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In this paper, we initiate the study of higher rank Baumslag–Solitar (BS) semigroups
and their related C*-algebras. We focus on two rather interesting classes—one is
related to products of odometers and the other is related to Furstenberg’s ×p,×q
conjecture. For the former class, whose C*-algebras are studied in [32], we here
characterize the factoriality of the associated von Neumann algebras and further
determine their types; for the latter, we obtain their canonical Cartan subalgebras.
In the rank 1 case, we study a more general setting that encompasses (single-vertex)
generalized BS semigroups. One of our main tools in this paper is from self-similar
higher rank graphs and their C*-algebras.
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1. Introduction

A self-similar higher rank graph (G,Λ) is a pair, which consists of a group G and
a higher rank graph Λ such that G acts on Λ from the left and Λ ‘acts’ on G
from the right, where these two actions are compatible in an appropriate way.
After [22, 38], self-similar higher rank graphs and their C*-algebras OG,Λ have
been systematically studied in [33–35]. In particular, in [33], when Λ is strongly
connected, we find a canonical Cartan subalgebra of OG,Λ en route to the study
of the Kubo-Martin-Schwinger (KMS) states of OG,Λ. However, to achieve this, Λ
is required to be locally faithful. The local faithfulness is a key property to obtain
the main results in [33]. Roughly speaking, it guarantees that one could define a
periodicity group in a way very similar to higher rank graphs in [17, 18]. It turns
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2 R. Valente and D. Yang

out that the local faithfulness condition blocks a lot of interesting examples. This
provides our starting point of this paper—to explore non-locally faithful self-similar
higher rank graphs and their C*-algebras. During the exploration, we found that
a particular non-locally faithful class is closely related to Baumslag–Solitar (BS)
semigroups. Due to the higher rank feature, we call such self-similar higher rank
graphs higher rank BS semigroups. One extreme case of higher rank BS semigroups
is about products of odometers [32], while the other extreme case is surprisingly
related to Furstenberg’s ×p,×q conjecture.

With semigroups mentioned, there is no surprise that Λ is assumed to be single-
vertex in this paper. Taking rank 1 (i.e., classical) BS semigroups into consideration,
we also consider G = Z only. For single-vertex higher rank graphs, they have been
systematically studied in the literature. To name just a few, see, for instance, [15,
16, 46, 47]. Those graphs seem very special but exhibit a lot of interesting proper-
ties. Surprisingly, they are also shown to interact intimately with the Yang–Baxter
equation [49]. For BS semigroups, they have been attracting increasing attention
in Operator Algebras recently. See [2, 7, 12, 30, 31, 44] and the references therein.
Those semigroups provide, on one hand, a class of nice examples for some proper-
ties [12, 30, 44], and on the other hand, some counter-examples for other properties
[2, 7]. Our main purpose in this paper is to mingle single-vertex higher rank graphs
and BS semigroups.

The paper is structured as follows. In § 2, some necessary preliminaries are
provided. Although most of them are known, § 2.4 is new, where we intro-
duce a notion of semigroups from self-similar actions. Those semigroups are
different from self-similar semigroups/monoids in [4] and the references therein
(remark 2.10). Since the rank 1 case is studied in a more general setting, we focus
on this case in § 3. Even in this case, it includes generalized Baumslag–Solitar
(GBS) semigroups, and BS semigroups as well, as examples. We study the
periodicity of the associated self-similar graph and obtain a canonical Cartan
subalgebra of its C*-algebra (propositions 3.22 and 3.23). The simplicity of
the C*-algebra is characterized in terms of the relation between the number
of edges and the restriction map; and when it is Kirchberg is also described
(theorem 3.20). We turn to higher rank cases in § 4. We first propose a notion
of higher rank BS semigroups (definition 4.2). We briefly discuss how higher
rank BS semigroups are related to Furstenberg’s ×p,×q conjecture in § 4.2. We
then focus on two extreme classes. The first extreme class is about products of
odometers studied in [32]; but here, we investigate the associated von Neumann
algebra: Its factoriality is characterized and its type is also determined (theo-
rem 4.13). The second extreme class seems trivial at first sight but turns out
to be intriguing. We exhibit a canonical Cartan in this case, which is generally
a proper subalgebra of the cycline algebra (theorem 4.22). We close with com-
puting the spectrum of the fixed point algebra of its gauge action. We hope that
we could push Furstenberg’s ×p,×q conjecture further in this vein in our future
studies.

Notation and conventions

Given 1 ≤ n ∈ N, let [n] := {0, 1, . . . , n−1}. For 1 ≤ k ∈ N, let 1k := (1, . . . , 1) ∈ Nk.
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Higher rank Baumslag–Solitar semigroups 3

We use the multi-index notation: For q = (q1, . . . , qk) and p = (p1, . . . , pk) in Zk

with all pi 6= 0, let pq :=
∏k

i=1 p
qi
i .

For convenience, sometimes we also let Z = 〈a〉, which is written multiplicatively.
As with most literatures in Operator Algebras, all semigroups in this paper are

assumed to be monoids, unless otherwise specified.

2. Preliminaries

2.1. Single-vertex rank k graphs

A countable small category Λ is called a rank k graph (or k-graph) if there exists
a functor d : Λ → Nk satisfying the following unique factorization property: For
µ ∈ Λ,n,m ∈ Nk with d(µ) = n+m, there exist unique β ∈ d−1(n) and α ∈ d−1(m)
such that µ = βα. A functor f : Λ1 → Λ2 is called a graph morphism if d2 ◦ f = d1.

Let Λ be a k-graph and n ∈ Nk. Set Λn := d−1(n). For µ ∈ Λ, we write s(µ) and
r(µ) for the source and range of µ, respectively. Then Λ is said to be row-finite if
|vΛn| < ∞ for all v ∈ Λ0 and n ∈ Nk; and source-free if vΛn 6= ∅ for all v ∈ Λ0

and n ∈ Nk. For more information about k-graphs, refer to [29]. In this paper,
all k-graphs are assumed to be row-finite and source-free. Actually, we focus on a
special class of rank k graphs—single-vertex rank k graphs.

Single-vertex k-graphs, at first sight, seem to be a very special class of k-graphs.
It turns out that they are a rather intriguing class to study. They have been sys-
tematically studied in the literature, e.g., [15–18]. There are close connections with
the well-known Yang–Baxter equation [49].

Let {ε1, . . . , εk} be the standard basis of Nk, and Λ be a single-vertex rank k
graph. For 1 ≤ i ≤ k, write Λεi := {xi

s : s ∈ [ni]}, where ni = |Λεi |. It follows
from the factorization property of Λ that, for 1 ≤ i < j ≤ k, there is a permutation
θij ∈ Sni×nj

satisfying the following θ-commutation relations

xi
sx

j
t = xj

t′x
i
s′ if θij(s, t) = (s′, t′).

To emphasize θ-commutation relations involved, this single-vertex k-graph Λ is
denoted as Λθ in this paper. So Λθ is the following (unital) semigroup

Λθ =
〈
xi
s : s ∈ [ni], 1 ≤ i ≤ k; xi

sx
j
t = xj

t′x
i
s′ whenever θij(s, t) = (s′, t′)

〉+
,

which is also occasionally written as

Λθ =
〈
xi
s : s ∈ [ni], 1 ≤ i ≤ k; θij , 1 ≤ i < j ≤ k

〉+
.

One should notice that Λθ has the cancellation property due to the unique factor-
ization property. It follows from the θ-commutation relations that every element
w ∈ Λθ has the normal form w = x1

u1
· · ·xk

uk
for some xi

ui
∈ ΛεiN

θ (1 ≤ i ≤ k). Here
we use the multi-index notation: xi

ui
= xi

s1 · · ·x
i
sn if ui = s1 · · · sn with all si’s in

[ni].
For k = 2, every permutation θ ∈ Sn1×n2 determines a single-vertex rank 2

graph. But for k ≥ 3, θ = {θij : 1 ≤ i < j ≤ k} determines a rank k graph if
and only if it satisfies a cubic condition (see, e.g., [18, 23] for its definition). This
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4 R. Valente and D. Yang

cubic condition exactly provides interplay between k-graphs and the Yang–Baxter
equation [49].

Here are some examples of single-vertex k-graphs which will be used later.

Example 2.1. (Trivial permutation) For 1 ≤ i < j ≤ k, let θij be the trivial
permutation: θij(s, t) = (s, t) for all s ∈ [ni] and t ∈ [nj ]. Then clearly Λθ is a
k-graph for all k ≥ 1, which is written as Λid.

Example 2.2. (Division permutation) Let θij be defined by θij(s, t) = (s′, t′), where
s′ ∈ [ni] and t

′ ∈ [nj ] are the unique integers such that s+ tni = t′ + s′nj . One can
check that this determines a k-graph for any k ≥ 1 (see, e.g., [32]), denoted as Λd.

In particular, if ni = n for all 1 ≤ i ≤ k, then θ coincides with the flip
commutation relation: θij(s, t) = (t, s).

Example 2.3. (‘Trivial’ case) Let ni = 1 for all 1 ≤ i ≤ k. Then θij has to be
the trivial commutation relation, which is the same as the division commutation
relation. This is a special case of both examples 2.1 and 2.2.

Very surprisingly, this case is not trivial at all when it is equipped with self-similar
actions! It is extremely interesting and related to Furstenberg’s ×p,×q conjecture.
See § 4.2 below.

2.2. Self-similar single-vertex k-graph C*-algebras

To unify the treatments of [27] and [38, 40], self-similar graphs and their C*-algebras
naturally arise in [22] and are well studied there. Later, they are generalized to
higher rank cases in [34] and are further studied in [33, 35].

Since this paper mainly focuses on single-vertex k-graphs, we adapt the notions
of [33, 34] to our setting and simplify them accordingly.

Let Λθ be a single-vertex k-graph. A bijection π : Λθ → Λθ is called an auto-
morphism of Λθ if π preserves the degree map d. In general, an automorphism on
Λθ is not necessarily a semigroup automorphism on Λθ, as a semigroup. Denote by
Aut(Λθ) the automorphism group of Λ.

Let G be a (discrete countable) group. We say that G acts on Λθ if there is
a group homomorphism ϕ from G to Aut(Λθ). For g ∈ G and µ ∈ Λθ, we often
simply write ϕg(µ) as g · µ.

Definition 2.4. ([33, Definition 3.2]). Let Λθ be a single-vertex k-graph, G be a
group acting on Λθ, and G × Λθ → G, (g, µ) 7→ g|µ be a given map. Then we call
(G,Λθ) a self-similar k-graph if the following properties hold true:

(i) g · (µν) = (g · µ)(g|µ · ν) for all g ∈ G,µ, ν ∈ Λθ;
(ii) g|v = g for all g ∈ G, v ∈ Λ0

θ;
(iii) g|µν = g|µ|ν for all g ∈ G,µ, ν ∈ Λθ;
(iv) 1G|µ = 1G for all µ ∈ Λθ;
(v) (gh)|µ = g|h·µh|µ for all g, h ∈ G,µ ∈ Λθ.

In this case, we also say that Λθ is a self-similar k-graph over G, and that G acts
on Λθ self-similarly.
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Definition 2.5. A self-similar k-graph (G,Λθ) is said to be pseudo-free if g ·µ = µ
and g|µ = 1G implies g = 1G for all g ∈ G and µ ∈ Λθ.

Definition 2.6. ([33, Definition 3.8]). Let (G,Λθ) be a self-similar k-graph. The
self-similar k-graph C*-algebra OG,Λθ

is defined to be the universal unital C*-
algebra generated by a family of unitaries {ug}g∈G and a family of isometries
{sµ : µ ∈ Λθ} satisfying

(i) ugh = uguh for all g, h ∈ G;
(ii) sµsν = sµν for all µ, ν ∈ Λθ;
(iii)

∑
µ∈Λn

θ

sµs
∗
µ = I for all n ∈ Nk;

(iv) ugsµ = sg·µug|µ for all g ∈ G and µ ∈ Λθ.

Let us record the following result [34, Propositions 3.12 and 5.10], which will be
used later without mentioning.

Proposition 2.7. Let (G,Λθ) be a self-similar k-graph. Then

(i) the linear span of {sµugs∗ν : µ, ν ∈ Λθ, g ∈ G} is a dense ∗-subalgebra of
OG,Λθ

;
(ii) The k-graph C*-algebra OΛθ

naturally embeds into OG,Λθ
;

(iii) G and C∗(G) embed into OG,Λθ
, provided that (G,Λθ) is pseudo-free and

G is amenable.

As in [34], let γ be the gauge action of Tk on OZ,Λθ
:

γt(sµugs
∗
ν) = td(µ)−d(ν)sµugs

∗
ν

for all µ, ν ∈ Λθ, g ∈ Z, and t ∈ Tk. The fixed point algebra, Oγ
Z,Λθ

, of γ is generated
by the standard generators sµugs

∗
ν with d(µ) = d(ν). We often write F to stand

for Oγ
Z,Λθ

. More generally, for n ∈ Nk, we define a mapping on OZ,Λθ
by

Φn(x) =

∫
Tk

t−nγt(x)dt for all x ∈ OZ,Λθ
.

Note that for µ, ν ∈ Λθ, g ∈ G we have

Φn(sµugs
∗
ν) =

sµugs∗ν if d(µ)− d(ν) = n,

0 otherwise.

In particular, Oγ
Z,Λθ

= RanΦ0. Also Φ0 is a faithful conditional expectation from

OZ,Λθ
onto Oγ

Z,Λθ
.

We end this subsection by briefly recalling the periodicity of (G,Λθ). Let (G,Λθ)
be a self-similar k-graph. For µ, ν ∈ Λθ, g ∈ G, the triple (µ, g, ν) is called cycline if
µ(g · x) = νx for all x ∈ s(ν)Λ∞. Clearly, every triple (µ, 1G, µ) (µ ∈ Λ) is cycline.
Those cycline triples are said to be trivial. An infinite path x ∈ Λ∞

θ is said to be G-
aperiodic if, for g ∈ G,p,q ∈ Nk with g 6= 1G or p 6= q, we have σp(x) 6= g · σq(x);
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6 R. Valente and D. Yang

otherwise, x is called G-periodic. (G,Λθ) is said to be aperiodic if there exists a
G-aperiodic path x ∈ Λ∞

θ ; and periodic otherwise.

Theorem 2.8. (Li-Yang [33]). (G,Λθ) is aperiodic ⇐⇒ all cycline triples are
trivial.

2.3. Right LCM semigroup C*-algebras and their boundary quotient
C*-algebras

Let us recall some basics about right LCM semigroups and their C*-algebras from
[8]. Let P be a discrete left-cancellative semigroup. We say P is a right LCM
semigroup if any two elements x, y ∈ P with a right common multiple have a right
least common multiple z ∈ P . Equivalently, P is right LCM if, for any x, y ∈ P ,
the intersection xP ∩ yP is either empty or equal to zP for some z ∈ P .

For a right LCM semigroup P, its C*-algebra C∗(P ) defined in [36] can be greatly
simplified as follows: C∗(P ) is the universal C*-algebra generated by isometries
{vp : p ∈ P} and projections {epP : p ∈ P} satisfying

vpvq = vpq, vpeqP v
∗
p = epqP , eP = 1, e∅ = 0, epP eqP = epP∩qP (1)

for all p, q ∈ P .
Recall that a subset F ⊆ P is called a foundation set if it is finite and for each

p ∈ P , there exists q ∈ F such that pP ∩ qP 6= ∅. Then the boundary quotient
Q(P ) of C∗(P ) is the universal C*-algebra generated by isometries {vp : p ∈ P}
and projections {epP : p ∈ P} satisfying the relations in (1) and∏

p∈F

(1− epP ) = 0 for every foundation set F ⊆ P.

2.4. Semigroups from self-similar actions

Let Λθ be a single-vertex k-graph. By Λε, we denote the set of all edges of Λθ:
Λε =

⋃k
i=1{e ∈ Λ : d(e) = εi}. Suppose that Z = 〈a〉 acts on Λθ self-similarly.

Then one can naturally associate a semigroup to the self-similar k-graph (Z,Λθ) as
follows:

SN,Λθ
:=

〈
a, e :

ae = a · ea|e if e ∈ Λε
θ and a|e ≥ 0,

ae(a|e)−1 = a · e if e ∈ Λε
θ and a|e < 0,

e ∈ Λε
θ

〉+

. (2)

This is the semigroup we focus on in this paper. Because of its importance, it
deserves a name.

Definition 2.9. The semigroup SN,Λθ
defined in (2) is called the semigroup of the

self-similar k-graph (Z,Λθ).

Here are another semigroup and a group which are closely related to the
semigroup SN,Λθ

:
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SZ,Λθ
:= 〈a, a−1, e : ae = a · ea|e, e ∈ Λε

θ〉+,
GZ,Λθ

:= 〈a, e : ae = a · ea|e, e ∈ Λε
θ〉.

Remark 2.10. Some remarks are in order.

(i) We should mention that N used in SN,Λθ
emphasizes that only non-negative

integers from Z are involved, although the self-similar graph (Z,Λθ) is
considered.

(ii) We have intended to call SN,Λθ
the self-similar monoid/semigroup of (Z,Λθ).

But the term ‘self-similar monoids/semigroups’ is already used in the liter-
ature for a very different meaning (see, e.g., [4]) and is similar to the notion
of groups over self-similar k-graphs given in [33].

(iii) At first glance, it seems that the semigroup SN,Λθ
has been considered in

[32, Section 3]. But one should notice that it is required that the restriction
map is surjective in [32]. This is a rather strong condition. Most semigroups
SN,Λθ

studied in this paper are not covered there.

3. Rank 1 case: more than GBS semigroups

For 1 ≤ n ∈ N, let En denote the single-vertex (directed) graph with n edges.
Suppose that (Z,En) is a self-similar graph. Assume that the action of Z on the
edge set E1

n has κ orbits Ei := {eis : a · eis = eis+1 mod ni
, s ∈ [ni]} for each 1 ≤ i ≤ κ.

Thus

n =
κ∑

i=1

ni and E1
n =

κ⊔
i=1

Ei.

For 1 ≤ i ≤ κ, let

mi :=
∑

s∈[ni]

a|eis and m :=
κ∑

i=1

mi.

Clearly the self-similar action of (Z,En) induces a self-similar graph (Z,Eni
) for

each 1 ≤ i ≤ κ. Conversely, if there is a self-similar action Z on each Eni
, then

these κ self-similar graphs (Z,Eni
) determine a self-similar graph (Z,En).

So, in the rank 1 case, one can rewrite

SN,En :=

〈
a, e ∈ E1

n :
ae = a · ea|e if a|e ≥ 0

ae(a|e)−1 = a · e if a|e < 0

〉+

.

Before going further, we should mention that [38] also deals with the rank 1
case. But there, in terms of our terminology, the action of Z on the infinite path
space E∞

n is assumed to be faithful. This in particular implies that the self-similar
graph (Z,En) is aperiodic. Thus this eliminates all interesting (periodic) self-similar
graphs (cf. propositions 3.18, 3.22, 3.23, and theorem 3.20).
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Throughout this section, we assume that

mi 6= 0 for all 1 ≤ i ≤ κ. (†)

This condition assures that the self-similar graph (Z,En) is pseudo-free (lemma
3.11), which is required in [22, 33, 34].

Remark 3.1. It is worth mentioning that, under the assumptions (†), SN,En
is

embedded into the group GZ,En [1].

A special class of self-similar graphs is worth mentioning for later use.

Example 3.2. ((n, m)-odometer E(n,m)). For 1 ≤ n ∈ N and 0 6= m ∈ Z, an
(n,m)-odometer is a self-similar graph (Z,En) with the action and restriction given
by

a · es =

es+1 if 0 ≤ s < n− 1,

e0 if s = n− 1;

a|es =

0 if 0 ≤ s < n− 1,

am if s = n− 1.

The (n,m)-odometer is denoted as E(n,m). The case of m =1 yields the classical
odometers which have been extensively studied in the literature (see, e.g., [39] and
the references therein).

In the sequel, we provide two examples of important semigroups which can be
realized as semigroups of self-similar graphs.

Example 3.3. (BS semigroups). For 1 ≤ n ∈ N and 0 6= m ∈ Z, the (BS)
semigroup is

BS+(n,m) :=

〈
a, b | a

nb = bam if m > 0

anba−m = b if m < 0

〉+

.

The semigroup BS+(n,m) can be realized as the semigroup of an (n,m)-odometer.
From now on, we use the semigroups BS+(n,m) and (n,m)-odometer

interchangeably.

Example 3.4. (GBS semigroups). As the name indicates, this example generalizes
BS semigroups in example 3.3. Let 1 ≤ κ ∈ N∪{∞}. For 1 ≤ ni ∈ N and 0 6= mi ∈ Z
(1 ≤ i ≤ κ), the GBS semigroup is

GBS+κ (ni,mi) :=

〈
a, bi |

anibi = bia
mi if mi > 0,

anibia
−mi = bi if mi < 0,

1 ≤ i ≤ κ

〉+

.

The GBS semigroup GBS+k (ni,mi) can also be realized as the semigroup of a self-
similar graph as follows. Let E be the single-vertex directed graph with the edge
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set {eis : 1 ≤ i ≤ κ, s ∈ [ni]}. To each 1 ≤ i ≤ κ, we associate an (ni,mi)-odometer.
Then GBS+κ (ni,mi) ∼= SN,E.

Therefore, semigroups of self-similar graphs encompass GBS semigroups.

Remark 3.5. In this remark, let us mention some connections with the literature.

(i) BS semigroups usually provide a nice class of examples or counter-examples
for some properties (e.g., [2, 7]). They have been attracting a lot of operator
algebraists’ attention recently. For instance, in [44], the boundary quotient of
the semigroup C*-algebra BS+(n,m) is first investigated via the C*-algebra
for a category of paths. In [12], the KMS states of the semigroup C*-algebra
of quasi-lattice ordered BS semigroups are studied. This is generalized to all
BS semigroups later in [7].

(ii) Very recently, in [11] Chen–Li study the C*-algebras for a class of semi-
groups, which are graphs of semigroups which are constructed very similarly
to graphs of groups in [43]. There is some intersection: For instance, their
semigroups encompass GBS semigroups. However, theirs do not include all
semigroups SZ,Λθ

. Most importantly, theirs do not include any ‘genuine’
higher rank BS semigroups studied in § 4 below.

3.1. Some basic properties

The two lemmas below will be used frequently. One can prove the first one by
simple calculations, and the second one by applying remark 3.1. Their proofs are
omitted here.

Lemma 3.6. Let (Z,En) be a self-similar graph. Then, for ` ∈ Z, 1 ≤ i ≤ κ, and
p ∈ [ni], one has

(i) a`ni+p · eis = ei(s+p) modni
;

(ii) a`ni+p|eis =

a`mi if p = 0,

a`mi
∏p−1

q=0 a|ei(s+q) modni

if 0 < p < ni − 1.

Lemma 3.7. Every element x ∈ SN,En
has a unique representation x = eµa

` for
some µ ∈ E∗

n and ` ∈ Z.

Proposition 3.8. SN,En is right LCM.

Proof. Consider eµa
k and eνa

` in SN,En . It is not hard to see that they have a
right common upper bound if, and only if either eµ = eνeµ̃ for some eµ̃ ∈ E∗

n or
eν = eµeν̃ for some eν̃ ∈ E∗

n. WLOG we assume that eν = eµeν̃ for some eν̃ ∈ E∗
n.

Let eα := a−k ·eν̃ . Then one can show the following: If a` ≥ ak|eα (resp. a` < ak|eα),
then eνa

` (reps. eνa
k|eα) is a least right common upper bound of eµa

k and eνa
`

(in SN,En). ▪

Remark 3.9. If a|e ≥ 0 for all e ∈ En, then SN,En is a Zappa–Szép product of the
semigroups N and F+

n [8].
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Since SN,En
is right LCM, from § 2.3 and the analysis above, one has the following

Corollary 3.10. Q(SN,En
) ∼= OZ,En

∼= Q(SZ,En
).

Proof. By proposition 3.8, the sets {a} and {ei : i ∈ [n]} are foundation sets of
SN,En

. Then the map

Q(SN,En
)→ OZ,En

, veµa` 7→ seµua` , eeµa`SN,En
7→ seµs

∗
eµ

yields an isomorphism. The proof of Q(SZ,En
) ∼= OZ,En

is even simpler. ▪

3.2. Pseudo-freeness of (Z,En)

Let (Z,En) be a self-similar graph satisfying our standing assumption †.

Lemma 3.11. The self-similar graph (Z,En) is pseudo-free.

Proof. This follows from lemma 3.6. In fact, suppose that g · µ = µ and g|µ = 0.
If |µ| = 1, it then follows from lemma 3.6 and the assumption (†) that g =0. Now
suppose that g ·µ = µ and g|µ = 0 with |µ| = k imply g =0. Let g · (µeis) = µeis and
g|µeis = 0 for some edge eis in the i -th orbit. Then g · µg|µ · eis = µeis =⇒ g · µ = µ

and g|µ · eis = eis. So the latter implies g|µ = a`ni for some ` ∈ Z. But also g|µeis = 0

implies that 0 = g|µ|eis = a`ni |eis = a`mi . Hence ` = 0 as mi 6= 0. Therefore,
g ·µ = µ and g|µ = 0. By our inductive assumption, we have g =0. This proves the
pseudo-freeness of (Z,En). ▪

Remark 3.12. Lemma 3.11 is no longer true if mi = 0 for some 1 ≤ i ≤ κ. For
example, consider the self-similar graph (Z,E2) with ae1 = e2a and ae2 = e1a

−1.
Then a2ei = ei for i = 1, 2, and a2|ei = 0. Clearly, this self-similar graph (Z,E2) is
not pseudo-free.

3.3. The periodicity of (Z,En)

In this subsection, we study the periodicity of self-similar graphs (Z,En) in detail.
We first analyze the case when κ=1, and then use it to study the general case.

Recall that κ is the number of orbits of Z on En.

3.3.1. The case of κ= 1

Proposition 3.13. If κ=1, then (Z,En) is periodic if and only if n |m.

Proof. Suppose that m = n` for some ` ∈ Z. Let x = ei1ei2 · · · ∈ E∞
n be an

infinite path. Repeatedly applying lemma 3.6 gives

ank · x = ank · ei1ank|ei1 · (ei2 · · · ) = ei1a
n`k · (ei2 · · · ) = · · · = x for all k ∈ Z.

This shows that every infinite path x ∈ E∞
n is Z-periodic in the sense of [34]. So

(Z,En) is periodic.
It remains to show that if n - m then (Z,En) is aperiodic. To the contrary, assume

that (Z,En) is periodic. It follows from [33, Theorem 3.7] (Z,En) has a non-trivial
cycline triple (µ, g, ν). That is, µg · x = νx for all x ∈ E∞

n with g 6= 0 or µ 6= ν.
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Case (a): |µ| < |ν|. Then there is a unique ν′ ∈ E∗
n \ E0

n such that ν = µν′. Thus
g · x = ν′x and so g · x(0, |ν′|) = ν′ for all x ∈ E∞

n . This is impossible by noticing
that n has to be greater than 1.

Case (b): |µ| > |ν|. Since x ∈ E∞
n is arbitrary, we replace x with g−1 ·x and then

apply case (a).
Case (c): |µ| = |ν|. Then µ = ν and g ·x = x for all x ∈ E∞

n . Let d := gcd(m,n) >
0. Write m = dm0 and n = dn0. Since n - m, we have n0 - m0. Write x = ei1ei2 · · ·
with ij ∈ [n]. Then

g · (ei1ei2 · · · ) = ei1ei2 · · · =⇒ g · ei1 = ei1 , g|ei1 · ei2 = ei2 , . . .

Hence there is a sequence {ki}i≥1 ⊆ Z of (non-zero) integers such that

g = ak1n, ak1m = ak2n, ak2m = ak3n, ak3m = ak4n, . . . .

So

k1m = k2n, k2m = k3n, . . .

imply

k1m0 = k2n0, k2m0 = k3n0, . . . .

Thus one has that mp
0k1 = np0kp+1 for all p ≥ 1. In particular np0 |k1 for all p ≥ 1

as gcd(m0, n0) = 1. But n -m implies n0 > 1. So k1 = 0 and hence g =0. Then
(µ, g, ν) = (µ, 0, µ) is a trivial cycline triple. This is a contradiction. ▪

Remark 3.14. Let (G,Λ) be a self-similar k-graph. As mentioned in [34], it is easy
to see that if Λ is periodic, then (G,Λ) is periodic. But the converse is not true.
Here is a class of counter-examples: It is well-known that En is aperiodic if n > 1.
But proposition 3.13 shows that (Z,En) is periodic whenever n |m. Therefore, the
periodicity of (G,Λ) is more complicated than that of the ambient graph Λ.

We now determine all cycline triples of (Z,En) when κ=1. Notice that all cycline
triples are trivial if (Z,En) is aperiodic by theorem 2.8. Hence it suffices to consider
periodic self-similar graphs (Z,En).

When n =1, there is a unique infinite path. So the following is straightforward.

Lemma 3.15. If n=1, then every triple (µ, a`, ν) is cycline.

Proposition 3.16. Suppose that κ=1, n> 1, and (Z,En) is periodic. Then
(µ, g, ν) is cycline if and only if µ = ν and g = a`n for some ` ∈ Z.

Proof. ‘If’ part is clear. For the ‘Only if’ part, assume that (µ, g, ν) is cycline.
Then

µg · x = νx for all x ∈ E∞
n .

If |µ| = |ν|, then µ = ν and g · x = x for all x ∈ E∞
n . As in the proof of proposition

3.13, one can see that g = a`n for some ` ∈ Z.
If |µ| 6= |ν|, WLOG, |ν| > |µ|. Then ν = µν′ for some ν′ ∈ E∗

n \E0
n and g ·x = ν′x.

This is impossible as n > 1. ▪
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Combining [34, Theorem 6.6, Theorem 6.13] with corollary 3.10 yields

Theorem 3.17. Q(SN,En
) with κ=1 satisfies UCT. It is simple iff n -m. So it is

a Kirchberg algebra iff n -m.

3.3.2. The general case
For the general κ ≥ 1, we begin with a relation between the periodicity of (Z,En)
and that of its restrictions on orbits.

For simplification, let N := lcm(ni : 1 ≤ i ≤ κ).

Proposition 3.18. (Z,En) is periodic, if and only if the restriction (Z,Eni
) is

periodic for each 1 ≤ i ≤ κ, if and only if ni |mi for every 1 ≤ i ≤ κ.

Proof. If there is 1 ≤ i ≤ κ such that ni - mi, then (Z,Eni
) is aperiodic by

proposition 3.16. Then clearly (Z,En) is aperiodic.
Now let us assume that ni |mi for all 1 ≤ i ≤ κ. Say mi = nim̃i with 0 6= m̃i ∈ Z

for 1 ≤ i ≤ κ. Then

aN ei1s1 · · · e
ip
sp = ei1s1 · · · e

ip
sp a

N m̃i1
···m̃ip .

Thus one can check that for arbitrary x ∈ E∞
n one has aN · x = x. Therefore, every

infinite path x is Z-periodic, and so (Z,En) is periodic. �

We now determine all cycline triples. If n =1, this is provided in lemma 3.15.

Proposition 3.19. If (Z,En) is periodic with n> 1, then (µ, g, ν) is cycline if and
only if µ = ν and g = a`N for some ` ∈ Z.

Proof. ‘If’ part is clear. For the ‘Only if’ part, assume that (µ, g, ν) is cycline.
Then

µg · x = νx for all x ∈ E∞
n .

If |µ| = |ν|, then µ = ν and g · x = x for all x ∈ E∞
n . It is now not hard to see that

g = a`N for some ` ∈ Z.
If |µ| 6= |ν|, WLOG, |ν| > |µ|. Then ν = µν′ for some ν′ ∈ E∗

n\E0
n and g ·x = ν′x.

This is impossible as n > 1. ▪

Combining [34, Theorem 6.6, Theorem 6.13] with corollary 3.10 yields

Theorem 3.20. OZ,En
satisfies UCT. It is simple iff ni -mi for some 1 ≤ i ≤ κ.

So it is a Kirchberg algebra iff ni -mi for some 1 ≤ i ≤ κ.

Remark 3.21. It is well-known that the roles of n andm in BS groups BS(n,m) are
symmetric in the sense of BS(n,m) ∼= BS(m,n). So C∗(BS(n,m)) ∼= C∗(BS(m,n)).
However, the symmetry is lost for BS semigroups. For instance, If 0 < n 6= m ∈ N
satisfies n |m, then Q(BS+(n,m)) is not simple while Q(BS+(m,n)) is simple.

3.4. Cartan subalgebras of OZ,En

We begin with the definition of Cartan subalgebras. Let B be an abelian C*-
subalgebra of a given C*-algebra A. B is called a Cartan subalgebra in A
if
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(i) B contains an approximate unit in A;
(ii) B is a MASA;
(iii) B is regular: the normalizer set N(B) = {x ∈ A : xBx∗ ∪ x∗Bx ⊆ B}

generates A;
(iv) there is a faithful conditional expectation E from A onto B.

In this subsection, we show that there is a canonical Cartan subalgebra for each
OZ,En

. It is closely related to the fixed point algebra Oγ
Z,En

of the gauge action γ.
However, there is an essential difference between the cases of n =1 and n > 1.

3.4.1. The case of n= 1
The case of n =1 is a special case of § 4.4 below with k = 1 (i.e., rank 1), which
does not use any results from this section. So we record the result below just for
completeness.

In what follows, to simplify our writing, let us set F := Oγ
Z,En

, and F ′ to be the
(relative) commutant of F in OZ,En

.

Proposition 3.22. Keep the above notation. Then F ′ = span{sepa`s∗eq : mp =
mq, ` ∈ Z} and F ′ is a Cartan subalgebra of OZ,E1

.

It is worth noticing that there are three possible cases for F ′:

• If m =1, then F ′ = span{sepua`s∗eq : p, q ∈ N, ` ∈ Z} = OZ,E1
∼= C(T2).

• If m = −1, then F ′ = span{sepua`s∗eq : p, q ∈ N with p− q ∈ 2Z, ` ∈ Z}.
• If m 6= ±1, then F ′ = F .

3.4.2. The case of n> 1
Recall that N = lcm(ni : 1 ≤ i ≤ κ) and n =

κ∑
i=1

ni.

Proposition 3.23. If n> 1, then the cycline C*-subalgebraM := C∗(sµua`Ns∗µ :
µ ∈ E∗

n, ` ∈ Z) is a MASA in OZ,En
.

Proof. We first show thatM is abelian. Compute

(sµuaKNs∗µ)(sνuaLNs∗ν)

=



sµua(K+L)Ns∗µ if µ = ν,

sµuaKNsν′uaLNs∗ν = sµsν′uaKN|ν′uaLNs∗ν = sνuaKN|ν′uaLNs∗ν if ν = µν′,

sµuaKNs∗µ′uaLNs∗ν = sµuaKNu(a−Ln|
aLN·µ′ )−1s∗µ′s∗ν if µ = νµ′,

= sµuaKNuaLN|µ′ s
∗
µ

0 otherwise.
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Similar calculations yield

(sνuaLNs∗ν)(sµuaKNs∗µ) =


sνua(K+L)Ns∗ν if µ = ν,

sνuaLNuaKN|ν′ s
∗
ν if ν = µν′,

sµuaLN|µ′uaKNs∗µ if µ = νµ′,

0 otherwise.

ThusM is abelian.
As in [33], let GZ,En

be the groupoid associated with the self-similar graph
(Z,En). It follows from [33, Lemma 5.2] and proposition 3.19 that Iso(GZ,En

)◦ =⋃
µ∈E∗

n,`∈Z
Z(µ, a`N, µ). Also notice thatM∼= C∗(Iso(GZ,En

)◦). So C∗(Iso(GZ,En
)◦) is

abelian. Hence, by [10, Corollary 5.4],M is a MASA. �

Remark 3.24. By lemma 3.15, when n =1, the cycline subalgebra of OZ,E1
coin-

cides with OZ,E1
, which is generally not abelian. So proposition 3.23 does not hold

true for n =1.

Remark 3.25. Keep the same notation in the proof above. If Iso(GZ,En
)◦ is closed,

then applying [6, Corollary 4.5] one can conclude thatM is Cartan in OZ,En
. But,

unfortunately, Iso(GZ,En
)◦ needn’t be closed in general.

3.5. Some old examples revisited

Recall the flip (single-vertex) rank 2 graphs

Λflip = 〈ei, fj : eifj = fiej , i, j ∈ [n]〉+ (n ≥ 2)

and the square rank 2 graph

Λsquare = 〈xi,yj : xiyj = yi+1xj , i, j ∈ [2]〉+.

Example 3.26. In [12], it is shown that Q(BS+(n, n)) ∼= C(T) ⊗ On. From what
we have obtained so far, we can prove this by relating to rank 2 graphs. In fact, we
have

Q(BS+(n, n)) ∼= C(T)⊗On
∼= OΛflip

.

To see this, we construct an explicit isomorphism from OΛflip
onto Q(BS+(n, n)).

Let π : OΛflip
→ Q(BS+(n, n)) be the homomorphism determined by

sei 7→ Ei := sei , sfj 7→ Fj := uansej (i, j ∈ [n]). (3)

It is easy to see that EiFj = FiEj as uan is in the center of Q(BS+(n, n)). Also π
is surjective as from aei = ei+1 (0 ≤ i ≤ n− 2) and aen−1 = e0a

n one has
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n−1∑
i=0

uaseis
∗
ei =

n−2∑
i=0

sei+1
s∗ei + se0uans∗en−1

=
n−2∑
i=0

sei+1
s∗ei + uanse0s

∗
en−1

=
n−2∑
i=0

sei+1
s∗ei + F0s

∗
en−1

.

Conversely, define ρ : Q(BS+(n, n))→ OΛflip
by

sei 7→ sei
, ua 7→

n−2∑
i=0

sei+1
s∗ei

+ sf0s
∗
en−1

.

Then ρ determines a homomorphism. Also one can check that π and ρ are the inverse
to each other. Therefore one has Q(BS+(n, n)) ∼= OΛflip

, which is also isomorphic
to C(T)⊗On by [17].

Example 3.27. In this example, through BS+(2, 2), we are able to show that
OΛsquare

∼= OΛflip
, which seems unclear in [17] although both OΛflip

and OΛsquare
are

well-studied there.
LetW := se1

s∗e0
+sf0s

∗
e1
. ThenW 2 = sf0s

∗
e0
+sf1s

∗
e1
. Define π : OΛsquare

→ OΛflip

via

sx0
7→ se0

, sx1
7→ se1

W ∗, sy0
7→Wse0

, sy1
7→Wse1

W ∗.

Then one can verify that π is a homomorphism.
Let F := sy1

s∗x1
+ sy0

s∗x0
. Then F 2 =

∑
i,j∈[2] syiyj

s∗x(i+1)xj
. Let ρ : OΛflip

→
OΛsquare

be defined as

se0
7→ sx0

, se1
7→ sx1

F, sf0 7→ F 2sx0
= sx0

F 2, sf1 7→ F 2sx1
F = sx1

F 3.

Then ρ is a homomorphism. Moreover, π and ρ are the inverse to each other, and
ρ(W ) = F and π(F ) =W .

4. Rank k case: more than higher rank BS semigroups

In this section, we first propose a notion of higher rank BS semigroups Λθ(n,m).
We then briefly describe how higher rank BS semigroups relate to Furstenberg’s
×p,×q conjecture. Our main focus here are two cases— Λd(n,1k) and Λd(1k,m).
For Λd(n,1k), it is related to products of odometers studied in [32]. Applying some
results in [32, 33], one can easily characterize the simplicity of OΛd(n,1k) and see
that the cycline subalgebra is Cartan in OΛd(n,1k). But, here, we first show the fixed
point algebra F of the gauge action γ is a Bunce–Deddens algebra, and so F has a
unique faithful tracial state τ . Then composing with the conditional expectation Φ
from OΛd(n,1k) onto F yields a state ω = τ ◦ Φ. We then study the associated von
Neumann algebra πω(OΛd(n,1k))

′′ in the same vein of [46, 47]. More precisely, we
provide some characterizations of when πω(OΛd(n,1k))

′′ is a factor and further obtain
its type. For Λd(1k,m), it is intimately related to Furstenberg’s ×p,×q conjecture.
In this case, we obtain a canonical Cartan for OΛd(1k,m), which is generally a proper
subalgebra of its cycline subalgebra. We will continue studying OΛd(1k,m) and its
relative(s) in a forthcoming paper.
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4.1. Higher rank BS semigroups

Consider k given self-similar graphs (Z,Eni) with Eni = {xi
s : s ∈ [ni]} (1 ≤ i ≤ k).

Suppose that xi
s’s satisfy the commutation relations θij(x

i
s,x

j
t ) = (xj

t′ ,x
i
s′) for

1 ≤ i < j ≤ k. Applying [32, Proposition 4.1], one has

Proposition 4.1. Keep the same notation. The k self-similar graphs (Z,Eni) with
the commutation relations θij’s determine a self-similar k-graph (Z,Λθ) if and only
if

(a · xi
s)(a|xi

s
· xj

t ) = (a · xj
t′)(a|xj

t′
· xi

s′) (4)

for all 1 ≤ i < j ≤ k, s ∈ [ni], t ∈ [nj ].

Based on example 3.3, it is reasonable to introduce the following notion.

Definition 4.2. A self-similar k-graph obtained from (ni,mi)-odometers with
the commutation relations θij’s is called a rank k BS semigroup, denoted as
Λθ((n1, . . . , nk), (m1, . . . ,mk)), or simply Λθ(n,m) if the context is clear. The
ambient k-graph is still written as Λθ.

Here are some examples of higher rank BS semigroups.

Example 4.3. A standard product of odometers studied in [32] is a rank k BS
semigroup induced from (ni, 1)-odometers E(ni, 1) (1 ≤ i ≤ k) with the division
commutation relations (refer to example 2.2 for d). So it is of the form Λd(n,1k).

Example 4.4. Consider (ni,mi)-odometers with the trivial permutation θij (1 ≤
i < j ≤ k) (see example 2.1). Then they induce a rank k BS semigroup if and only if
ni = 1 for each 1 ≤ i ≤ k. In fact, the condition (4) in proposition 4.1 implies ni = 1
for all 1 ≤ i ≤ k. Then the trivial relation is the same as the division commutation
relation. The rank k BS semigroup obtained in this case is of the form Λd(1k,m).

Example 4.5. Suppose that ni = n for all 1 ≤ i ≤ k, and that θij is the
division permutation. Then one necessarily has θij(s, t) = (t, s). One can check
that this yields a rank k BS semigroup if and only if either mi = mj for all
1 ≤ i, j ≤ k, or n | mi for all 1 ≤ i ≤ k. These are rank k BS semigroups of
the form Λd((n, . . . , n), (m, . . . ,m)), or Λd((n, . . . , n), (nm̃1, . . . , nm̃k)).

So the class obtained in example 4.4 is a special case here with n =1.

In the sequel, we provide some interesting C*-algebras studied in the literature,
which can be realized from higher rank BS semigroups.

(1) It is shown in [32] that the Cuntz algebra QN is isomorphic to the boundary
quotient of a semigroup of the form in example 4.3.

(2) For 2 ≤ p ∈ N, the p-adic C*-algebra Qp can also be recovered from a
semigroup of the form in example 4.3 (cf. [32] for p=2 in terms of standard
product of odometers).

(3) QN can be also realized as a boundary quotient of the left ax + b semigroup
N o N× studied in [31]. The C*-algebra of N o N× itself is also related to
higher rank BS semigroups.
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(4) The boundary ∂T (N×nN) of the right ax + b semigroup N×nN is a bound-
ary quotient of a higher-rank BS semigroup of the form given in example
4.4.

(5) The C*-algebra O(En,m) studied by Katsura in [28] is isomorphic to OE(n,m)

(see examples 3.2 and 3.3).

Remark 4.6. The C*-algebras of both the left ax + b semigroup No N× and the
right ax + b semigroup N×nN are related to higher rank BS semigroups. This will
be studied elsewhere.

4.2. Relation to Furstenberg’s ×p,×q conjecture

We first give a very brief introduction on Furstenberg’s ×p,×q conjecture. For all
undefined notions or any further information, refer to [9, 24, 25, 42].

Let 2 ≤ p, q ∈ N be multiplicatively independent, i.e., ln p
ln q 6∈ Q. Define Tp : T→ T

by Tp(z) = zp for all z ∈ T. Similarly for Tq. A subset of T is said to be ×p,×q-
invariant if it is invariant under both Tp and Tq. Furstenberg classifies all closed
×p,×q-invariant subsets of T in [24]: Such a subset is either finite or T itself. Then
he conjectures the following:

Conjecture (Furstenberg’s ×p,×q conjecture). An ergodic ×p,×q-invariant
Borel probability measure of T is either finitely supported or the Lebesgue measure.

According to our best knowledge, this conjecture is still open. The best known
result so far is the following theorem, which is proved by Rudolph when p and q
are coprime in [41] and later improved by Johnson in [26].

Theorem (Rudolph–Johnson). If µ is an ergodic ×p,×q-invariant measure on
T, then either both entropies of Tp and Tq with respect to µ are 0, or µ is the
Lebesgue measure.

When both entropies of Tp and Tq with respect to µ are 0, Furstenberg’s ×p,×q
conjecture is reduced to studying the C*-algebra C∗(G) of the group G, where

G := 〈s, t, z : st = ts, sz = zps, tz = zqt〉. (5)

It turns out that C∗(G) ∼= C∗(Z[ 1
pq ]) o Z2 ∼= C∗(Z[ 1

pq ] o Z2). In [25], the repre-

sentation theory of C∗(Z[ 1
pq ]) o Z2 is studied. In particular, the authors focus on

which kind of its representations are induced by ×p,×q-invariant measures on T.
Later, the following equivalence is shown in [9]: Furstenberg’s ×p,×q conjecture
holds true if and only if the canonical trace is the only faithful extreme tracial state
on C∗(G) ∼= C∗(Z[ 1

pq ]o Z2).
Our purpose here is to connect Furstenberg’s conjecture with higher rank BS

semigroups. For this, from (5) one has

t−1s−1 = s−1t−1, z−1s−1 = s−1z−p, z−1t−1 = t−1z−q.

Let G̃ be the group

G̃ := 〈s̃, t̃, z̃ : t̃s̃ = s̃t̃, z̃s̃ = s̃z̃p, z̃t̃ = t̃z̃q〉. (6)
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Thus G ∼= G̃ and so C∗(G) ∼= C∗(G̃). The upshot by doing so is C∗(G) ∼=
OΛd((1,1),(p,q)).

Now return to (5) again. Let G+ be the corresponding semigroup

G+ := 〈s, t, z : st = ts, sz = zps, tz = zqt〉+. (7)

Then we claim that Q(G+) ∼= OΛd((p,q),(1,1)). In fact, let ei := zis and fj := zjt for
i ∈ [p] and j ∈ [q]. Then st = ts ⇐⇒ e0f0 = f0e0. For k ∈ [p] and ` ∈ [q], let
k′ ∈ [p] and `′ ∈ [q] be the unique ones such that k + `p = `′ + k′q. Then we have

ekf` = zksz`t = zkz`pst = z`
′
zk

′qts = z`
′
tzk

′
s = f`′ek′ .

Thus there is a homomorphism

π : OΛd((p,q),(1,1)) = OZ,Λd
→ Q(G+), sx1

i
7→ vei , sx2

j
7→ vfj , ua 7→ vz,

which is an isomorphism as it has an inverse given by

vs 7→ sx1
0
, vt 7→ sx2

0
, vz 7→ ua.

Hence OΛd((p,q),(1,1))
∼= Q(G+).

To sum up, we have shown that

C∗(G) ∼= OΛd((1,1),(p,q)) and Q(G
+) ∼= OΛd((p,q),(1,1)). (8)

Based on the above, in what follows, we focus on two extreme, but rather inter-
esting, classes of higher rank BS semigroups: Λd(n,1k) with 1k ≤ n ∈ Nk and
Λd(1k,m) with mi 6= 0 for all 1 ≤ i ≤ k.

From now on, to unify our notation, the set {0, 1 6= pi ∈ Z : 1 ≤ i ≤ k} is said

to be multiplicatively independent if there is no 0 6= q ∈ Zk such that
k∏

i=1

pqii = 1.

When all pi’s are also ≥ 1, {pi : 1 ≤ i ≤ k} is multiplicatively independent if and
only if {ln pi : 1 ≤ i ≤ k} is rationally independent.

4.3. The case of m = 1k

The C*-algebra of the self-similar k-graph Λd(n,1k) is studied in [32]. It is shown
there that OΛd(n,1k) is simple if and only if {ni : 1 ≤ i ≤ k} is multiplicatively
independent, and that its cycline subalgebra is Cartan by [33, Theorem 5.6]. In
what follows, we identify the center of OΛd(n,1k), which is overlooked in [32, 33]. A
useful lemma first:

Lemma 4.7. (i) Let µ, ν ∈ Λp
d (p ∈ Nk) and m ∈ Z. Then there is ` ∈ Z such that

νam = a`µ.
(ii) OΛd(n,1k) = span{uamsαs

∗
β : m ∈ Z, α, β ∈ Λd}.

Proof. (i) We first prove the lemma holds true for the classical odometer action
E(n, 1). We argue this by induction with respect to the lengths of µ and ν. If µ := ei
and ν := ej . WLOG we assume that i ≥ j ∈ [n]. For any m ∈ Z, by lemma 3.6,
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one can verify that amn+i−jν = µam. Assume that this is true for any m ∈ Z and
all µ, ν ∈ E∗

n with |µ| = |ν| ≤ k. Now consider esµ and etν with |µ| = |ν| = k. Let
m ∈ Z. By our inductive assumption, we have esµa

m = esa
`′ν = a`etν for some

`′, ` ∈ Z. This proves the E(n, 1) case.
Now return to Λd. Let µ, ν ∈ Λd with d(µ) = d(ν) = p ∈ Nk. Then by the

unique factorization property µ = µ1 · · ·µk and ν = ν1 · · · νk with µi, νi ∈ Λpiεi
d for

1 ≤ i ≤ k. Then for any m ∈ Z, apply the above to µka
m in E(nk, 1), there is `k ∈ Z

such that µam = µ1 · · ·µk−1a
`kνk. Repeatedly using the above gives µam = a`ν for

some ` ∈ Z.
(ii) This follows from (i) and proposition 2.7 (i). ▪

By [33, Theorem 7.5] (or Appendix there), Λd(n,1k) and Λd share the same
periodicity {p ∈ Zk : np = 1}. Thus, for each pair (p,q) ∈ Nk × Nk with np = nq,
there is a bijection φp,q : Λp

d → Λq
d satisfying

µν = φp,q(µ)φ
−1
p,q(ν), φ

−1
p,q(ν)φp,q(µ) = νµ (9)

for every pair (µ, ν) ∈ Λp
d × Λq

d [18, Theorem 7.1] (or [Section 5]). Let

Vp,q :=
∑
µ∈Λp

d

sµs
∗
φp,q(µ)

.

By [18, Theorem 4.9], each Vp,q is a unitary in OΛd(n,1k).

Proposition 4.8. The center of OΛd(n,1k) is given by

Z(OΛd(n,1k)) = C∗(Vp,q : (p,q) ∈ Nk × Nk, np = nq).

In particular, Z(OΛd(n,1k)) is trivial, if and only if {ni : 1 ≤ i ≤ k} is multiplicatively
independent.

Proof. Suppose that A ∈ Z(OΛd(n,1k)). Then by proposition 2.7, one has A ∈
Z(OΛd

). But Z(OΛd
) = C∗(Vp,q : (p,q) ∈ Nk × Nk, np = nq) [18].

It remains to show that each Vp,q is indeed in Z(OΛd(n,1k)). This has been proved
in [18, Theorem 4.9]. In what follows, we prove this by invoking lemma 4.7.

We first show that ua commutes with Vp,q. Then on one hand, we have

a · (µν) = a · (φp,q(µ)φ−1
p,q(ν)) =⇒ a · µa|µ · ν = a · φp,q(µ)a|φ(µ) · φ−1

p,q(ν).

On the other hand, we have

a · µa|µ · ν = φp,q(a · µ)φ−1
p,q(a|µ · ν).

Thus

a−1 · φp,q(µ)a−1|φp,q(µ) · φ
−1
p,q(ν) = φp,q(a

−1 · µ)φ−1
p,q(a

−1|µ · ν)
=⇒ a−1 · φp,q(µ) = φp,q(a

−1 · µ) and a−1|φp,q(µ) · φ
−1
p,q(ν) = φ−1

p,q(a
−1|µ · ν)

(10)

Then one can easily see g·φp,q(µ) = φp,q(g·µ) for any g ∈ Z. Similarly, one gets from
the second identity of (9) that g·φ−1

p,q(ν) = φ−1
p,q(g·ν) for any g ∈ Z. Thus the second
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identity of (10) yields a−1|φp,q(µ) = a−1|µ, and so (a−1|φp,q(µ))
−1 = (a−1|µ)−1.

Therefore

a|a−1·φp,q(µ) = a|a−1·µ. (11)

Now compute

uaVp,q =
∑

d(µ)=p

sa·µua|µs
∗
φp,q(µ)

=
∑

d(µ)=p

sµua|a−1·µ
s∗φp,q(a−1·µ)

=
∑

d(µ)=p

sµua|a−1·φp,q(µ)
s∗a−1·φp,q(µ)

(from (10)and (11))

=
∑

d(µ)=p

sµu(a−1|φp,q(µ))−1s∗a−1·φp,q(µ)
=

 ∑
d(µ)=p

sµs
∗
φp,q(µ)

ua

= Vp,q ua.

Then

(uamsαs
∗
β)Vp,q = uamVp,qsαs

∗
β = Vp,q(uamsαs

∗
β).

By lemma 4.7 (ii),
∑

d(µ)=p

sµs
∗
φp,q(µ)

∈ Z(OΛd(n,1k)). ▪

For m ∈ Nk, let Fm := span{sµans∗ν : µ, ν ∈ Λ(n,1k)with d(µ) = d(ν) = m, n ∈
Z}, and so F =

⋃
m∈Nk

Fm
‖·‖

. Also notice that, due to the Cuntz–Krieger relations,

we have F = lim
−→
m∈N
Fm1k

.

Let d :=
k∏

i=1

∏
p∈P, p|ni

p, the product of all primes dividing some ni’s.

Lemma 4.9. F is a Bunce–Deddens algebra of type d∞. In particular, F has a
unique faithful tracial state.

Proof. The proof below is motivated by the proof of [35, Theorem 3.16].
For m ∈ Nk, let {eµ,ν}µ,ν∈Λm

d
be the matrix entries of K(`2(Λm

d )). To simplify
our notation, let {an}n∈Z be the generating unitaries of C∗(Z). Clearly, there is a
homomorphism

ρ1 : K(`2(Λm1k

d ))→ Fm1k
, eµ,ν 7→ sµs

∗
ν ,

and

ρ2 : C(T)→ Fm1k
, an 7→

∑
µ∈Λ

m1k
d

sµuans∗µ.

Some simple calculations show the images of ρ1 and ρ2 commute. By [37, Theorem
6.3.7], there is a homomorphism ρ : K(`2(Λm1k

d ))⊗C∗(Z)→ Fm1k
satisfying ρ(eµ,ν⊗

an) = sµuans∗ν . It is not hard to see that ρ is also invertible and so an isomorphism.
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Set µ0 := x1
0 · · ·xk

0 and µn−1 := x1
n1−1 · · ·xk

nk−1. Embed K(`2(Λm1k

d )) ⊗ C∗(Z)
into K(`2(Λ

(m+1)1k

d ))⊗ C∗(Z) as follows:

eµ,ν ⊗ an 7→
∑
α∈Λ1

d

eµan·α,να ⊗ an|α.

Notice that a|α = a if α = µn−1k
, and a|α = 0, otherwise.

Now we have

ua = ua
∑

µ∈Λm1k

sµs
∗
µ =

∑
µ∈Λ

m1k
d

sa·µua|µs
∗
µ

=
∑

µ6=µn−1k

sa·µs
∗
µ + sa·µn−1k

uas
∗
µn−1k

=
∑

µ6=µn−1k

sa·µs
∗
µ + sµ0

uas
∗
µn−1k

.

Therefore F is isomorphic to a Bunce–Deddens algebra of type of d∞, and so it
has a unique faithful tracial state [14]. ▪

Remark 4.10. It is worth mentioning the following: If S := {n1, . . . , nk} ⊂ N is a
set of mutually coprime natural numbers, then F is isomorphic to BS in [3].

By lemma 4.9 and [14], F has a unique faithful tracial state, say τ , given by

τ(sµuans∗µ) = n−d(µ)δn,0.

Recall that Φ0 is the faithful conditional expectation from OΛd(n,1) onto F via the
gauge action γ (see § 2.2). Then ω := τ ◦ Φ0 is a state of OΛd(n,1k).

We recall the notion of KMS states from [5] (also see [13]) and give some basic
properties of KMS states for OΛd(n,1k).

Definition 4.11. Let A be a C*-algebra, α be an action of R on A, and Aa be
the set of all analytic elements of A. Let 0 < β < ∞. A state τ of A is called a
KMSβ state of (A,R, α) if τ(xy) = τ(yαiβ(x)) for all x, y ∈ Aa.

Recall the gauge action γ : Tk → Aut(OΛd(n,1k)):

γz(sµ) = zd(µ)sµand γz(ug) = ug for all z ∈ Tk, µ ∈ Λ, g ∈ Z.

Let r = (lnn1, . . . , lnnk) ∈ Rk. Define a strongly continuous homomorphism αr :
R → Aut(OΛd(n,1k)) by αr

t := γeitr . Notice that, for µ, ν ∈ Λd(n,1k), g ∈ Z, the
function C→ OΛd(n,1), ξ 7→ eiξr·(d(µ)−d(ν))sµugs

∗
ν is an entire function. So sµugs

∗
ν is

an analytic element. By proposition 2.7, in order to check the KMSβ condition, it is
sufficient to check whether it is valid on the set {sµugs∗ν : µ, ν ∈ Λd(n,1k), g ∈ Z}.
In this section, we study basic properties of KMSβ states of the one-parameter
dynamical system (OΛd(n,1),R, αr).
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Lemma 4.12. Suppose that {ni : 1 ≤ i ≤ k} is multiplicatively independent. Then
ω is the unique KMS1 state on OΛd(n,1k).

Proof. An easy calculation shows

ω(sµuans∗ν) = δµ,νδn,0 n
−d(µ).

By [33, Theorems 6.11 and 6.12], ω is the unique KMS1 state of OΛd(n,1) (also see
[33, Theorem 7.1]). ▪

As in [46, 47], let L2(OΛd(n,1k)) be the GNS Hilbert space determined by the
state ω: 〈A,B〉 := ω(A∗B) for all A,B ∈ OΛd(n,1k). For A ∈ OΛd(n,1k), we denote
the left action of A by π(A) : π(A)B = AB for all B ∈ OΛd(n,1). Let Oc

Λd(n,1k)
stand

for the algebra as the finite linear span of the generators sµugs
∗
ν .

Define

S(A) := A∗, F (sµuans∗ν) := nd(µ)−d(ν)sνua−ns∗µ, for A ∈ Oc
Λd(n,1k)

.

Then F = S∗. Also, if

J(sµuans∗ν) := n
d(µ)−d(ν)

2 sνua−ns∗µ, ∆(sµuans∗ν) := nd(ν)−d(µ)sµuans∗ν ,

one has

S = J∆
1
2 = ∆− 1

2 J, F = J∆− 1
2 = ∆

1
2 J.

Let πω(OΛd(n,1k))
′′ be the von Neumann algebra generated by the GNS repre-

sentation of ω. Then πω(OΛd(n,1k))
′′ coincides with the left von Neumann algebra

of Oc
Λd(n,1k)

.

The proof of the following theorem can now be easily adapted from [46, 47]
combined with [32, 33] and is left to the interested reader.

Theorem 4.13. The following statements are equivalent:

(i) OΛd(n,1k) is simple.
(ii) OΛd

is simple.
(iii) {ni : 1 ≤ i ≤ k} is multiplicatively independent.
(iv) Λd(n,1k) is aperiodic.
(v) The ambient k-graph Λd is aperiodic.
(vi) πω(OΛd(n,1k))

′′ is a factor.

When πω(OΛd(n,1k))
′′ is a factor,

• it is an AFD factor of type III 1
n
if k = 1; and

• it is an AFD factor of type III1 if k ≥ 2.

4.4. The case of n = 1k

Since there is only one edge for each colour i, in order to ease our notation, we write
xi (instead of the notation xi

1 used above) for this unique edge. Thus xixj = xjxi
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for all 1 ≤ i 6= j ≤ k. Since this is the unique commutation relation on xi’s, we
denote Λd(1k,m) simply as Λ(1k,m). The ambient k-graph is just denoted as Λ1k

.
We should mention that it seems that the case of n = 1k is also studied in [33].

However, this is exactly the case which is completely ignored there. This could be
due to two reasons: one is that Λd(1k,m) is clearly not locally faithful, which is the
crucial property required in [33]; the other is that this case, at first glance, seems
too special.

Observation 4.14. The observations below are obvious and will be used fre-
quently later without any further mention.

(i) For every p ∈ Nk, Λp
1k

is a singleton: Λp
1k

= {xp := xp1

1 · · ·x
pk

k }. Also, sµ is a
unitary for every µ ∈ Λ1k

.

(ii) Λ(1k,m) is pseudo-free. In fact, some computations show an|µ = anm
d(µ)

and so an|µ = 0 ⇐⇒ n = 0.

Our next goal is to show that Λd(1k,m) has a canonical Cartan subalgebra.
In particular, this canonical Cartan subalgebra is F if {|mi| : 1 ≤ i ≤ k} is
multiplicatively independent; it properly contains F , otherwise.

Lemma 4.15. F = span{sµua`s∗µ : µ ∈ Λ1k
, ` ∈ Z} = span{snµua`s−n

µ : d(µ) =
1k, n ∈ N, ` ∈ Z}.

Proof. It is known and easy to see that F = span{sµuams∗ν | µ, ν ∈ Λ1k
, d(µ) =

d(ν),m ∈ Z}. It follows from observation 4.14 that d(µ) = d(ν) forces µ = ν, say
equal to xn for some n ∈ Nk. WLOG, we assume that n1 − n2 = l ≥ 0. Then

sxnuams−1
xn =sxn3

3 ···xnk
k
sxn1

1
sxn2

2
uams−1

x
n2
2

s−1
x
n1
1

s−1
x
n3
3 ···xnk

k

=sxn3
3 ···xnk

k
sxn1

1
sxn2

2
sx`

2
uam|

x`
2

s−1
x`
2
s−1
x
n3
3 ···xnk

k

s−1
x
n2
2

s−1
x
n1
1

=sxn3
3 ···xnk

k
sxn1

1
sxn1

2
uam|

x`
2

s−1
x
n3
3 ···xnk

k

s−1
x
n1
2

s−1
x
n1
1

.

After repeating this process, all the xi’s will have the same exponent. ▪

Lemma 4.16. F is commutative.

Proof. Compute

(sµuals∗µ)(sνuans∗ν) = sµualsνs
∗
µuans∗ν (as s∗µsν = sνs

∗
µ)

= sµsνual|ν (ua−nsµ)
∗s∗ν (as al · ν = ν)

= sµsνual|ν (ua−n |µ)−1s∗µs
∗
ν

= sµsνual|νuan|a−n·µ
s∗µs

∗
ν

= sµsνual|νuan|µs
∗
µs

∗
ν (as a−n · µ = µ)

= (sνuans∗ν)(sµuals∗µ).

It now follows from lemma 4.15 that F is commutative. ▪
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Lemma 4.17. F ′ = span{sµuans∗ν : µ, ν ∈ Λ1with md(µ) = md(ν), n ∈ Z}.

Proof. Similar to [48], it suffices to show x ∈ RanΦp ∩ F ′ has the given form.
By the Cuntz–Krieger relation, one could assume that x = sµAs

∗
ν with d(µ) −

d(ν) = p and A ∈ C∗(ua). One could further assume that A = f(ua), where
f(z) =

∑n
i=1 λiz

Mi 6= 0 for some 0 6= λi ∈ C and Mi ∈ Z.
Also, it is clear that sµsν = sνsµ and sµs

∗
ν = s∗νsµ for all µ, ν ∈ Λ1k

. Then, for
all N ∈ Z and ω ∈ Λ1k

, one has

sµAs
∗
νsωuaN s∗ω − sωuaN s∗ωsµAs

∗
ν

= sµ

(
n∑

i=1

λiuaMi

)
sωs

∗
νuaN s∗ω − sωuaN sµs

∗
ω

(
n∑

i=1

λiuaMi

)
s∗ν

= sµsω

(
n∑

i=1

λiuaMim
d(ω)

)
u
aNmd(ν) s∗νs

∗
ω − sωsµuaNmd(µ)

(
n∑

i=1

λiuaMim
d(ω)

)
s∗ωs

∗
ν

= sµsω

(
n∑

i=1

λiuaMim
d(ω)

)(
u
aNmd(ν) − u

aNmd(µ)

)
s∗ωs

∗
ν

= sµsωf
(
u
amd(ω)

) (
u
aNmd(ν) − u

aNmd(µ)

)
s∗ωs

∗
ν .

After identifying C∗(a) with C(T) (see proposition 2.7), the above is equal to 0 iff

f
(
zm

d(ω)) (
zNmd(ν)

− zNmd(µ)
)
= 0,

and therefore, if and only ifmd(µ) = md(ν). ▪

Lemma 4.18. F ′ is a MASA of OΛ(1k,m).

Proof. We first show that F ′ is abelian. For this, let A := sµuaM s∗ν and B :=
sαuaN s∗β be two standard generators in F ′. Then

AB = sµuaM s∗νsαuaN s∗β = sµuaM sαs
∗
νuaN s∗β = sµsαuaMnd(α)u

aNmd(ν) s∗νs
∗
β ,

BA = sαuaN s∗βsµuaM s∗ν = sαuaN sµs
∗
βuaM s∗ν = sµsαuaNnd(µ)u

aMmd(β) s∗νs
∗
β .

But md(µ) = md(ν) and md(α) = md(β) as A,B ∈ F ′. Thus AB =BA and so F ′ is
abelian.

Now we show F ′ is a MASA. Let sαuaN s∗β ∈ F ′ and sµAs
∗
ν ∈ RanΦp ∩F ′′ with

A ∈ C∗(ua). Similar to the proof of lemma 4.17, we have for all µ, ν ∈ Λ1k
and

N ∈ Z
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sµAs
∗
νsαuaN s∗β − sαuaN s∗βsµAs

∗
ν

= sµ

(
n∑

i=1

λiuaMi

)
sαs

∗
νuaN s∗β − sαuaN sµs

∗
β

(
n∑

i=1

λiuaMi

)
s∗ν

= sµsα

(
n∑

i=1

λiuaMim
d(α)

)
u
aNmd(ν) s∗νs

∗
β − sαsµuaNmd(µ)

(
n∑

i=1

λiuaMim
d(β)

)
s∗βs

∗
ν

=sαsµ

[(
n∑

i=1

λiuaMim
d(α)

)
u
aNmd(ν) − u

aNmd(µ)

(
n∑

i=1

λiuaMim
d(β)

)]
s∗βs

∗
ν .

Identify C∗(ua) with C(T) and notice md(α) = md(β). Then the above is equal to
0, iff

f
(
zm

d(α)) (
zNmd(ν)

− zNmd(µ)
)
= 0 ⇐⇒ md(µ) = md(ν).

Hence sµAs
∗
ν ∈ F ′ and therefore F ′ = F ′′. ▪

Now suppose that {|mi| : 1 ≤ i ≤ k} is multiplicatively independent. Then
F ′ = F , which is also the diagonal subalgebra of OΛ(1k,m). So there is a condi-
tional expectation Φ from OΛ(1k,m) onto F . Therefore F is a Cartan subalgebra of
OΛ(1k,m).

Corollary 4.19. Suppose that {|mi| : 1 ≤ i ≤ k} is multiplicatively independent.
Then F is a Cartan subalgebra of OΛ(1,m).

Suppose that mi > 0 (1 ≤ i ≤ k). For convenience, we use the convention: If
a|µ = an, then tln a|µ := tlnn. Thus

ln a|µν = lnmd(µν) = lnmd(µ) + lnmd(ν) = ln a|µ + ln a|ν .

Therefore, we obtain action α of T on OΛ(1k,m) as follows:

αt(sµ) = tln a|µsµ, αt(ua) = uafor all µ ∈ Λ1k
and t ∈ T.

Define

Ψ(x) :=

∫
T
αt(x)dt for all x ∈ OΛ(1,m).

Lemma 4.20. Suppose that mi > 0 (1 ≤ i ≤ k). Then F ′ is the fixed point algebra
of α. Furthermore, Ψ a faithful conditional expectation from OΛ(1k,m) onto F ′.

Proof. We only need to show the faithfulness of Ψ here, as other parts can be
proved similarly to the corresponding parts for Φ0. Let Φ0|F ′ be the restriction of
Φ0 onto F ′, and Ψ be the expectation induced from α above. Then one can check
that Φ0 = Φ|F ′ ◦Ψ. The faithfulness of Ψ follows from that of Φ0. ▪

Theorem 4.21. Suppose that mi > 0 (1 ≤ i ≤ k). Then F ′ is a Cartan subalgebra
of OΛ(1k,m).
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Proof. It remains to show that F ′ is regular. For this, let A := sµu
M
a s

∗
ν ∈ F ′ and

B := sαu
N
a s

∗
β ∈ OΛ(1k,m). Then

B∗AB = sβua−N s∗αsµuaM s∗νsαuaN s∗β

= sβua−N sµs
∗
αuaM sαs

∗
νuaN s∗β

= sβsµua−Nmd(µ)u
aMmd(α) s∗αsαs

∗
νuaN s∗β

= sβsµua−Nmd(µ)u
aMmd(α)u

aNmd(ν) s∗νs
∗
β

= sβsµuaMmd(α) s∗νs
∗
β(as m

d(µ) = md(ν))

∈ F ′.

Therefore F ′ is regular. �

Let G be a discrete (countable) group. A subgroup S ⊆ G is called immediately
centralizing if, for every g ∈ G, we either have {xgx−1 : x ∈ S} = {g} or {xgx−1 :
x ∈ S} is infinite. This definition is slightly different from the one used in [22] but
mentioned in [20] and [21]. Thanks to Anna Duwenig and Rachael Norton for some
discussion.

Theorem 4.22. F ′ is a Cartan subalgebra of OΛ(1k,m).

Proof. Let G := 〈a,xi : axi = xia
mi , 1 ≤ i ≤ k〉. Then it it easy to see that

OΛ(1k,m)
∼= C∗(G) via ua 7→ a and sxi

7→ xi. By [34], OΛ(1k,m) is amenable and so
is C∗(G). Thus OΛ(1k,m)

∼= C∗(G) ∼= C∗
r (G).

Let S := {µanν−1 : md(µ) = md(ν), n ∈ Z}. Similar to the proof of theorem
4.21, one can easily show that S is a normal subgroup of G. Also, analogous
to the proof of lemma 4.18, one can show that, for αakβ−1 ∈ G, if the set
{(µanν−1)(αakβ−1)(νa−nµ−1) : µ, ν ∈ Λ(1k,m), n ∈ Z} is not a singleton, then
it has to be infinite. Indeed,

(µanν−1)(αakβ−1)(νa−nµ−1) = (µ′an
′
ν′−1)(αakβ−1)(ν′a−n′

µ′−1)

⇐⇒ nmd(µ′) = n′md(µ).

Hence S is immediately centralizing. By [21, Theorem 3.1], C∗
r (S) is Cartan in

C∗
r (G). Therefore F ′ is Cartan in OΛ(1k,m). �

Remark 4.23. Notice that, since Λ1k
has a unique infinite path, every triple

(µ, an, ν) is cycline. So the cycline subalgebra of OΛ(1k,m) coincides with OΛ(1k,m)

and does not provide much information of the canonical Cartan subalgebra F ′ in
general.

4.5. The spectrum of F
We end this paper by computing the spectrum of F to connect with Furstenberg’s
×p,×q conjecture in the viewpoint of [9, 25]. Let 1 ≤ p1, . . . , pn ∈ N and

ϕ : T→ T, z 7→ zp1···pn .
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Then the inverse limit

lim←−(T, ϕ) :=

{
(xn)n∈N ∈

∏
n∈N

T : xn = ϕ(xn+1)for all n ∈ N

}
is a solenoid, denoted as Sp1···pn

.
Let e := x1 · · ·xk, the unique path in Λ1k

of degree 1k. For n ∈ N, we have

Fn1k
= span{senuams∗en | m ∈ Z},

F = span{senuams∗en | n ∈ N,m ∈ Z} =
⋃
n∈N
Fn1k

.

Note that for any n ∈ N, senuas∗en is a unitary that generates Fn1k
. Then one can

see that there is an isomorphism ψn : Fn1k
→ C(T).

Let M :=
∏k

i=1mi.

Proposition 4.24. Consider the subalgebras Fn1k
along with the inclusions ϕn :

Fn1k
↪→ F(n+1)1k

given by ϕn(senuaps∗en) = sen+1uapMs∗en+1 . Then F = lim−→
n→∞

Fn1k
,

and the spectrum of F is homeomorphic to SM.

Proof. Notice that

senuaps∗en = senses
∗
euaps∗en = sen+1uapMs∗en+1 .

This shows that ϕn is indeed an inclusion of C*-algebras. Since the union
⋃∞

n=0 Fn1k

is dense in F (actually they are equal), we have that F is isomorphic to the direct
limit of (Fn1k

, ϕn) (see [37, Remark 6.1.3]).
Due to [45, Theorem 2], the spectrum of F is the projective limit of the spectra

of the subalgebras Fn1k
, with the maps φn+1 : ̂F(n+1)1k

→ F̂n1k
which induce the

maps ϕn. However, we will work with an isomorphic direct system in order to make
things more concrete. Observe that we have an isomorphism ψn between Fn1k

and
C(T) that sends the element senas

∗
en ∈ Fn to the function f(z) = z in C(T), which

we will just denote by z (note that z is a unitary element that generates C(T) ).
Let ϕ′

n : C(T)→ C(T) be the map defined by sending the function z to zM. Then
by a direct calculation the following diagram commutes:

Fn k F(n+1) k

C( ) C( )

ϕn

ψn ψn+1

ϕ′
n

By [45, Proposition 2], F is then isomorphic to the direct limit of the system
(C(T), ϕ′

n,n+1). We now observe that homeomorphism ρ : T→ T defined by ρ(z) =

zM induces the maps ϕ′
n : C(T)→ C(T), and so the spectrum F is homeomorphic

to the projective limit of

T ρ←− T ρ←− T ρ←− T ρ←− . . .
which is precisely SM. ▪
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Remark 4.25. One can show that OΛ(1k,m)
∼= F n Zk ∼= C(SM)n Zk. In fact, the

action of Zk on F is given by

α : Zk → AutF , αn(A) = sνAs
∗
ν ,

where ν is the unique path in Λ1k
of degree n.
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