BULL. AUSTRAL. MATH. SOC. Vol. 60 (1999) [483-486]

ON ISOCOMPACTNESS OF FUNCTION SPACES

JILING CAO

Let $C_p(X)$ be the space of all continuous real-valued functions on a Tychonoff space X with the pointwise topology. In this note, we show that if X is a \mathcal{G} -space, then $C_p(X)$ is isocompact. This gives an answer to a recent question of Arkhangel'skii in the class of \mathcal{G} -spaces.

1. INTRODUCTION

In studying the compactness of countably compact spaces, Bacon [3] introduced the notion of an isocompact space. Recall that a topological space X is *isocompact*, if every closed countably compact subspace of X is compact. Obviously, any topological property, which makes a countably compact space compact, implies isocompactness. Among the classes of spaces which are isocompact are the θ -refinable spaces [10], the spaces having a G_{δ} -diagonal [5], and the symmetrisable spaces [9], to name a few. The main purpose of this note is to study the isocompactness of function spaces and to answer a recent question of Arkhangel'skii in the class of \mathcal{G} -spaces defined by a two-person game.

For a Tychonoff space X, let

$$C(X) = \{f : X \to \mathbf{R} \text{ is continuous } \}$$

that is, C(X) is the family of all continuous real-valued functions defined on X. We shall denote by $C_p(X)$ the space of C(X), endowed with the topology of pointwise convergence on X. Obviously, a basic neighbourhood of a function $f \in C_p(X)$ is

$$W(x_0, x_1, \dots, x_n; \varepsilon)(f) = \left\{ g \in C(X) : \left| f(x_i) - g(x_i) \right| < \varepsilon, \ 0 \le i \le n \right\}$$

where $\varepsilon > 0$ and $x_0, x_1, ..., x_n \in X$.

No separation axioms are assumed on topological spaces if it is not stated explicitly, and more information on C_p -theory can be found in [1].

Received 8th March, 1999

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/99 \$A2.00+0.00.

2. MAIN THEOREM

Let X be a topological space, and let $x \in X$ be a point. The family of all neighbourhoods of x is denoted by $\mathcal{U}(x)$. We shall consider the following $\mathcal{G}(x)$ -game [4] played in X between two players (α) and (β). Player (α) goes first and chooses a point $x_1 \in X$. Player (β) then responds by choosing $U_1 \in \mathcal{U}(x)$. Following this, player (α) must select another (possibly the same) point $x_2 \in U_1$ and in turn player (β) must again respond to this by choosing (possibly the same) $U_2 \in \mathcal{U}(x)$. The players repeat this procedure infinitely many times. We shall say that the player (β) wins the $\mathcal{G}(x)$ -game if the sequence $\langle x_n : n \in \mathbf{N} \rangle$ has a cluster point in X. Otherwise, the player (α) is said to have won the game. By a strategy σ for the player (β), we mean a 'rule' that specifies each move of player (β) in every possible situation. More precisely, a strategy $\sigma = \langle \sigma_n : n \in \mathbb{N} \rangle$ for (β) is a sequence of $\mathcal{U}(x)$ -valued functions. We shall call a finite sequence $\langle x_1, x_2, ..., x_n \rangle$ or an infinite sequence $\langle x_1, x_2, ... \rangle$ a σ -sequence if $x_{i+1} \in \sigma_i(\langle x_1, x_2, ..., x_i \rangle)$ for each i such that $1 \leq i < n \text{ or } x_{n+1} \in \sigma_n(\langle x_1, x_2, ..., x_n \rangle)$ for each $n \in \mathbb{N}$. A strategy $\sigma = \langle \sigma_n : n \in \mathbb{N} \rangle$ for player (β) is called a winning strategy if each infinite σ -sequence has a cluster point in X. Finally, we call x a \mathcal{G} -point if the player (β) has a winning strategy for the $\mathcal{G}(x)$ -game. In addition, if every point of X is a \mathcal{G} -point, then X is called a \mathcal{G} -space.

The class of \mathcal{G} -spaces is quite large. In fact, it contains all q-spaces [8] and all W-spaces [7], thus contains all first countable spaces and all locally compact spaces. In [2], the following question was asked.

QUESTION 2.1. [2] For which spaces X is the space $C_p(X)$ isocompact?

Now we answer Question 2.1 in the class of \mathcal{G} -spaces.

THEOREM 2.2. Let X be a Tychonoff G-space. Then $C_p(X)$ is isocompact.

PROOF: Let $Y \subseteq C_p(X)$ be a closed countably compact subspace. By countable compactness, for every point x in X there is an $M_x > 0$ such that $|f(x)| \leq M_x$ for all $f \in Y$. It follows that

$$Y \subseteq \prod_{x \in X} [-M_x, M_x].$$

Therefore, \overline{Y} is a compact subset of \mathbb{R}^X , where the closure is taken in \mathbb{R}^X . We first show that $\overline{Y} \subseteq C_p(X)$. To this end, assume that there exists some $g \in \overline{Y} \setminus C_p(X)$. Since g is not continuous, there must be some point x_0 and $\varepsilon > 0$ such that for each $U \in \mathcal{U}(x_0)$ we can choose at least one point $x_U \in U$ satisfying

$$|g(x_U)-g(x_0)| \ge \varepsilon.$$

Let σ be a winning strategy for player (β) in the $\mathcal{G}(x_0)$ -game. Without loss of generality, let x_0 be the first move of player (α) . Then player (β) responds by $\sigma(\langle x_0 \rangle)$ and $f_1 \in W(x_0; 1)(g) \cap Y$. To respond to this, player (α) chooses a point

$$x_1 \in \sigma(\langle x_0 \rangle) \cap \{x \in X : |f_1(x) - f_1(x_0)| < 1\}$$

such that

$$|g(x_1)-g(x_0)| \ge \varepsilon.$$

Inductively, players (α) and (β) produce a σ -sequence $\langle x_n : n \in \mathbb{N} \rangle$ in X and a sequence $\langle f_n : n \in \mathbb{N} \rangle$ in Y such that

(1)
$$x_n \in \sigma(\langle x_0, x_1, ..., x_{n-1} \rangle)$$
 for each $n \in \mathbb{N}$;
(2) $x_n \in \bigcap_{i=1}^n \{x \in X : |f_i(x) - f_i(x_0)| < 1/n\}$ for each $n \in \mathbb{N}$;
(3) $|g(x_n) - g(x_0)| \ge \varepsilon$ for each $n \in \mathbb{N}$; and
(4) $f_n \in W(x_n) = \frac{1}{2} \int_{-\infty}^{\infty} |f_n(x_n) - f_n(x_n)| \le 1$

(4) $f_n \in W(x_0, x_1, ..., x_{n-1}; 1/n)(g)$ for each $n \in \mathbb{N}$.

Since Y is closed countably compact, $\langle f_n : n \in \mathbb{N} \rangle$ has a cluster point, say f in Y. Let x_{∞} be a cluster point of the σ -sequence $\langle x_n : n \in \mathbb{N} \rangle$ in X. First of all, f and g coincide on $\{x_n : n \in \omega\}$. To see this, for each fixed $m \in \omega$ and an arbitrary $\delta > 0$ we have the following

(5)
$$|f(x_m) - g(x_m)| \leq |f(x_m) - f_n(x_m)| + |f_n(x_m) - g(x_m)| < \delta.$$

whenever $n \in \omega$ is large enough. In particular, $f(x_0) = g(x_0)$. On the other hand, (2) implies that

$$\left|f_i(x_\infty) - f_i(x_0)\right| < 1/n$$

for all i < n. Let $n \to \infty$ and $i \to \infty$, we have $f(x_{\infty}) = f(x_0) = g(x_0)$. This contradicts (3). Therefore g must be continuous. We have shown that $\overline{Y} \subseteq C_p(X)$.

Therefore, $\overline{Y} = Y$. We have already observed that \overline{Y} is compact, so that Y is compact. The proof is completed.

References

- A. Arkhangel'skii, Topological function spaces, Mathematics and its Applications (Kluwer Academic Publishers, Dordrecht, 1992).
- [2] A.V. Arkhangel'skii, 'On a theorem of Grothendieck in C_p-theory', Topology Appl. 80 (1997), 21-41.
- P. Bacon, 'The compactness of countably compact spaces', Pacific J. Math. 32 (1970), 587-592.
- [4] A. Bouziad, 'The Ellis theorem and continuity in groups', Topology Appl. 50 (1993), 73-80.
- J. Chaber, 'Conditions which imply compactness in countable compact spaces', Bull. Acad. Polon. Sci. Sér. Sci Math. Astronom. Phys. 24 (1976), 993-998.
- [6] R. Engelking, General topology (Polish Scientific Publisher, Warszawa, 1977).
- [7] G. Gruenhage, 'Infinite games and generalizations of first-countable spaces', General Topology and Appl. 6 (1976), 339-352.
- [8] E. Michael, 'A note on closed maps and compact sets', Israel J. Math. 2 (1964), 173-176.
- [9] S. Nedev, 'Symmetrizable spaces and final compactness', Soviet Math. Dokl. 8 (1967), 890-892.

J. Cao

[4]

 J. Worrell, Jr and H. Wicke, 'Characterizations of developable topological spaces', Canad. J. Math. 17 (1965), 820-830.

Department of Mathematics The University of Auckland Private Bag 92019 Auckland New Zealand

486