generality (that is, for all
valencies). This has recently been borne out by a result of Weiss [14], of which the
following is a corollary.

Lemma 2. ([14]). Let F be a distance-transitive graph of valency 5 and girth ^ 8 . If F
is s-arc transitive for some s^4, then T = P4(4).

The rest of this paper is devoted to the two remaining cases: (v) g = 5, s = 2, and (ix)
£ = 7, s = 3.

3. Case (v)

Case (v). g = 5, 5 = 2 and either (a) Gl(u)=\, G(u) = F 5 4 , A5, or S5, or (b) Gl(uv) =

We consider the possible values of the parameter a2 in turn.
If a2=4, then F would be a Moore graph of valency 5 and diameter 2, contrary to

[8]. Suppose a2 = 3. Let (u,v,w) be a 2-arc in F. Then G ^ u ^ l (since C,(o)<G(ro) acts
^-transitively on r(w) — {v} and has a fixed point, namely F(w) r> F3(u); so G^v) —
GJ(W)<I <G(y), G(w)> = G). Also G(u)^F5A (otherwise <T2(M)> would be a trivalent
Cayley graph for F5 4 with girth _ 5 , which is impossible). Thus G(u) = A5 or S5. Give v
the label 1, and label the other vertices of F(u) with 2,3,4,5. Then G(uw) = G(uvw) = A3 or
S3, and so fixes exactly two points in F(u), namely v = 1 and one other—say 2. So we
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may label each vertex w6F2(u) with the ordered pair (1,2) of points in F(u) which are
fixed by G(uw), the first coordinate being precisely T(u) n F(w). G(uw) acts transitively
on the three vertices of F(w) n r2(u), hence none of these vertices is joined to 1 or 2
(otherwise we would get a 3-gon or a 4-gon), none of them has 2 as second coordinate
(or they all would, whence <F2(M)> consists of five copies of K4, so F would contain a
3-gon), and none of them has 1 as second coordinate (or they all would and (1,2), (3,1),
(1,5), (4,1) would form a 4-gon in <F2(u)». We may'therefore assume that the three
remaining vertices of F(w) have been labelled in such a way that (1,2) is joined to (3,4),
(4,5), (5,3). It follows that G(uw)£S3, so G(u) = A5. But then (3,4) is joined to (1,2),
(2,5), (5,1), so <F2(u)> = (2.03)1—the dodecahedron. Thus the vertex 2 is in F3((l,2)),
and r(2)nr2((l,2))i{u, (2,3), (2,4), (2,5)} so c3^4. Now c3=£5 (otherwise G(u) = A5

could not act transitively on the four points of F3(w)). Hence c3 = 4. But then a3=0 (as
a3 = 1 with k3 = 5 is impossible), so b3 = 1, c4 = 5, and F = 2. • 5.

Suppose next that a2 = 2. Let (u, v, w) be a 2-arc. Then G(u, w) leaves V(w) n T2(u)
invariant, so G(u)J=A5 or S5. Hence G(u) = F54 or F5AxZ2, and <F2(u)>=4C5 or 2C10

(since neither F5 4 nor F5 4 x Z2 can act vertex transitively on C20). Let A = T(v) n F2(u),
B = r(u) — {v}, C = r(B)nr(A) (where F(fl) consists of all vertices adjacent to some
vertex in B, and similarly for V(A)), D = r{A) n F3(M), £ = (F(B) n F 2 (U))-F( /1) . NOW
|F(e)nB|=l for each eeE (since c2=l). Also E is not a union of connected
components of <F2(u)> (since 5/^lfl), so we must have r(E)nCj=0. Thus since
££F3(t;) and BuCgF2(y) we see that c3^2. Moreover |F(c)n£|:gl for each ceC,
so F(£)n£=f 0 whence a 3 ^ l (since £gF3(y)). Hence either c3 = 2 or c3 = 4. Suppose
c3 = 4. Then a3 = 1. Hence F has intersection array {5,4,2; 1,1,4} and is primitive, so the
group G = AutF (of order 36.20 or 36.40) has a unique minimal normal subgroup M.
Thus M = A6, F = I6 , and AutF = AutS6.

Now suppose that c3 = 2—still with a2 = 2, a 3 ^ l . Then a3=/=3 (otherwise F would be
primitive on 46 points, contradicting [15, Theorem 31.1]). Thus a3 = 2 or a3 = 1. We saw
above that F(£) n £ and F(£) n C are non-empty. Moreover interchanging u and v
interchanges A and B, D and £, and leaves C invariant, so F{D) n D and F(D) n C are
non-empty. Thus if G(u) = F54.xZ2, then we have the partial intersection diagram of
Fig. 1 (since G(uv) is then transitive on C, D, £). If G(u) = F5 4, then G(uv) has two orbits
of length four on each of C, D, E: if <F2(u)> = 4C5, then the vertices of A belong to
distinct components and it is easy to see that the same partial intersection diagram
applies; if <F2(u)> = 2C10, then A must consist of two "opposite pairs" of vertices—one
from each of the two 10-gons—and it is not hard to see that this forces the same partial
intersection diagram. If a3 = 1 and b3 = 2, then for each 3-arc (u, v, w, x) with u e F3(x), b3 = 2
implies that F(u)n F4(X) = {I;,,I;2}. Thus if F2(x) n F(u) = {i;, v'} and F(t/) n F(x) = {w'},
then we can choose z' e F(vv') n r2(u) n F(u) (since w'eC). Moreover {U!,D2} =
F(u)nr3(w) implies that u'eF(u) n F2(w) so we can choose z e F(w) n F2(u) n F(u').
But then the 3-arc (uvwz) in <F2(w')> has F(u) n F(w') = {t;'} = F(z) n F(w'), so the circuit
containing (uvwz) in (,r2(w')y cannot be "rotated" by an element of order 5 in G(w').
Thus a3 = 2, b3=\ and c 4 ^c 3 = 2. Now c4^5 (otherwise O5(G(M)) fixes each vertex
yeF4(M), so O5(G(u)) = O5(G{y))~a (G(u),G(y)) = G). Also c 4 ^3 (since 3^20). If c4 = 4,
then a 4 ^ l (since /c4 = 5 is odd); so a4 = 0, bA=l, c5 = 5, and F would be a 2-fold
covering of a Moore graph of valency 5, contrary to [8]. Suppose c4 = c3 = 2. Then
a 4 ^3 (or else <F4(M)> is trivalent on ten vertices with girth ^ 5 , and so is isomorphic
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A

FIGURE 1

to the Petersen graph; but then for each yeFJ^u) we would have C6 =
<r2(y)nr4(u)>g<r2()0> = 4C5 or 2C10). Hence a4 = 2, &4=1, so c5 = 5 or 2. Moreover
c5=/=5 (or r would be primitive on 58 points, contradicting [15, Theorem 31.1]). Thus
cs = 2. Since ks = 5 is odd we cannot have a5 = 3. Thus a5 = 2, bs = l, c6 = 5. But then
<F5(w) u F6(M)> contains a triangle. This completes the case a2 = 2.

Suppose a2 = \. Then b2 = 3, and a3^\ (since <F3(i;) n F2(M)> = 6/C2). Hence c3^4.
Moreover c3=/=4 (since if c3 = 4 then a3 = l and F would be primitive on 41 vertices,
contradicting [9, Satz 21.3]). Suppose c3 = 3. Then a 3 = l and f»3 = l (otherwise a3 = 2
and F would be primitive on 46 vertices, contrary to [15, Theorem 31.1]). Hence c4=/=5
(otherwise /c4 = 4 and either G(u)^.A5 could not act transitively on F4(M), or G(u) is
soluble and O5(G(M)) fixes each yeT^u), so O5(G(u)) = O5(G(y))<i <G(u),G(y)} = G). Thus
c4 = 4, /c4 = 5 is odd, so a4=/= 1; hence a4 = 0, fc4= 1, c5 = 5, and F would be a 2-fold cover
of a Moore graph of valency 5, contradicting [8]. Suppose c3 = 2. Then fc3 = 30, so
G(u) = A5 or S5. If we label the vertices of F(M) with the symbols 1,2,3,4,5, each vertex w
of F2(M) receives a natural label (i,j) where F(w) n F(M) = {i} and G(uw) fixes i, jeF(w).
Since a2 = l the vertex (i,j) must be joined to the vertex (j,i). Let t>=l, w = (l,2),
xeF(w) n F3(u). Then G(ux) interchanges the two vertices (1,2), (i, j)eF(x) n F2(M). NOW
i =/= 1 (since F contains no 4-gons), and j =/= 2 (otherwise either j = 1 so F contains a 3-gon,
or ŷ = 1 and the 2-arc ((1,2), (2,1), 2) lies in more than one 5-gon). Similarly j£l. Thus
either (i) {1,2} n {i,j} = 0, or (ii) j = 2.

(i) Suppose {l,2}n{i,7"} = 0 . Then /c3 = 30, so G(u) must have an orbit of length 30
on the sixty pairs {(i, j), {k, I)} with {i,j}n{k,l} = 0. Hence G(u) = A5. We may assume
that F(x)nF2(u) = {(l,2),(3,4)} and give x the label {(1,2),(3,4)}. G(ux) = <(13)(24)> has
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precisely two fixed points in F3(u), namely x = {(l,2),(3,4)} and x' = {(2,1), (4,3)}. Thus
a3 = 2 (otherwise x would have to be joined to x' and we would get the 4-gon (x,x',
(2,1), (1,2))). Let A = r(v)nr2(u), D = r2(v)n F3(u) = F(/l)nr3(w). Since a2 = l in T2(v)
we must have <D> = 6X2. Thus the two vertices in F(x) n F3(u) are of the form
{(1,0,0".*)} and (applying G(ux) = <(13)(24)» {(3,i'),(j',k')}. Using this and the fact
that F(x) n F3(u) must be a self-paired suborbit of G(M)r3(u) we get just five possibilities
for F(x)nF3(M) = {y,y'} say: (a) y = {(3,5),(1,4)}, / = {(1,5),(3,2)}; (b) y = {(5,4),(3,2)},
/ = {(5,2),(1,4)}; (C)>; = {(1,4),(5,2)}, / = {(3,2),(5,4)}; (d) y = {(2,1),(3,5)}, / =
{(4,3),(1,5)}; (e)y = {(4,5),(3,l)}, / = {(2,5),(1,3)}. In cases (a)-(c) we get y'er(y), so
F has girth 3; in case (d) we get a 4-gon ((1,2), x,y, (2,1)); in case (e) the 2-arc (y,x,y')
lies in two 5-gons—one in <F3(u)>, the other being (y,x,y', (1,3), (3,1)). Thus case (i)
does not occur.

(ii) Suppose now that j = 2: that is, if xeF(l ,2)n F3(u), then we may assume that
F(x)nF2(u) = {(l,2),(3,2)}. Then each vertex x in F3(u) receives a natural label x =
(2,(13)) whose second coordinate is an unordered pair, or transposition, not involving
the first coordinate. The 2-arc (1,(1,2), (2,(13))) lies in a unique 5-gon, which we may
take to be (1,(1,2),(2,(13)),(5,(14)),(1,5)). Thus G(u) = As (otherwise G(ux) = <( 13),(45)>
and the G(ux)-orbit containing (5,(14)) would have size four, contradicting a3^3).
Hence G(ux) = <(13)(45)>, so (2,(13)) is also joined to (4,(35)), whence a3^2. The G(u)
images of the edge {(2,(13)), (5,(14))} form six 5-gons in <F3(u)>. But then we get two
5-gons ((1,(52)), (3,(24)), (5,(14)), x',y') containing a single 2-arc—one with x' = (2,(13)),
y = (4,(35)), and the other with x' = (l,5), / = (5,1)—contradicting a2 = l. Thus case (ii)
does not occur. Hence c3 ^ 2.

Suppose c3 = l. Then /c3 = 60, so G(u) = A5 or S5. As before <F2(i;) n F3(u)> = 6K2, so
a3 = l, b3 = 3. Each edge (w,wr) in <F2(u)> lies in exactly three 2-arcs (w,w',x') with
x'eF3(u). And each such 2-arc lies in a unique 5-gon (w, w',x',x",x). Since G(w) acts
transitively on such 2-arcs, it must act transitively on the 30 corresponding 5-gons.
Hence the possible vertices x" opposite the edge {w,w') must form a single G(w)-orbit
whose length divides 30. Thus x" e F4(u), fc4 divides 30, and c4 = |F(x") n F3(u)| ^ |{x', x} | = 2.
So either (a) /c4 = 30, and b3 = 2, c4 = 4 or b3 = \, c4 = 2, or (b) /c4 = 15 and b3 = \, c4 = 4.
Each 5-gon (u,v,w,w',v') in F has stabiliser A3 or S3, and so is fixed by a unique
subgroup <Ji> of order three. There is an element geG of order five which "rotates" the
5-gon and which normalises, and hence centralises, the subgroup </i>. In both case (a)
and case (b) we have ko=\ and fej =fc2 = fc3 = /c4s0(mod5). Moreover fc,^0(mod5)
only if c, = 5, whence i = d. Thus since G(u) = A5 or Ss acts transitively on each F^u) we
have fcf ̂  5 for each i ̂  5. (The apparent possibilities kd = 1 or 2 would force F to be
antipodal, and this is not possible if fc4|30.) It follows that £?=ofc,. = |G:G(u)|#0(mod5).
Thus the element g must fix some vertex z. Since G(z) = A5 or S5, the element h cannot
fix z, so h acts semiregularly on the fixed points of g: in particular, g fixes at least three
points. But if g fixes the vertex z'eF/z) for some first j^l, then <g> must act
transitively on F(z'), so c, = 5, j = d. Since kd^2,3,4, the only possibility in case (a) or (b)
above is that fc4 = 30, bA=\, c5 = 5, ks = 6. But then g fixes only 1+0 + 0 + 0 + 0+1
points, which is a contradiction. This completes the case a2 = l, c3 = l, and hence
completes case (v).
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4. Case (ix)

Case (ix). girth 7, s = 3, Gj(ui;) = l and either (a) G1(u) = ZA, G(u) = F54xZ4, or
(b) Gl(u) = A4 or S4, G(u) = A5 x A4, S5 A S4, or Ss x S4.

Suppose first that G(M)O/15 x A4. If (0,1,2,3) is a 3-arc in F, the stabiliser H =
G(0123)^/43 x /1 3 fixes a unique circuit C = (0, l,2,3,...,t—1) containing the 3-arc
(0,1,2,3). Moreover for each /, 03(Gi(/)n H) = A3 fixes F(i + 2k)(modt) pointwise and
acts non-trivially on each r(i + 2k— l)(modt); (compare [5, Lemma 3] or [7, Lemmas
5.2-5.4]). Hence in particular t must be even, so t ^ 8 , a3 = 3, b3 = \. Let F(3)nF3(0) =
{xi,x2,x3}, and let r2(x,-)n F(0) = {y,} (i = l,2,3). Then O3(C,(0)nH) must permute the
x, cyclically while fixing the yt pointwise, which is impossible. Thus we may assume that
G(M) = F 5 4 X Z 4 .

F has girth 7 so a 3 ^ 1, b3^3. If a3=4, then F would be a Moore graph of diameter
3—contradicting [8]. If a3 = 3, then <T3(u)> has girth ^ 7 and so must consist of two
components of size 40 (otherwise <T3(u)> would be a Cayley graph for F54xZ4,
whereas this group cannot be generated either by three involutions, or by a single
element of order ^ 7 together with an involution). But each component would then be
a Cayley graph of girth ^ 7 for some subgroup H of index 2 in G(u). However
H = FS4 xZ2 and H = FS4 A Z4 cannot be generated either by three involutions, or by
an element of order ^ 7 and an involution; and though H = Dl0xZ4 can be so generated
(namely by an element g of order 20 and an involution t), the corresponding Cayley
graph has girth 6 (since t inverts g4 and centralises g5, so gtg=g~1tg~l). Suppose a3 = 2.
Then fc3 = 2, so c4 = 2 or 4 (since k4 must divide |G(M)| = 80). If c4 = 4 then either (a)
a4 = 1 and f is primitive on 2.73 points, contradicting [15, Theorem 31.1], or (b) a4 = 0,
b 4 = l , in which case we must have c5 = 4, as = l (since c5 = 5 implies 5Jfk5, whence for
zeF5(u), O5(G(M)) = 05(G(Z))<I<G(U),G(Z)> = G). But then if ver{u), <r5(u)> = 5K2 and
|F4(i;) n F5(M)| = 8, so <F4(i>)> must contain an edge, contradicting a4 = 0. Thus we may
assume that c4 = 2. Clearly a4=/=3 (for the same reasons as a3=^3). If a4 = 2, then (F^u)}
is a union of circuits of length ^ 7 , so <F4(«)> = 4C20 or 8C10 (since F54xZ4 cannot
act regularly on C80, 2C40, 5C16, or 10C8). Let _yeF4(u), yuy2eF(y) nF4(u), {z} =
r(y)^F5(u). Then b4=\, so F(u) n F5(y) = {v*} say. Now b5^b4 = l. If c5 = 2 then
F(y)nF4(v*) = F(y)nF3(u), and either d>5, b5 = l, as = 2, {z} = F(y) n F6(v*), so
r0/)nr4(u)gr( j ; )nr s ( t>*) , or d = 5, as = 3, and again F(y) n F4(w) g F(y) n Fs(v*).
Thus the component of (F4(u)} containing y lies in F5(y*). Since G(u) acts transitively
on F(u), the number of components of <F4(u)> should be divisible by |F(M)| = 5,

a contradiction. Hence c5 = 4 (since cs = 5 would imply that O5(G{u)) =
05(G(Z))<J (G(u),G(z)y = G for each zeF5(u)). Moreover as = 0 (otherwise F would be
primitive on 2.103 points, contradicting [15, Theorem 31.1]). If c6 = 5, then F would be
a 5-fold cover of P3(4), contrary to [6]. Thus c6 = 4, a6 = 0 (otherwise F would be
primitive on 211 points contradicting [9, Satz 21.3]), b6 = \, c7 = 5 and F is a 2-fold
cover of a Moore graph of diameter 3, contrary to [8]. Thus a4j=2.

Let i7 e F(u), A = F(u) n F2(i;), B = F(v) n F2(«), C = F3(i;) n F2(u), D = F3{u) n F2(v), E =
F4(«) n F3(M), F = F4(u)nF3(v), H = F3(u)nF3(v). Then A,B,C,D are all G(uy)-orbits.
Since G(uv) acts semi-regularly on F3(M), both £ = £ 1 u £ 2 and H = Ht<u H2 break up
into two G(ui;)-orbits. Interchanging u and v we see that F = FXKJ F2 also consists of two
G(ui;)-orbits. Since a3 = 2 and G(u) = F5 4xZ4 acts regularly on F3(«), we have <F3(u)> =
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4C20 or 8C10. Since D^F2(v) and a2 = 0, we have F(£>) n F3(u) c #. Moreover any
union of components in <F3(u)> must have size divisible by 10, so F(D) n//,=/= 0
(i = 1,2). If F(H) nH£0, then since J)u H cannot be a union of components we must
have one of the G(uu)-orbits on H, say (Hly = %K2, F(H2)n£ = £2 (say), F(£ 2 )n£ = £1;

<£,> = 8/C2. But then |F(x)n£| = 2 for each xeE, which is impossible since £cr4(ii)
and a 4 ^ l . Thus F(tf)n// = 0 , r ( H ) n £ , f 0 (i = 1,2), and we have the partial inter-
section diagram in Fig. 2. In particular a4Si 1, so a4= 1.

FIGURE 2

Suppose F(£.) n £,=f 0 (i = 1,2). Then F(F,) nFt^0 (i = 1,2). Let (ylty2) be an edge in
<F,>. Then some element geG(uv) = Gl(u) x Gt(v) maps y, to y2, and so inverts the edge
(yuy2). Hence g2=l. Let r3{yi)nr{u) = {v,v'}. Then yler3(v

r), so \r(yi)nr3(v')\=2
(since a3 = 2). Now b4 = b3 = 2 (since a 4 = l ) , so H y J n rs(u) = r(y1)n T4(v'). Thus
_y2 e F3(i/) and {p, y'} = r3(y2) n F(M). Thus g fixes t/. If tu, fu denote the involutions in
G,(u),GJ(I;) respectively, then g = tu (since tp and tutv have only one fixed point in F(u)).
But then <g>o G(u), so the <g>-orbits in F4(M) form a block system for the action of
G(u) on F4(u). Hence g inverts every edge in F4(w). If {w,} = r(y,) n F2(i;'), and {y'fj =
(r(vv,)n F4(M)) —{y,} ( i=l ,2) , then g must interchange y\ and / 2 , so (y\,y'2) must be
an edge. But then (y{,y2, w2,y'2,y\, wt) would be a 6-gon in F—a contradiction. Hence
r ( F 1 ) n F 1 = 0 = F(£ 1 )n£ I (i = 1,2), and each circuit in <F3(u)> runs through the five
G(Mi>)-orbits D,Hl,El,E2,H2 in turn. Let (yuy2) be an edge in <F> with y(6F, (i = l,2).
As before we have T3(y) n T(u) = {v, v'}, and let {w,} = F(>'j) nF2(y') 0=1,2) . G^u) has
four orbits F,,, Fl2, F,3, F i 4 of length 4 on each F, (i= 1,2), which we may assume to be
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labelled such that y i 6 F n and y2eF2l, four orbits Hn, Hi2, Hi3, Hi4. of length 4 on
each Hh labelled such that w^eH^ and w2eH2l, and four orbits CUC2,C3,C4 of
length 4 on C, labelled such that C1 = F(v'). Moreover {T2{y^r\T2(u))-T{v)^F{v') = Cu

so r2(yf)nr2(u)^Ci for each y*eFn (i=l,2). It follows that each circuit in <F3(i;)>
runs through five G^wJ-orbits—say F n , F2l, H2l, Ct, Hn—in turn. Thus the Gi(u)-
orbits in F3(i;) form a block system for the action of G(v), with quotient 4C5. If xeF3(v),
let C(x) be the cycle in <F3(D)> containing the vertex x. Since G(v) acts regularly on
F3(i;) the element g'eG(v) which maps yt (say) to the vertex opposite yt on C(yx) must
belong to G^u), and so induces a half turn on C(yi). But then g' = tu (since g'2 = l).
Hence tu commutes with O5(G(v)), whereas tu should invert O5(G(v)).

Thus a3 = l and <F3(u)> = 40K:2. Since 3 does not divide |G(H)|, C4 = 3 and fc4 = 80. If
a4 = 2, then G is primitive with order 186.8O = 25.3.5.31. There are 186 Sylow 5-
subgroups (the Sylow 5-normalisers being precisely the vertex stabilisers). By Sylow's
theorem there must be 32 Sylow 31-normalisers, each containing 31 Sylow 5-subgroups.
Thus each Sylow 5-subgroup occurs in 32.31/186 Sylow 31-normalisers—a contra-
diction. Hence a 4 = l . Let veF(u), A =F(u) n F2(v), B = F{v) n T2(u), C=r3(»)nr2(a) ,
D = r3(«) n r2(v), E = TM n r3(w), F = T4(u) n r3(t;), and H = T3(M) n r3(t>). Then
A, B, C, D, H are all G(ui;)-orbits. Since a3 = 1 we have for each yeD, T(y)nH^0, and
so for each yeE we must have F(y) r\E±0. An element interchanging u and v would
interchange E and F and leave H invariant. Hence for each yeF we have F(y) nF=£0
and F(y) nH = 0. It follows that a4 = 1 and we get the partial intersection diagram in
Fig. 3. Thus bA=\ and c s ^ 4 (since 3 does not divide 80). If c5 = 5, then G is primitive
of degree 202 = 2.101 contradicting [15, Theorem 31.1]. Thus cs = 4. If a5 = l, then G is
primitive of degree 206 = 2.103, again contradicting [15, Theorem 31.1]. So a5 = 0, b5 = 1.
Suppose c6 = 5. Then F is not antipodal (since a4j=a2), so G is primitive. But then for
each zeF6(u), 05(G(u))<a <G(M),G(Z)> = G, a contradiction. Thus c6 = 4, a6 = 0, 66=1,
c7 = 5 and F is a 2-fold antipodal covering of a Moore graph of diameter 3, contradicting
[8]. This completes case (ix) and hence proves the theorem.

v 4

FIGURE 3
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