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Abstract

Microwaves (MWs) have emerged as a promising sensing technology to complement opti-
cal methods for monitoring floating plastic litter. This study uses machine learning (ML) to
identify optimal MW frequencies for detecting floating macroplastics (>5 cm) across S, C,
and X-bands. Data were obtained from dedicated wideband backscattering radio measure-
ments conducted in a controlled indoor scenario that mimics deep-sea conditions. The paper
presents new strategies to directly analyze the frequency domain signals using ML algorithms,
instead of generating an image from those signals and analyzing the image. We propose two ML
workflows, one unsupervised, to characterize the difference in feature importance across the
measured MW spectrum, and the other supervised, based on multilayer perceptron, to study
the detection accuracy in unseen data. For the tested conditions, the backscatter response of
the plastic litter is optimal at X-band frequencies, achieving accuracies up to 90% and 80% for
lower and higher water wave heights, respectively. Multiclass classification is also investigated
to distinguish between different types of plastic targets. ML results are interpreted in terms
of the physical phenomena obtained through numerical analysis, and quantified through an
energy-based metric.

Introduction

Several million tons of mismanaged plastic waste are dumped in the oceans yearly, and its vol-
ume has been growing exponentially over the past few years. Plastic litter is present in all shapes
and sizes from meters, down to the nanoscale. Its lingering presence, either floating or sub-
merged, is dangerously affecting the marine ecosystem, ultimately having direct impact on the
human food chain. The pressing concern of marine plastic pollution has captured the interest
of numerous researchers [1, 2].

Over the past decade, several studies focusing on detection strategies for marine macroplas-
tics have been reported [3-6]. The bulk of these initial studies focuses on the use of optical and
hyperspectral data. More recently, detection strategies employing machine learning (ML) algo-
rithms have surfaced. This is explained by the increasing availability of open-source datasets
[7-9]. ML models may improve, or supplement existing strategies in ocean monitoring tasks
given their higher flexibility and capability of recognizing meaningful patterns in complex envi-
ronments. This is of particular importance in monitoring deep-sea environment, where the
sea state rapidly changes. However, current research has shown that environmental impair-
ments common in deep-sea such as shadowing, sun glint and overall weather conditions can
deterjorate detection performance when using optical and hyperspectral instruments.

Motivated by the development of an all-weather monitoring system, recent studies have
investigated the detection of marine plastic litter, i.e., floating macroplastics (>5 cm), using
microwaves (MWs) [10-15]. MWs do not suffer from major atmospheric impairments and have
been used as a remote sensing technology for several science and Earth observation missions.
A radar-based metric was suggested recently for remote detection of floating plastic litter, the
energy ratio (EnR) [11]. This metric is based on the backscattered energy response of the float-
ing macroplastic targets, mainly produced by the concave and meniscus indentations that the
objects create on the water surface. However, the EnR formulation requires two conditions to get
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detection in a certain scenario: (1) reference measurements of the
water without the presence of the floating macroplastics, to estab-
lish a detection threshold; and (2) sequential measurements cap-
turing the drift of the targets in the observed scene. Both conditions
severely hamper the possibility of performing close to real-time
detection.

There is a notable gap in the literature as none of these ini-
tial studies has investigated the use of ML algorithms on MW
backscattered signal data to gain additional insight on the sur-
face response with and without floating macroplastics, or whether
it is possible to perform detection directly on the measured fre-
quency domain signals without producing an image. In contrast
to the physical approach, the newly supervised ML workflow pro-
posed in this paper requires no reference measurement right before
target presence, neither sequential target measurement. With ML
automation, we obtain an adaptive detection method that is more
suitable for close to real-time monitoring. Additionally, it requires
less bandwidth than the EnR approach for similar performance and
can work with noncontiguous frequency bands.

Available research has already shown the advantages of using
ML algorithms to analyze MW remote sensing experimental data
in multiple other ocean monitoring and detection applications
[16]. Xiang et al. [17] demonstrated the use of ML models, e.g.,
random forest and an artificial neural network (ANN), to improve
sea surface wind speed estimation using data from a MW scat-
terometer and radiometer together. Gao et al. [18] used another
ML model, support vector machines (SVMs), to estimate signif-
icant wave height from Synthetic Aperture Radar (SAR) imagery
data. A similar study was presented by Krinitskiy et al. [19] using
ship-based radar imagery data and ANNSs to estimate the signif-
icant wave height. ANNs and SVMs are also widely used to per-
form detection of sea ice [20] and ships [21] using satellite-borne
pol-SAR imagery data from different MW bands.

Data is key in ML and, thus, the choice of a suitable operating
band for the MW sensing instrument plays a vital role in obtain-
ing quality results. Contrary to the previous applications, the task
of monitoring floating macroplastic is still at its infancy; hence,
the choice of an appropriate MW frequency to separate the plastic
response from the water surface still requires investigation. Small
single-use plastic items typically produce a weak MW response
[14]. In contrast, the sea surface has a high scattering response,
given its high electric permittivity (¢, ~ 64@4 GHz) and con-
ductivity (0 &~ 9.8 Q4 GHz) [22]. This means that scattering from
the plastic litter is often engulfed in the overwhelming scatter-
ing from the water surface. To exacerbate the problem, floating
macroplastics are typically found scattered around the ocean in
low concentrations [23]. This makes it even more challenging to
separate the water surface and plastic responses, to detect its pres-
ence. Hence, determining the optimal MW frequency to isolate the
plastic response becomes even more crucial.

To the authors’ best knowledge, this work is the first to use
ML algorithms to explore experimental MW backscattered data
of water surfaces with and without floating macroplastics to, ulti-
mately, determine the optimal MW frequency across S-, C-, and
X-bands for its detection. Using ML to evaluate MW data at signal
level allows for a fast analysis, directly from the MW instrument,
that can complement existing detection strategies using optical or
hyperspectral data.

We conducted wideband S-, C-, and X-bands backscattering
radio measurements (from 2.5 to 11.5 GHz) in a controlled indoor
environment at DELTARES facilities (NL) [24], that mimics deep-
sea wave conditions. The measured datasets describe a statistically
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identical, time-evolving water surface with and without a low
concentration (10 g/m?) of spread out floating macroplastics.

An earlier version of this paper was presented at the 18th
Conference of Antennas and Propagation (EuCAP 2024) and was
published in its Proceedings [25]. In that preliminary version,
we carried out an unsupervised ML workflow to characterize the
experimental frequency dependency scattering behavior in the
presence of the spread out plastic targets. Our proposed method-
ology computed the difference between the total importance of a
selected sub-band within an MW interval from datasets with and
without plastic targets, Reference and Target, respectively. Here,
we complement our previous exploratory data analysis by (1) per-
forming numerical analysis and simulation work to deepen the
study of the MW effects, i.e., analyze the frequency selective scat-
tering behavior of floating macroplastics; (2) studying identical
test cases in higher water wave heights conditions; (3) adding a
supervised ML workflow to compute the detection accuracy and
identify the optimal MW frequencies; (4) comparing the super-
vised ML model performance considering narrower bandwidths
with an alternative detection metric (EnR); and (5) evaluating
the possibility of using ML to distinguish, statistically, between
different plastic targets, i.e., performing multiclass classification.

This paper is organized as follows: The “ML methodology” sec-
tion presents the ML models used in the two proposed workflows;
the “Data workflow” section describes the data workflow, which
includes the data acquisition, preprocessing, analysis, and detec-
tion metrics; the “Results and discussion” section presents the
numerical analysis and simulation work, the experimental results
obtained in the two dynamic water conditions using the two ML
workflows, and the comparison of using supervised ML with an
alternative detection metric; lastly, main conclusions are drawn in
the “Conclusions” section.

ML methodology

Predominantly, two main types of ML approaches are typically
used to study a problem: a descriptive or unsupervised learning
approach occurs when we are given unlabeled data, x, and the goal
is to unveil hidden patterns within the dataset. Each data input x;
consists of a vector of p independent variables called features; a
predictive or supervised learning approach, where the goal is to
learn a mapping from inputs x to the corresponding outputs y
given a set of input-outputs pairs commonly known as training
data (or inputs). Once trained, we can then use the model to make
predictions (y) for unseen inputs.

In the context of floating macroplastics detection, the predic-
tive approach is framed as a binary classification problem. Here,
the model assigns labels “0” and “1” to unseen inputs, represent-
ing the absence or presence of floating macroplastics, negative and
positive responses, respectively. The model estimates the condi-
tional probability p(y|x), which quantifies the likelihood of a given
input x; belonging to either class. In this section, we describe the
ML algorithms used in both unsupervised and supervised learning
workflows.

Principal component analysis

Principal component analysis (PCA) is one of the most widely used
techniques in tabular, multivariate dataset analysis and is employed
primarily for dimensionality reduction [26, 27]. Implementation
wise, PCA can be easily implemented through singular value
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decomposition (SVD) [28]. Therefore, no implementation difficul-
ties were encountered when processing the Electromagnetic (EM)
data which is, inherently, complex-valued. Hence, when applying
PCA to an MW tabular dataset, we directly used the complex-
valued measurements of the scattering parameters.

In essence, PCA extracts a lower dimensional feature set that
explains most of the variability of the original dataset. The k
extracted features, or principal components, PC;s, are (each) a lin-
ear combination of the original features (X;) scaled by a loading
value (a;; € C). This process of combining original features is often
also referred to as feature extraction. The loading values represent
the importance that each original feature has in the formation of
a PC. For example, «;; indicates the degree of importance, or con-
tribution, of the original jth feature in the ith PC. Mathematically,
each ith PC is written as follows [29]:

PC; = 0y X, + apXy + o + X, (1)

Each PC explains a proportion of the total variance of the
dataset at hand. Since the PCs are calculated to preserve the maxi-
mum energy content of the data matrix, i.e., variance, the first PC
always explains the most variance, the second PC always explains
the second most variance, and so on. However, in the presence of a
large number of original features, the consideration of only the first
few PCs may be insufficient to account for most of the variability in
the data. Thus, in this work, dimensionality is reduced to account
for 95% of the total explained variance.

In the context of MW application, SVD is widely used as a pow-
erful filter to block reflections from stronger scatterers [30]. With
PCA, we obtain a multidimensional coordinate system that reveals
the underlying linear energy trends of the data set. Following
Parseval’s Relation, this means that we maintain capability of fil-
tering the reflections of the higher energy scatterers from the
interpretable time domain intensity function (see the “Physical-
based detection metric” subsection further ahead) while having
the interpretation possibility in the frequency domain through the
loadings of each PC, i.e., a clear understanding of the contribution
of an original variable to a certain PC.

From the relation of the extracted features with the original ones
described above in Eq. (1), the absolute value of the loadings can
statistically evaluate the contribution of the ith frequency compo-
nent to the feature extraction result. The magnitude of this contri-
bution represents the feature importance estimation associated to
the dataset at hand [27]. Since each PC explains a proportion of
the total variance, it is appropriate to weight each contribution by
the respective proportion of explained variance, 7; [26]. This can
be referred to as weighted PCA (WPCA) FS algorithm in which we
can compute the importance (c) of the jth feature as follows:

C: =

: | mk=1,2,....p | ()

[N\gle

1

where k is the total number of PCs retained and ; is the corre-
sponding weight of the ith PC. Concatenating together the impor-
tances of all the features, we obtain the frequency importance
vector of a certain MW dataset, € j4450t-

From Eq. (2), we can interpret that, in MW applications, by
summing the contributions from consecutive frequencies within
an arbitrary sub-band interval, we can determine its total impor-
tance, Cyp_pang- Mathematically, for the measured Ny frequencies
within the chosen sub-band, its total importance is computed as
in Eq. (3). To improve filtering and focus on the central frequency,
we also apply a Hamming window (H) to the importance interval.
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Csubfband = fz H (Cf) (3)

=1

Multilayer perceptron artificial neural networks

For classification model, we use a multilayer perceptron (MLP)
[31]. The advantages are threefold: First, it has been shown in [32]
that, if well-tuned, its performance on tabular datasets is on par,
accuracy-wise, with other ML algorithms commonly used to pro-
cess tabular datasets (e.g., SVM, XGBoosts, and Gradient-Based
Decision Trees). We verify that the use of the MLP model in the
supervised learning workflow (see the “Supervised learning work-
flow” subsection further ahead) is superior to other tuned ML
algorithms; Second, it serves as a baseline to develop more intri-
cate neural network (NN) architectures for specific applications;
Third, it is possible to implement this architecture in the complex
domain (contrary to other ML algorithms) and directly process the
complex-valued MW measurement data [33].

In Fig. 1, we can observe an overview of the MLP architec-
ture, with a neuron unit highlighted in blue (for visualization
purposes), used to make a prediction on the magnitude of a 1D
scattering parameter signal, S;;. At least three layers make up an
MLP architecture: an input layer, an output layer, and one or more
intermediate layers, commonly referred to as hidden layers (HLs),
which define the depth of the NN [31]. The signal information
flows from the input layer to the output layer.

The input layer neuron units directly take the values of the input
features. Both the depth and number of neurons in each HL can
be optimized as explained further ahead in the “Supervised learn-
ing workflow” subsection. For classification tasks, the output layer
consists of #n, neurons where #, is the number of classes. In binary
classification specifically, we can use a single output neuron.

A neuron consists of a weighted sum of inputs from the previous
layer and a bias parameter, to which is then applied a (nonlinear)
activation function. Each neuron in the fully connected layers is
connected to all neurons in the preceding layer. In a vectorized
notation, an arbitrary output from the neurons of a fully connected
layer, i, in an MLP is computed as

W =o(Wh™'+b), (26)
where W' is the weight matrix, b’ is the bias vector, o is the
activation function and #'~! is the output from a previous layer.

It is the sequential application of the nonlinear activation func-
tion in the layer’s neurons, o, that enable even shallow MLPs
to learn complicate patterns of the data. The optimal activation
function for the neurons in the HLs depends on the training (appli-
cation) data and is typically determined empirically. For practically
all test cases, the model selected from the fine-tuning process (see
Appendix) uses ReLU [33] as the activation function of the neurons
in the HLs. Only in the output layer do we specifically required an
activation function that outputs the probability distribution over
the different classes. For this we used the softmax function [31].

The pattern recognition ability of MLPs is realized via super-
vised training. In this process, all the weights and bias parameters
(denoted as W' and &', respectively) are continuously updated to
ensure that the network output matches with the desired output
based on the given labels of the training data. However, for each
training input, there is still an error between the predicted out-
put and the target one. This error evaluates the performance of
our classifier and is quantified by a loss function, E. Since this is
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Figure 1. Overview of the MLP architecture used to process a 1D signal consisting of the magnitude of a scattering parameter, S;; (for visualization purposes). A neuron unit

is highlight in blue.

a classification task, we used the cross-entropy loss [31] as our loss
function. The network parameters are trained by using stochastic
gradient descent (SGD) and backpropagation. SGD is an optimiza-
tion method that minimizes the cost of the error loss function by
updating the network parameters with the error gradient from a
small, randomly selected set of training inputs. Backpropagation is
used to compute the error gradients of each pair of network param-
eters in the MLP, 0E/GW and OE/db, respectively. Accordingly,
the update rule for both weights and biases follows W « W -
(OE/OW), where 7 is the learning rate. The reader is referred to the
works in papers [31] and [33] for further details on the training
algorithms.

The extension of the MLP model to the complex domain does
not alter its architecture and employs the same formulation as
described earlier. The main changes are in its capacity (e.g., the
number of neurons) and the implementation of nonlinear func-
tions to handle complex-valued data types [34]. However, the
network’s output still needs to be mapped to a real-valued label, i.e.,
real domain. The mapping of complex to real (R — C), through
magnitude, can be done either at the input or the output layer [33].
This flexibility to compare the two types of architecture allows us to
determine, empirically, the optimal placement of the mapping layer
and selection of the optimal data type for our scattering parameter
data during the fine-tuning process.

Data workflow

In this section, we describe the signal data workflow, beginning
with its acquisition in the dynamic water scenarios of the measure-
ment campaign, followed by its preprocessing and analysis using
the two proposed ML workflows. Finally, we introduce the alterna-
tive physical-based detection metric used for comparison with the
proposed supervised ML approach.

Acquisition

The most common types of plastic that end up as marine litter are
single-use items, containers and wrappers, like bottles, styrofoams,
etc. [23]. As previously referred, these low mass, single-use plastic
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Figure 2. Low permittivity plastic litter targets measured. From left to right: plastic
bottle (¢, ~ 3.4), plastic straw (¢, ~ 2.1), cylinder foam (e, ~ 1.6), and plastic lid
(e, ~ 2.2). Dimensions in millimeters.

items are typically found scattered in deep-sea. These items
are made of low permittivity polymers such as polypropylene
(PP), polyethylene terephthalate (PET), and polystyrene (PS) [35].
In Fig. 2, we show the single-use plastic items used in the measure-
ment campaign. From left to right: PET plastic bottle (¢, = 3.4); PP
plastic straw (e, = 2.1); PS cylinder foam (e, =~ 1.6); and PP plastic
lid (e, =~ 2.2).

A measurement campaign was conducted at the 75 x 8.5 m
water basin, inside a closed pavilion, at DELTARES facilities [24].
This facility replicates water surfaces in near-deep-sea conditions.
The waves are generated by computer-controlled wave paddles that
produce a moving water surface according to a JONSWAP spec-
trum defined a priori [36]. This wave spectrum can be generated
according to two parameters that characterize the water surface
system: significant wave height H; and peak wave period T,,. For
the purpose of this study, we considered an identical wave spec-
trum with Hy; = {917} cm and T, = 1.2 s across all test cases. An
illustrative example corresponding to the 9 cm case is presented in
Fig. 3(a).

The measurement setup is represented in Fig. 3(b). It con-
sisted of a monostatic setup with a single V-pol reflector antenna
mounted 9 m above the water level on an existing wooden walkway,
to approach a typical satellite look angle. Vertical polarization to


https://doi.org/10.1017/S1759078725101840

International Journal of Microwave and Wireless Technologies

. —WHMO02
A ——WHMO7
[\ WHMO8
frl
— [ % ——WHMO9
E 10'5 | \'\r'k\ ——WHM10|}
NE l‘:.‘.l' "\-\- WHM11
£ i oy
= R
= "‘M
L e
e Y
A
5 10

Frequency [Hz]

- 2

Figure 3. Indoor controllable scenario: (a) JONSWAP wave spectrum measured at several wave gauges (WHM) that ensured a water surface with H;=9cmand T, = 1.2's

throughout the basin; (b) measurement setup surveying middle of the basin.

transmit and receive the MW signal (VV) was selected to maximize
the plastic target’s response at MW frequencies. The antenna was
pointing at a common point on the water surface, approximately
7.64 m away from the antenna, with a 38° incidence angle (6). It
was operating in pure backscatter mode whilst connected to the
first port of an Agilent E5071C Vector Network Analyzer that mea-
sures the frequency response (S;;) between 2.5 and 11.5 GHz with
1601 equally spaced points. Each frequency sweep had a time dura-
tion of approximately 1 s. The water waves travel along the antenna’s
cross-range direction, the Z-axis in the aforementioned figure.

Measurements always started without any objects in the water
(reference measurements) and continued while and after plastic
litter was added. The plastic targets drifted within the footprint
(target measurements) following the water wave’s direction of
propagation, Z. For each test case, we attempted to keep a constant
concentration of 10 g/m?*. However, since the items are dropped
at the beginning of the basin, near the wave paddles, they some-
times accumulated and created intermittent litter patches across
the antenna’s footprint. This varies the backscatter intensity level
in the sequential target measurements.

The experimental data is arranged as a tabular dataset where
each input is one of the sequential measurements, i.e., a discretized
backscattering S, frequency sweep, and its features correspond to
the MW response sampled at the subsequent frequency points (f;)
within the measured spectrum. Considering that we have video
footage of every test case, we filter and divide each MW mea-
surement dataset into two identical tabular datasets composed
of n units and p features for reference and target measurements,
Reference and Target, respectively. In every test case, both the
Reference and Target datasets had, roughly, around 400 measure-
ments with 1601 frequency points between 2.5 and 11.5 GHz.
Lastly, we label each Reference signal as class “0” and each Target
signal as class “1”

Analysis and detection

Next, we describe the signal preprocessing routine, and the subse-
quent unsupervised and supervised learning workflows to charac-
terize the experimental frequency dependency scattering behavior
in the presence of the spread out plastic targets and identify the
optimal MW frequencies for detection, respectively.

Signal preprocessing
To obtain an accurate measured backscatter response, we apply a
background subtraction calibration method. This operation also
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removes all responses from undesired stationary scatterers (e.g.,
basin walls). Since the water surface is a stochastic process, this is
computed by subtracting the mean response of the reference mea-
surements [10]. In a real deployment, there would be practically no
stationary targets in the open sea, so the signal could be directly
processed from the MW sensing instrument.

To ensure that we consider the frequency response of just the
water surface within the antenna’s footprint, we apply distance gat-
ing to every S-parameter signal to remove any clutter leftover from
the mean reference subtraction. Figure 4 summarizes the steps of
this preprocess and subsequent calculation of the time domain
EnR metric (see the “Physical-based detection metric” subsection
further ahead). For every reference and target measurement, we
compute its inverse Fast Fourier Transform (IFFT) to obtain the
time-domain (radar) response, I;j; gate the radial distances outside
the basin limits of the field of view; and then re-apply an FFT to
obtain the corresponding, footprint frequency MW response. We
use the interval between [10;15] m as radial distances.

Unsupervised learning workflow

Following the previous data preprocessing routine, we first
describe the unsupervised learning workflow from our prelimi-
nary work [25], summarized in Fig. 5(a). The goal of this workflow
is to characterize, experimentally, the difference in importance of
each MW frequency across the measured spectrum when consid-
ering the presence of the floating macroplastic targets. First, we
compute and concatenate the feature importance at each frequency
point for the Target and Reference datasets using the WPCA algo-
rithm described in Eq. (2) to obtain cryes and cgeference (01, for
short, ¢y, and cg,r), respectively (step 1). We then subtract cg,s to
crg to obtain the difference in feature importance between the two
datasets, 0. = co—Cgef, to gauge the difference in importance
variation across the measured BW when considering the presence
of the floating plastic targets (step 2). Next, we define two sub-
bands intervals, with 1 and 2 GHz of bandwidth, to slide over the
importance variation from the previous step, d, (step 3). At each
iteration of the sliding 1 and 2 GHz window, we compute the total
importance from . using Eq. (3), using the N frequency points
within the window, to obtain C, gy, and C,qyy, (step 4).

Supervised learning workflow

We complement the previous unsupervised learning workflow
with a supervised learning workflow, shown in Fig. 5(b), to
identify the optimal MW frequencies for detection of the float-
ing macroplastic targets. First, we merge, shuffle and normalize
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Figure 4. Preprocessing signal routine to remove clutter leftover from the mean reference subtraction and subsequent derivation of EnR metric (see the “Physical-based
detection metric” subsection).
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Figure 5. Machine learning workflows: (a) unsupervised; (b) supervised.

the magnitude of the reconstructed frequency responses of both  each iteration, we use the N; frequency points within the window
Target and Reference datasets (step 1). We use the previous sliding  as features for our classifier (step 2). We divide the full dataset into
sub-band with an interval of 1 GHz to sweep the 10-GHz BW. In  training and test subsets (80/20 ratio, respectively) and carefully
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Table 1. EnR detection thresholds of 9 and 17 cm waves for S-, C-, and x-bands

Table 2. Regulated EESS frequency intervals used in this study [38]

Frequency band f, (GHz) f, (GHz) EnRyth EnR,;th Frequency interval f, (GHz) f, (GHz)

S 2.5 4 1.24 1.27 EESS, 3.1 3.3

C 4 8 1.29 1.37 EESS, 5.25 5.57

X 8 11.5 1.46 1.52 EESS, 9.5 9.8
EESS,, 9.9 10.4

fine tune the MLP model’s hyperparameters using Ray Tune library
[37] with the training subset (step 3). The reader is referred to the
Appendix for details on the hyperparameter optimization imple-
mentation. During the fine-tuning process, the training subset is
repeatedly split into several smaller training subsets and corre-
sponding validation subsets due to the use of a cross-validation
technique. Finally, we select the optimal MLP model configura-
tion from the fine-tuning step and train the model using the entire
training subset - thus leveraging all available labeled data under the
chosen hyperparameters — and only then evaluate its performance
by computing the accuracy on the test set (step 4).

Accuracy is defined as the number of correct predictions
divided by the total number of predictions. A correct prediction
implies that the predicted response for an input matches the label.
The predictions on unseen data are typically presented in a con-
fusion matrix format, which summarizes the performance of the
classification algorithm. It can also provide more details about the
misclassifications and the classes that are the most difficult (or
easiest) to classify.

To evaluate multiclass classification scenarios, in the first step
of the supervised learning workflow, we merge Target datasets
from the other test cases. To ensure that the multiclass dataset
remains balanced, we use an identical number of reference mea-
surements from the corresponding Reference datasets. The labels
of the Target measurements are also adjusted accordingly to the
number of classes, and the multiclass accuracy is computed as the
mean of the per-class accuracy.

Physical-based detection metric

Lastly, we intend to compare the proposed (supervised) ML
approach with an alternative detection metric for floating
macroplastics, the EnR [10], that closely relates to the physi-
cal scattering process. Similarly to accuracy, this metric summa-
rizes the detection performance in a single number but based on
the time-varying comparison of the scattering intensity response
(i.e., time-domain response, I,»j) of the water surface with floating
macroplastics and without.

Since we already performed distance gating in the signal pre-
processing, we can easily obtain the EnR associated with the
corresponding dataset from the one-sided IFFT of the input sig-
nals (see Fig. 4). EnR provides interpretability of the backscatter
response, i.e., logic behind the MW measurements, that comple-
ments well the ML analysis. Thus, the comparison is justified.
Following [10], we define in Table 1 the EnR detection thresholds
for the 9 and 17 cm wave datasets (EnRY'and EnR', respectively)
considering S-, C-, and X-bands. These thresholds are based on the
uncertainty of the reference measurement datasets over time.

The two main drawbacks with EnR are identified as band-
width and threshold definition. EnR requires large bandwidths,
at least in the order of 2 GHz within the C- and X-bands, as it
loses interpretability when using smaller bandwidths, e.g., 1 GHz
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EESSC Concatenation of EESS intervals

or below. However, narrower bandwidths are required to comply
with the available bands for Earth Exploration Satellite Services
(EESS) in active remote sensing. In Table 2, we show existing
EESS frequency intervals in S-, C-, and X-bands for active remote
sensing applications [38]. EnR also requires sequential reference
measurements of a certain water state to establish the thresh-
old detection level. This can restrict its application to continu-
ous real-time monitoring, especially considering higher velocity
platforms.

Results and discussion

The interaction between plastic litter and water is a challenging
problem, particularly when considering small, single-use items
with dimensions close to the operation wavelength and negligible
plastic mass. In this section, we start with the physical characteriza-
tion of the problem. We demonstrate, using full-wave simulations,
that the small concave and meniscus indentations that the plas-
tic items form on the water surface play an important role in the
backscatter frequency response. Then, we escalate the simulation
work to one of the dynamic scenarios measured experimentally
and analyze the dependency of the backscatter response with vary-
ing MW frequency and water wave heights.

Following the simulation work, we analyze the experimen-
tal MW data at the signal level using the two proposed ML
workflows for every test case in the two water states considered.
First, we employ the unsupervised ML workflow to character-
ize the difference in the frequency dependent scattering behav-
ior across the measured MW spectrum between the two classes
of data. Then, we use the supervised ML workflow to identify
the optimal MW frequencies for detection within the measured
MW spectrum. We also compare the ML-based detection results
with the alternative radar-based detection metric and investigate
detection using the narrower EESS frequency intervals. Finally,
we evaluate the feasibility of performing multiclass classification
using ML.

Simulation analysis

To demonstrate the frequency selective behavior of the backscat-
ter produced by the floating plastic items, we consider a 1 x 1 m
patch of static water. Floating on the flat surface, we consider the
plastic bottle target (see Fig. 2) with thin walls. This object creates
a cylindrical indentation on the water surface, with a depth d that
is a function of its weight. We carry out full-wave finite difference
time-domain (FDTD) simulations for different indentation depths
in CST Microwave Studio [39]. In the simulations, we consider
an incident plane wave with linear vertical polarization and an
incident angle of 37° measured with respect to the horizontal plan.
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Figure 6. Backscattered electric field of plastic bottle vs frequency with different sinking depths d = {5, 15, 25, 35, 45, 55, 65, 75} mm.

Figure 6 shows the backscattered electric field across the
measured MW spectrum for different d values. The results demon-
strate a frequency selectivity effect, in which the optimal frequency
for the maximum intensity of the backscattered signal varies
according to the indentation depth. We also evaluated the field
distribution near the indentations. For deeper indentations, the
backscatter signal is caused by the resonances due to by “trapped”
fields at the edges of the indentation [40]. The results demonstrate
a preference for higher MW frequencies, i.e., X-band. This is a
consequence of the electrical lengths of the indentations. These
interpretations can only be obtained by simulation; however, the
total response follows the one obtained experimentally for the same
target [10]. Hence, we can conclude that the backscattering signal
coming from the low permittivity target depends on the inter-
play between the indentation depth and the surrounding water
surface.

In dynamic water scenarios, the backscatter field produced by
the scattered plastic items is mixed with scattering from the sur-
rounding rough surface. Furthermore, the MW backscattering is
dependent on several parameters, for instance quantity, individ-
ual object geometry, weight, orientation w.r.t incident wave, water
surface level, etc. [10]. Some of these can change significantly
between consecutive measurements. Hence, in a dynamic sce-
nario, we require multiple measurements to study the frequency
selective behavior of the backscattering. The size in terms of wave-
length, of a statically presentative sample of this surface demands
an unaffordable amount of computational resources for FDTD
simulations; therefore, CST’s asymptotic numerical solver is used
instead.

We simulate the time evolving water surface generated from a
JONSWAP spectrum with an H; of 9 and 17 cm, representing the
experimental scenario. The targets are 250-mm plastic bottles rep-
resented by their water indentation. The backscatter is calculated
across S-, C-, and X-bands multiple times, considering sequentially
different locations and orientations of the drifting indentation tar-
gets. We calculate Reference and Target datasets in each band (see
the frequency interval limits in Table 1). Each simulated backscat-
ter signal is preprocessed with the subtraction of the mean of
references (see the “Signal preprocessing” subsection).

As an initial exploratory analysis, we apply PCA, see Eq. (1),
to the simulated datasets across S-, C-, and X-bands to observe
the data separability. In Fig. 7(a) and 7(b), we represent the clus-
ters of the simulated Reference and Target datasets, for the first
two PCs. For each sub-band, we indicate in the figure insets the
Euclidean distance between the centroids of the two classes of data.
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The distance between the centroids of the Reference and Target
classes is larger in the lower water wave height case. The smaller
distances between clusters in higher water wave height suggests
a deterioration of the detection performance when Hs increases.
In fact, we observe in the simulations that the increase in water
wave height leads to a higher number of ray bounces (multipath).
Hence, in every Target surface, there is an additional backscatter-
ing contribution from the higher order reflections that is mixed
with the bottles’ response. Notably, for this shallow indentation,
the backscattered field is described by a specular reflection. Across
both water wave height cases, we observe that the increase in
MW frequency also increases the distance between clusters, an
indication of improved detection performance.

In the next subsection, we will use our unsupervised ML work-
flow to characterize the experimental frequency dependent scatter-
ing behavior across the measured MW spectrum in the presence of
the floating macroplastics.

Frequency importance analysis

In our preliminary analysis (see Fig. 3 from paper [25]), we had
already analyzed the individual frequency importances of both
Target and Reference datasets (cg, and cgs, respectively) for all
measured cases in 9 cm waves, i.e., output of step 1 of the unsu-
pervised workflow, see Fig. 5(a). For the same test cases in 17 cm
waves, the behavior of the cg,s and ¢y, curves were identical.

Figures 8 and 9 show the normalized difference in feature
importance curves between Target and Reference datasets, J,, and
the corresponding areas of total importance for the sliding win-
dows of 1 and 2 GHz, C,sy, and C,gpy,, for the test cases with an
H; of 9 and 17 cm waves, respectively. This corresponds to the out-
puts of steps 2 and 4 of the unsupervised workflow. The J, curves
summarize the prior analysis for the setup at hand, showing that
the presence of the floating macroplastic litter leads to an increase
of the importance (with §, > 0) of upper C- and X-band fre-
quencies (> 6 GHz). For the higher X-band frequencies (around
10 GHz), even though there is a decrease in difference impor-
tance, it is still relevant due to the very low importance of cg,
curves. From Eqgs (1) and (2), we observe that importance coef-
ficients are scaled by the corresponding PC variance. This means
that the principal contributors to the variance of the first PCs, i.e.,
main scatterers of the surface in each scenario, sway the impor-
tance curve. Consequently, the optimal frequencies to denote the
presence of the floating plastic targets are on the positive part of
the difference curve (§, > 0).
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Figure 7. Clusters of simulated Reference and Target datasets for the plastic bottles test case across S-, C-, and X-bands for an emulated time evolving water surface
generated from a JONSWAP spectrum with an H; of (a) 9 cm; (b) 17 cm. For each sub-band, we show in the insets the Euclidean distance between the centroids of the two

classes of data.

_5c - 0_50 < OI:]CZGHZ DClGl—[z

7
Frequency[GHz]

(b)

Frequency[GHz]

Figure 8. The line shows the normalized difference in frequency importance between the Target and Reference datasets, §., and the areas represent to the total
importances of the sliding 1 and 2 GHz sub-band intervals, C,gp, and C,gyy,, for the test cases measured with a water surface height of H; =9 cm. (a) Plastic bottles; (b)
plastic straws; (c) cylinder foams; (d) plastic lids. The inset shows the plastic target’s dimensions in millimeters.

Regarding the areas of total importance for the 1 and 2 GHz
bandwidth, we observe that using the wider 2 GHz sub-band com-
putes, for the most part, higher total importance. Even with the use
of the Hamming window to compute the total importance, this is
expected as the C,gp, interval considers more frequencies in the
sum. Since 2 GHz is an unrealistic bandwidth to use in real-world
applications due to regulatory constraints, we focus on the positive
area parts where the C,gy, > C,gp,. For the 9 and 17 cm wave
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cases, this mainly happens around 8, 9 and 10.5 GHz. Considering
the previous simulation results, this further accentuates that X-
band frequencies are more relevant for the detection of floating
macroplastics.

In the next subsection, we will employ the supervised learn-
ing workflow to confirm if this relationship across the wide-
band spectrum also points to higher MW frequencies for best
detection.
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Figure 9. The line shows the normalized difference in frequency importance between the Target and Reference datasets, §., and the areas represent the total importances
of the sliding 1 and 2 GHz sub-band intervals, C,sy, and C,gy,, for the test cases measured with a water surface height of H, =17 cm. (a) Plastic bottles; (b) plastic straws;
(c) cylinder foams; (d) plastic lids. The inset shows the plastic target’s dimensions in millimeters.

Detection analysis

We apply the supervised ML workflow to the four test cases mea-
sured in the two water wave states. In Fig. 10, we can observe the
accuracy output of the binary classification considering 9 (left) and
17 (right) cm wave heights, respectively. Starting with the 9 cm
cases, all four test cases lead to a confident detection (above 90%)
with upper C- and X-band frequencies. For the plastic bottles,
straws, lids, and cylinder foams, the maximum accuracy obtained
is 99.05%, 99.45%, 96.51%, and 95.68% at 8, 9, 9.8, and 10.4 GHz,
respectively. For the 17 cm wave cases, the maximum accuracy
obtained for the same cases is 83.82%, 93.81%, 85.43%, and 88.29%
at 8.9, 10.2, 9.3, and 10.4 GHz, respectively. These results show that
the frequencies with positive difference in feature importance are
in C- and X-bands, which is consistent with the previous unsu-
pervised analysis. Our tuned MLP model learnt the backscatter
intensity pattern denoting the presence of floating macroplastic.
It successfully discriminated reference measurements from target
measurements (and vice-versa), independently of the type of plas-
tic target, through upper C- and X-band frequencies. Thus, we can
in fact confirm that the classification of each signal is mainly associ-
ated with the strength of targets’ backscatter response. Noteworthy,
for the worse 17 cm water waves scenario, only with X-band fre-
quencies around 9 and 10 GHz does the accuracy remain above
80% for all test cases. The previous numerical analysis also justi-
fies this result considering that the frequency selective scattering
behavior from each individual plastic item contributes with higher
backscatter responses at X-band frequencies.

Finally, even though the plastic straws case shows the highest
accuracy output along the X-band (especially in the 17 cm water
waves), this only means that the target measurements from this
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class have a more consistent backscatter intensity level at these fre-
quencies. This can be attributed to the much higher number of
plastic straws on top of the water surface in contrast to the other
heavier plastic items to makeup the continuous concentration of
10 g/m?. This leads to fewer misclassifications when separating
from the lower intensity reference measurements.

Comparison with physical-based detection metric

Next, we compare the detection performance of the supervised ML
model using the standard EESS frequency intervals (see Table 2)
and of the alternative physical-based EnR metric, which requires
larger bandwidths. First, we investigate detection using the EnR
metric, quantifying the difference in backscatter intensity pro-
duced by the scatterers in the antenna footprint for the Reference
and Target datasets (see the “Physical-based detection metric” sub-
section for details). Besides the physical interpretability, we can
also estimate the impact of higher waves and different MW fre-
quencies in the detection sensitivity. The first three columns in
Table 3 presents the EnR values for all four test cases with 9 and
17 cm wave height, considering the S-, C-, and X-bands of Table 1.
Recall that the EnR detection threshold for H, = 9 c¢m is slightly
below 1.4 and for H; = 17 cm it is slightly below 1.5 (Table 1).
While the EnR is only slightly above the threshold at S-band, it is
much above it for C- and X-band at H; = 9 ¢m and for the X-band
at H, = 17 cm.

Notably, the water surface wave height impacts the detection
sensitivity at all MW frequencies. In fact, Table 3 shows that the
EnR metric decreases across the measured MW spectrum when
the water wave height increases. Conversely, when the water wave
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Table 3. Detection values of 9 and 17 cm waves for all four target types across S-, C-, and X-bands using EnR and supervised ML to EESS intervals

Hs (cm) Target S-band C-band X-band EESS, EESS, EESS, EESS,o EESSc

9 Bottles 1.6 2.87 2.98 65.1 83.2 92 90.7 91.7
Straws 1.32 2.37 2.36 62.5 76 92.2 92.1 93.2
Lids 1.49 2.5 2.81 63.1 7.3 90.4 94.1 92.1
Cylinder foams 1.75 3.67 4.06 64.7 84.2 94.2 93.9 94.5

17 Bottles 1.14 1.48 2.03 54.9 68.9 79.4 79.1 80.4
Straws 1.3 1.55 1.89 60 65.9 81.2 86.6 88
Lids 1.12 1.5 191 62.3 68.3 78.5 82.8 86.1
Cylinder foams 1.2 1.71 1.98 55.6 68.6 86.5 88.1 90.2

height is fixed, the metric increases with frequency. This holds
true for both the test cases and thresholds. This means that the
increase in water waves height and MW frequencies lead to higher
backscatter intensity signals. The presence of the scattered, float-
ing macroplastics items further contributes towards the increase in
backscattered intensity. This verifies the previous simulation analy-
sis behavior and corroborates the previous ML results using a wider
1 GHz.

Next, we analyze the performance of the MLP considering the
narrower EESS intervals. Columns 4-8 of Table 3 show the detec-
tion accuracy obtained using only steps 3 and 4 of the supervised
learning workflow. For both 9 and 17 cm test cases, the perfor-
mance using ML accompanies the EnR metric, increasing with
MW frequency and worsening with the increase in water wave
heights. Albeit slightly lower, these accuracy results agree with the
supervised workflow results discussed previously in the “Detection
analysis” subsection that use a wider 1 GHz. As we narrow the
frequency interval, we limit the number of features considered by
the ML model and, consequently, possibly exclude MW frequen-
cies with a resonant scattering response for the detection. Still,
the accuracy results maintain the relationship with water wave
height and MW frequency;, i.e., decrease and increase, respectively.
Additionally, except for the 9-cm plastic bottles and lids cases,
the last column of Table 3 shows that the consideration of the
noncontiguous EESS frequency intervals can lead to better detec-
tion results. Accordingly, this improvement is justified because
the detection performance benefits from adding more (optimal)
X-band frequency information as features of the model.
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This analysis shows that the EnR metric and the MLP model
obtain compatible results. On one hand, EnR provides physical
interpretability in terms of the excess scattered energy in the pres-
ence of plastic, but at the cost of bandwidth, need for an unpractical
reference measurement and need of sequential measurements of
the same scenario to capture targets drift (although the latter can
be obtained with spotlight mode [41]). On the other hand, ML
automation can consider standard EESS bands and shuffled input
signals when training the model. This leads to a more robust detec-
tion performance that can be adapted for fast-changing deep-sea
scenarios, suitable for real-time monitoring.

Multiclass analysis

Thus far, the analysis considered the datasets of each type of target
at a time (either bottles, or straws, or lids, or foam). In this subsec-
tion, we evaluate if can use supervised ML to differentiate between
the different plastic targets.

We apply the supervised ML workflow to merged datasets of
the four types of targets (see the “Supervised learning workflow”
subsection) and perform multiclass classification to distinguish
between them. We test cases for 9 and 17 cm water wave heights.
We show in Fig. 11(a) the accuracy output of this multiclass
scenario. In neither the 9 nor 17 cm water wave height cases, did the
maximum accuracy reach a high enough value for detection. Still,
similarly to binary classification, we observe an identical trend in
accuracy with respect to MW frequency and water wave height:
accuracy increases with MW frequency but decrease with water
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Figure 11. (a) Multiclass classification accuracy output for supervised learning workflow using 1 GHz sub-bands for the test cases with an H, of 9 and 17 cm; (b) confusion
matrix for highest accuracy output of the 9 cm case; (c) confusion matrix for highest accuracy output of the 17 cm case.

wave height. To further investigate the low accuracy results, we
present in Fig. 11(b) and 11(c) the confusion matrices for the opti-
mal detection case (maximum accuracy) for 9 and 17 cm water
wave height cases, respectively.

First, let us consider the 9 cm test cases. While the reference
measurements are mostly correctly classified, most of the four
types of target measurements are incorrectly classified. This means
that the MLP model easily separates reference measurements from
target ones (seen already with the previous detection analysis), but
it struggles to confidently discriminate between the different tar-
get measurements. This explains the low accuracy output when
predicting on the unseen data.

For the 17 cm wave case, we observe an increase in misclassi-
fied references and target measurements, particularly for the plastic
bottles and straws classes. As the water wave height increases,
the MLP model struggles to define multiple decision boundaries,
making it difficult to differentiate between targets. The scattering
intensity across the MW spectrum from the target measurements is
already very similar in the lower wave height case, and the increase
in wave height further reduces this distinction. This is because
the scattering intensity from the water surface increases, which
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deteriorates the detection sensitivity for the different types of plas-
tic items. Hence, the results indicate that even with the use of the
optimal X-band frequencies, multiclass classification is reduced to
a binary one.

Conclusions

This study demonstrated that ML can be used to identify in exper-
iments, the optimal MW frequencies to detect the presence of typ-
ical single-use floating macroplastics, spread at low concentrations
(10 g/m?) across the water surface. Furthermore, the possibility
of using ML to process MW data at signal level, allows for a fast
analysis that can complement other detection metrics in coarse and
fast changing environments.

We verified through numerical analysis that the intensity of
the backscatter signal depends on the interplay between the depth
and size of the water indentation beneath the otherwise practi-
cally transparent floating target, and the wavelength of the MW
signal. At MW frequencies, each floating macroplastic target tends
to have higher backscatter response near resonances. Simulation
work emulating the experimental measurements showed that the
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presence of the floating macroplastic targets maximizes detection
probability at X-band in comparison to S- and C-bands.

This result corroborated the experimental characterization of
the frequency dependent scattering behavior obtained in the pre-
vious exploratory analysis through the unsupervised workflow
[25]. For all the measured test cases, the presence of the scattered
plastic litter targets increased the importance of X-band frequen-
cies (particularly above 8 GHz). Using the proposed supervised
learning workflow we identified these X-band frequencies as opti-
mal for detection, obtaining accuracies of at least 90% and 80%
for the lower and higher water wave height datasets, respectively.
Additionally, we verified that detection sensitivity is worsened with
increasing water wave height, with detection performance least
deteriorated when using the optimal X-band frequencies.

The study also showed that the multiclass classification, i.e., dis-
tinguishing between different plastic items, is reduced to a binary
one, worsening at higher wave heights. This is explained by the
identified scattering mechanism based on the water indentation
rather than the shape and scarce amount of plastic of the typical
single-use items.

In comparison to the alternative EnR radar-based metric, the
use of ML obtained comparable detection performance, showing
to be effective whilst overcoming the EnR requirement of threshold
determination and the necessity of using wider bandwidth. We out-
lined the further advantage of ML to leverage the frequency depen-
dent scattering mechanism across the MW spectrum by adding
optimal, noncontiguous, narrower EESS bands. These advantages
are the crucial for implementing a real-time time sensing service
using existing (or even future) missions.

Future work will address the lack of high-quality MW data
to further study detection dependencies and consider alterna-
tive architectures and learning strategies to improve generalization
capability of ML for outdoor scenarios with changing water spec-
trums and limited experimental data.
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Appendix

Our tuning protocol employs a nested cross-validation (CV) approach. Initially,
we partition the data into fivefolds, and each of these folds is used for hyper-
parameter tuning. Each trial, i.e., hyperparameter combination sampled from
the search space of Table 1, is evaluated in each fold. The accuracy results
from the left out validation subset in each fold are then averaged to output the
performance under a specific hyperparameter combination. The optimal hyper-
parameter combination is the one that outputs the maximum average accuracy
from the left out validation subsets of the CV approach. This process is repeated
considering the domain mapping (C — R) of complex to real at the input and
output layers of the model.

For hyperparameter optimization (HPO), we utilize the Ray Tune frame-
work [37], a well-known HPO library with the Tree-structured Parzen
Estimator (TP) algorithm for HPO, the default HPO method. The optimization
is constrained by a budget of either 50 trials, i.e., a combination of hyperpa-
rameters, or a maximum duration of 23 h. To enhance efﬁciency, we executed
every trial in parallel across all test cases. All experiments were run on NVIDIA
GeForce GTX 1050 Ti GPU with a memory of 16 GB.

Table Al. Search space for the MLP model

Parameter Type Range

Ne HLs Integer [1, 4]

Ne Hidden Neurons Integer [16,128]

Batch Size Integer {8,16,32}

Activation Function Categorical {ReLU, LeakyReLU, Tanh, Linear,
PReLU}

Dropout Float [0,1]

Learning Rate Float [10-%,10-1]

Weight Decay Float [10-%,10-3]
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