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Stark’s question and a refinement of Brumer’s

conjecture extrapolated to the function field case

Cristian D. Popescu

Abstract

We show that the extrapolation to the case of global fields of characteristic p of a question
posed by Stark in 1980, regarding abelian L-functions of order of vanishing 2 at s = 0,
has a negative answer. We provide links between various versions of Stark’s question
and a natural refinement of Brumer’s conjecture, in the general context of global fields
of arbitrary characteristic. As a consequence, we show that the refinement of Brumer’s
conjecture is, in general, false for characteristic p global fields.

Introduction

In [Sta71], Stark developed a remarkable conjecture, interpreting the lowest non-vanishing deriva-
tives at s = 0 of the (imprimitive) Artin L-functions LK/k,S(s, χ) associated to Galois extensions
K/k of number fields in terms of values of a Galois-equivariant regulator, defined on a finite-
dimensional Q-vector space, constructed out of S-units in K, for any large enough set of primes
S in k. In the 1970s and early 1980s, due to the work of Chinburg [Chi83, Chi85], Stark [Sta71]
and Tate [Tat84], it became increasingly clear that, if one manages to replace the Q-vector space in
Stark’s general conjecture by a Galois equivariant Z-submodule (i.e. formulate a Stark conjecture
‘over Z’), the refined statement obtained this way would have far reaching applications to Hilbert’s
12th problem and the theory of multiplicative Galois module structure. In the early 1990s, Rubin
showed that a Stark conjecture ‘over Z’ for abelian L-functions would provide a new source of Euler
systems. In the last paper of [Sta71], Stark formulates a conjecture ‘over Z’, covering the case of
abelian L-functions of order of vanishing 1 at s = 0. As Tate shows in [Tat84, ch. IV, § 6], Brumer’s
conjecture can be viewed as a weak form of a particular case of this statement. During the same
year, Stark studied the case of L-functions of order of vanishing 2 at s = 0. Presumably, due to a
lack of compelling evidence, the refined statement at which he arrived in this case was formulated
as a question rather than a conjecture (see [Sta80, San01]).

In this paper, we answer the extrapolation of Stark’s question to the case of function fields and,
as a consequence, we settle a natural refinement of Brumer’s conjecture in this case. The paper is
organized as follows. In §§ 1 and 2, we set the notations and state various forms of Stark’s question.
In § 3, we show that, in the case of function fields, a weak form of Stark’s question (and consequently
Stark’s question itself) has a negative answer (see Theorem 3.3.2). In § 4, we state a refinement
of Brumer’s conjecture and provide links between this statement and various versions of Stark’s
question, for abelian extensions of global fields of arbitrary characteristic (see Propositions 4.2.1,
4.2.3 and 4.2.4). As a consequence, we show that the refinement of Brumer’s conjecture is, in general,
false in characteristic p > 0 (see Corollary 4.2.2).
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It is worth mentioning that, Rubin, the present author, and Burns and Flach have recently
formulated versions ‘over Z’ of Stark’s general conjecture in the case of abelian L-functions of
arbitrary order of vanishing at s = 0 (see Conjecture B in [Rub96], Conjecture C in [Pop02],
and The Equivariant Tamagawa Number Conjecture in [Bur03], as well as the papers coauthored
by Burns and Flach, cited in [Bur03].) The Equivariant Tamagawa Number Conjecture was also
recently extended by Burns to non-abelian Artin L-functions (see [Bur97]).

1. Notation

Let K be a global field of arbitrary characteristic. Let µK be the group of roots of unity in K and
wK := |µK |, the cardinality of µK . For a prime w of K, let Kw be the completion of K at w, and let
| · |w : Kw −→ R+ ∪ {0} be the associated w-absolute value, normalized so that

|x|w =


|x| (the Euclidian absolute value), if Kw = R,

xx̄, if Kw = C,

(Nw)− ordw(x), if Kw is non-archimedian.

Here Nw and ordw(·) denote, respectively, the cardinality of the residue field and the usual (discrete)
valuation associated to the finite prime w.

Let us assume now that K/k is a finite Galois extension of global fields, with Galois group
G := Gal(K/k). Let S be a non-empty finite set of primes in k, containing at least all the infinite
primes and all the primes which ramify in K/k. Let SK be the set of primes in K sitting above
primes in S. We denote by OK,S the ring of SK-integers in K (i.e. the set of elements in K with
non-negative valuations at all primes outside SK). UK,S and AK,S denote the group of units and the
ideal-class group associated to the Dedekind domain OK,S respectively. Since the set SK is closed
under the natural action of G on primes in K, OK,S, UK,S, and AK,S are endowed with natural
structures of left-modules over the integral group ring Z[G].

Assume now in addition that K/k is abelian. For every prime v of k, Gv denotes the de-
composition group of w in K/k, for any prime w in K, sitting above v. If v is unramified in
K/k, then Gv is cyclic, generated by the Frobenius automorphism associated to v in G, denoted
by σv. Let Ĝ denote the group of complex-valued irreducible characters of G. For every χ ∈ Ĝ,
let eχ = 1/|G|∑σ∈G χ(σ) · σ−1 be the corresponding idempotent in the complex group ring C[G].
To every χ ∈ Ĝ, and every set S as above, one can associate the Artin L-function of complex
variable s, with Euler factors at primes in S removed, denoted by LK/k,S(s, χ). For a given χ
and S, LK/k,S(s, χ) is the (unique) meromorphic continuation to C of the infinite Euler product∏

v �∈S(1 − Nv−s · χ(σv))−1, which is uniformly and absolutely convergent on compact subsets of
the half-plane Re(s) > 1. It is well known that if χ is different from the trivial character 1G of G,
then LK/k,S(s, χ) is holomorphic on the entire complex plane, whereas LK/k,S(s,1G) is holomorphic
everywhere except for s = 1, where it has a pole of order 1. For fixed K/k, S and χ as above,
let ords=0 LK/k,S(s, χ) denote the order of vanishing of LK/k,S(s, χ) at s = 0. As Tate shows in
[Tat84, I], we have

ords=0 LK/k,S(s, χ) =

{
card{v ∈ S | χ(Gv) = {1}}, if χ �= 1G

card S − 1, if χ = 1G.
(1)

As in [Tat84], we combine the abelian Artin L-functions into what we call the Stickelberger function,
defined by

ΘK/k,S(s) =
∑
χ∈Ĝ

LK/k,S(s, χ) · eχ−1 .
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ΘK/k,S(s) is a meromorphic function in s, with values in the group ring C[G], holomorphic every-
where except for s = 1, where it has a pole of order 1.

2. Stark’s question

Let K/k be an abelian extension of global fields and S a set of primes in k as in § 1. Let us assume
that the set of data (K/k, S) satisfies the following set of hypotheses.

Hypothesis H.

i) S contains all the infinite primes.

ii) S contains all the primes which ramify in K/k.

iii) S contains at least two primes which split completely in K/k.

iv) card S � 3.

Let us note that, according to (1), Hypothesis H implies that, for all χ ∈ Ĝ, ords=0 LK/k,S(s, χ) �
2, and therefore

Θ(2)
K/k,S(0) := lim

s→0
s−2 · ΘK/k,S(s)

makes sense if viewed inside C[G].
Let us choose a pair V = (v1, v2) of distinct primes in S, which split completely in K/k, and

let us fix W = (w1, w2), where wi is a prime in K sitting above vi, for all i = 1, 2. For every
Z[G]-module M , let

∧2
G M denote its second exterior power over Z[G]. If R is a commutative ring,

let RM := R ⊗Z M , viewed as an R[G]-module in the usual manner. As in [Pop02], one can define

a C[G]-equivariant regulator map C
∧2

G UK,S
RW−→ C[G], by letting

RW (u1 ∧ u2) = det
1�i,j�2

(
−

∑
σ∈G

log |uj |wσ
i
· σ

)
,

for u1, u2 ∈ UK,S, and then extending to C
∧2

G UK,S by C-linearity.
Following Tangedal [Tan97], Grant [Gra99], and Sands [San01], we now state Stark’s question

for abelian L-functions of order of vanishing 2 at s = 0. We state Stark’s Question in a Galois-
equivariant form, in the spirit of the more general Conjectures B (see [Rub96]) and C (see [Pop02]),
which deal with abelian L-functions of arbitrary order of vanishing at s = 0. We would like to empha-
size that Stark only posed this question in the number field (characteristic 0) case. The extrapolation
to characteristic p is natural and in line with the general philosophy of Stark’s conjectures displayed
in [Bur97, Bur03, Pop02, Rub96, Tat84] (see also Remark 2 below).

Question A. Assume that the set of data (K/k, S) satisfies Hypothesis H. For V and W chosen as
above, are there S-units u1 and u2 in UK,S, such that the following conditions are simultaneously
satisfied?

i) Θ(2)
K/k,S(0) = (1/wK)2 · RW (u1 ∧ u2).

ii) The fields K(u1/wK

1 ) and K(u1/wK

2 ) are equal and are Galois, abelian extensions of k.

Remark 1. The reader will notice that our formulation of Stark’s question imposes fewer conditions
on the S-units u1 and u2 than those appearing in [Gra99, San01, Tan97]. Namely, we are eliminating
the following condition.

iii) For each σ ∈ G, the conjugate uσ
1 generates the same fractional ideal in K as u1, and uσ

2

generates the same fractional ideal as u2.
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We chose to eliminate this condition for three reasons. First, it was because this particular
requirement on u1 and u2 has been subject to change over the years. Secondly it was because, as
Sands noted in [San01], at least as it stands, it is too strong to be expected to be true in general. The
third reasons is because in this paper we are only concerned with the most important condition i
in the statement of Stark’s question.

Remark 2. In [Sta80], Stark only formulates the above question in the particular case where k is a
real quadratic number field and v1 and v2 are the two infinite primes in k. Later, Stark indicated
that the original statement should be extended to the general situation described in this paper, at
least in the characteristic 0 case (see [Gra99].)

Remark 3. The main theoretical evidence in support of an affirmative answer to Question A comes
from the work of Tangedal [Tan97], who shows that units u1 and u2 satisfying conditions i–iii do
indeed exist if k is a real quadratic field, v1 and v2 are the infinite primes of k, K/k is a quadratic
extension, and card S > 3. A theoretical link between Question A and the more general Conjecture C
was provided by Sands in [San01, Theorem 5.2]. Numerical evidence in support of an affirmative
answer to Question A comes mainly from the work of Grant [Gra99] and Sands [San01].

One of the main goals of this paper is to show that, in the case of global function fields, the
answer to a much weaker form of Question A, called Question B below, is in general negative. With
notation as above, let ˜∧

2
GUK,S be the image of

∧2
G UK,S via the canonical (not necessarily injective)

Z[G]-morphism
∧2

G UK,S −→ C
∧2

G UK,S.

Question B. Assume that the set of data (K/k, S) satisfies Hypothesis H. For V and W chosen

as above, is there an element εS in (1/wK)2 · ˜∧
2
GUK,S, such that Θ(2)

K/k,S(0) = RW (εS)?

Obviously, for any u1 and u2 in UK,S, we have u1∧u2 ∈ ˜∧
2
GUK,S. However, in general, not every

element in ˜∧
2
GUK,S is of type u1 ∧u2, with u1 and u2 in UK,S. Therefore, if Question B is answered

in the negative, then so is Question A.
For purposes which will become clear in § 4, we now state local versions of Questions A and B.

Let � be a prime number and let Z(�) ⊆ Q be the localization of Z at the prime ideal �Z.

Question A(�). Let � be a prime number. Assume that the set of data (K/k, S) satisfies Hypo-
thesis H. For V and W chosen as above, are there S-units u1,� and u2,� in UK,S, and n� ∈ Z(�), such
that the following conditions are simultaneously satisfied?

i) Θ(2)
K/k,S

(0) = (n�/w
2
K) · RW (u1,� ∧ u2,�).

ii) The fields K(u1/wK

1,� ) and K(u1/wK

2,� ) are equal and are Galois, abelian extensions of k.

Question B(�). Let � be a prime number. Assume that the set of data (K/k, S) satisfies Hypo-

thesis H. For V and W chosen as above, is there an element εS,� in (1/wK)2 · Z(�)
˜∧
2
GUK,S, such

that Θ(2)
K/k,S(0) = RW (εS,�)?

Obviously, if Question A (respectively Question B) is answered in the affirmative, then so is
Question A(�) (respectively Question B(�)), for all prime numbers �.

3. Stark’s question for function fields

In this section, we construct a class of examples of sets of data (K/k, S), with char k > 0, satisfying
Hypothesis H, and show that the answer to Question B (and therefore Question A) is negative in
all these cases.
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3.1 The extension K/k

Let p be a prime number, q := pν, for some strictly positive integer ν and let Fq be the finite field
of cardinality q. Let k := Fq(T ) be the rational function field in one variable T of the exact field of
constants Fq. Let ks be a fixed separable closure of k. For any prime v in k, we denote by Fq(v) the
residue field corresponding to the discrete valuation associated to v. The index [Fq(v) : Fq] is called
the Fq-residual degree of v. Let v∞ be the prime of k corresponding to the discrete valuation on k of
uniformiser T−1. Let P0 ∈ Fq[T ] be an irreducible polynomial of degree p and let v0 be the prime in
k corresponding to the discrete valuation on k of uniformiser P0. Obviously, the Fq-residual degrees
of v∞ and v0 are, respectively, 1 and p.

Definition 3.1.1. Let K1 be the unique degree p constant field extension of k inside ks (i.e.
K1 := Fqp(T ), in this case). Let G1 := Gal(K1/k).

Lemma 3.1.2. The extension K1/k defined above satisfies the following.

i) G1
∼−→ Z/pZ.

ii) K1/k is unramified everywhere.

iii) v0 splits completely in K1/k.

The proof is left to the reader.

Definition 3.1.3. Let K̃0 be the maximal abelian extension of k inside ks of the conductor dividing
v2
0 , totally split at v∞. Let G̃0 := Gal(K̃0/k).

Lemma 3.1.4. The field extension K̃0/k defined above satisfies the following.

i) The p-rank of the p-Sylow subgroup of G̃0 is at least 2.

ii) v0 is totally ramified in K̃0/k.

Before we begin the proof of Lemma 3.1.4, we need some notation and to remind the reader of
certain general facts on the arithmetic of function fields. For the moment, let us assume that k is a
general function field of exact field of constants Fq. Let Pic0(k) denote the Picard group of k (i.e.
the quotient of the group of degree zero divisors on k by the subgroup of principal divisors). Let
Jk be the group of idèles associated with k. For any prime v of k, let Uv denote the group of units
in the completion kv of k with respect to the (normalized) discrete valuation ordv associated to v.
For all integers i � 1, let U

(i)
v be the ith term of the canonical filtration of Uv with respect to ordv,

explicitly given by U
(i)
v := {x ∈ Uv | ordv(x− 1) � i}. We have an exact sequence of abelian groups

1 → J0
k → Jk

degk−−−→ Z → 0, where degk((xv)v) :=
∑

v[Fq(v) : Fq] · ordv(xv), for all (xv)v ∈ Jk, and
J0

k is defined to be the kernel of the map degk. The group J0
k is linked to the Picard group by the

exact sequence

1 → k× ·
∏
v

Uv → J0
k

d̂ivk−−→ Pic0(k) → 1,

where d̂ivk((xv)v) is the class of divk((xv)v) :=
∑

v ordv(xv) · v in Pic0(k), for all (xv)v ∈ J0
k .

Proof of Lemma 3.1.4. i) Due to the fact that, in the particular case under discussion, Pic0(k) = {0}
(as k is a genus 0 function field) and [Fq(v∞) : Fq] = 1, the above exact sequences lead to the equality

Jk = k× ·
[
k×

v∞ ×
∏

v �=v∞

Uv

]
. (2)
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Class field theory, combined with (2) and the definition of K̃0, shows that the global Artin map
induces an exact sequence of groups

1 → F×
q · U (2)

v0
→ Uv0G̃0 → 1. (3)

Consequently, the p-Sylow subgroup of G̃0 is isomorphic to U
(1)
v0 /U

(2)
v0 . Since [Fq(v0) : Fq] = qp,

this group is isomorphic to the additive group Fqp and, therefore, is an Fp-vector space of dimension
at least 2. This concludes the proof of part i.

ii) Since via the global Artin map Uv0 injects into the inertia group of a place of K̃0 over v0, the
exact sequence (3) shows that v0 is totally ramified in K̃0.

Now, we finalize the construction of the field extension K/k. Lemma 3.1.4, part i implies that
there exists at least a quotient G0 of G̃0 such that G0

∼−→ (Z/pZ)2. Let us fix a group G0 with
this property. Galois theory associates G0 to a unique field K0, such that k ⊆ K0 ⊆ K̃0 and
Gal(K0/k) ∼−→ G0.

Definition 3.1.5. Let K be the compositum K1 ·K0 inside ks, where K1 and K0 are the subfields
of ks constructed above. Let G := Gal(K/k).

The following lemma is an immediate consequence of the definitions.

Lemma 3.1.6. The field extension K/k defined above satisfies the following.

i) It is unramified away from v0.

ii) One has a group isomorphism G
∼−→ (Z/pZ)3.

iii) The decomposition group Gv0 of v0 in K/k is isomorphic to (Z/pZ)2.
iv) If F is an abelian p-extension of k containing K and unramified over K, with the property

that every prime of K dividing v0 splits completely in F , then F = K.

Proof. We leave the (fairly elementary) proofs of statements i–iii to the reader. We sketch the proof
of part iv. Let J be the inertia group in Gal(F/k) of a prime over v0. Since F/K is unramified and
consequently F/k is unramified outside v0, J has order p2 and F J/k is an unramified abelian field
extension. Since k is a rational function field, F J must be a constant field extension. However, since
the primes over v0 split completely in F/K, the residue fields of all the primes over v0 in F J must
be isomorphic to Fqp . This shows that F J = K1. Consequently, F has degree card(J) · [K1 : k] = p3

over k, implying that F = K.

3.2 The set S

For K/k defined in the previous section, we construct a special finite set of primes S in k, such that
the set of data (K/k, S) satisfies Hypothesis H. With the same notations as in § 3.1, let S0 := {v0}.
The construction of S is based in an essential way on the following theorem, whose proof will be
given in § 3.4.

Theorem 3.2.1. The p-Sylow subgroup A
(p)
K,S0

of the S0-ideal-class group AK,S0 can be generated
by two elements as a Zp[G]-module.

Let �1 and �2 be ideal classes in A
(p)
K,S0

which generate A
(p)
K,S0

as a Zp[G]-module. Chebotarev’s
density theorem implies the existence of two primes w1 and w2 in K, satisfying the following
properties.

i) w1 ∈ �1 and w2 ∈ �2.
ii) w1 and w2 do not lie above v0 (i.e. w1, w2 �∈ S0,K .)
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iii) If v1 and v2 are the primes in k below w1 and w2, respectively, then v1 �= v2 and v1 and v2

split completely in K/k.

Let us fix two primes w1 and w2 in K which satisfy properties i–iii above, and let v1 and v2 be the
primes in k sitting below w1 and w2, respectively.

Definition 3.2.2. Let S := {v0, v1, v2}, with v1 and v2 defined above and v0 defined in as § 3.1.

Remark 4. The definition of S right away implies that the set of data (K/k, S) satisfies Hypothesis H.

Remark 5. The p-Sylow subgroup A
(p)
K,S of the S-ideal-class group AK,S is trivial. Indeed, A

(p)
K,S is

the quotient of A
(p)
K,S0

by its Zp[G]-submodule generated by ŵ1 and ŵ2. However, by definition, ŵ1

and ŵ2 generate the full A
(p)
K,S0

over Zp[G].

3.3 Questions A and B for the set of data (K/k,S)
The main goal of this section is to show that, for the set of data (K/k, S) constructed in the previous
two sections, Question B and, consequently, Question A have negative answers.

In what follows, if ∆ is a finite group and M is a Z[∆]-module, then Ĥi(∆,M) and Hi(∆,M) de-
note the ith Tate-cohomology group and, respectively, the ith homology group of ∆ with coefficients
in M . For the moment, let us assume that K/k is an arbitrary, Galois extension of global fields (of
arbitrary characteristic) of Galois group G (not necessarily abelian). Let Σ be a finite non-empty
set of primes in k, containing at least all the infinite primes as well as those which ramify in K/k.
YΣ denotes the free abelian group generated by the set ΣK of all primes in K sitting above primes
in Σ. Since ΣK is stable under the natural Galois action on primes in K, YΣ is endowed with a
natural Z[G]-module structure. Let XΣ be the Z[G]-submodule of YΣ defined by the exact sequence

0 → XΣ → YΣ
JΣ−→ Z → 0, (4)

where JΣ is the unique Z-linear map sending every prime w ∈ ΣK to 1 ∈ Z. Since for every v ∈ Σ
and every w ∈ ΣK sitting above v, the G-stabilizer of w is the decomposition group Gw/v of w in
K/k, we clearly have Z[G]-isomorphisms

YΣ
∼−→

⊕
v∈Σ

Z[G/Gw/v ]
∼−→

⊕
v∈Σ

(Z[G] ⊗Z[Gw/v] Z). (5)

For the second and third module involved in the isomorphism above, we choose a prime w above
v, for each v in Σ. However, due to the fact that, for a given v, the groups Gw/v are conjugate to
one another, the Z[G]-isomorphism class of the second and third module does not depend on this
choice. For ‘large’ sets Σ, the link between the Z[G]-module structure of XΣ and that of the group
of Σ-units UK,Σ is given by a result of Tate (see [Tat84, ch. II, § 5]), whose �-adic version we state
below.

Theorem 3.3.1 (Tate). Assume that K/k and Σ are as above, G := Gal(K/k), and � is a prime

number. Assume that A
(�)
K,Σ = {1}. Then, for all integers i, one has group isomorphisms

Ĥ
i
(G,UK,Σ ⊗ Z�)

∼−→ Ĥ
i−2

(G,XΣ ⊗ Z�).

In the above statement, Z� denotes the ring of �-adic integers and A
(�)
K,Σ denotes the �-Sylow

subgroup of the Σ-ideal-class group AK,Σ of K. Passing from Tate’s original theorem ‘over Z’ to
the version ‘over Z�’ stated above can be done by tensoring all the exact sequences appearing in
the proof of Tate’s theorem with Z� over Z. We then use the fact that, since Z� is a flat Z-module,
∗ ⊗Z Z� is an exact functor from the category of Z[G]-modules to the category of Z�[G]-modules,
which commutes with the Tate-cohomology functors Ĥ

i
(G, ∗).
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Theorem 3.3.2. For the set of data (K/k, S) constructed in §§ 3.1 and 3.2, Questions B(p) and,
consequently, B and A, have negative answers.

Proof. Let V := (v1, v2), where v1 and v2 are the two totally split primes in S defined in § 3.2. Let
W = (w1, w2), for fixed primes w1, w2 in K, sitting above v1 and v2, respectively. Let us assume that
Question B(p) has a positive answer. Let U = {u(k)

i | k = 1, . . . , n; i = 1, 2} be a subset of UK,S and

m ∈ Z(p), such that εS,p := (m/w2
K)

∑n
k=1 u

(k)
1 ∧u

(k)
2 viewed as an element in C

∧2
G UK,S satisfies the

regulator condition Θ(2)
K/k,S(0) = RW (εS,p) in C[G]. We project this equality on the direct summand

C[G]e1G
= Ce1G

of C[G], where e1G
:= 1/|G|∑σ∈G σ := 1/|G| · NG, and NG :=

∑
σ∈G σ is the

usual norm element in C[G]. Since v1 and v2 are completely split in K/k, this projection leads to
the following equality.

L
(2)
K/k,S(0,1G) · e1G

=
(

(m/w2
K)

n∑
k=1

det
1�i,j�2

(−log|NGu
(k)
i |vj )

)
· e1G

, (6)

where NGu
(k)
i is the image of u

(k)
i via the usual norm map NG : UK,S −→ Uk,S, for all i and k.

However, equality (1) combined with the fact that card S = 3, shows that ords=0 LK/k,S(s,1G) = 2
in this case. Therefore, the left-hand side of equality (6) is the leading Taylor coefficient at s = 0 of
the ζ-function with S-Euler factors removed ζk,S(s), associated with k. The classical S-class-number
formula gives

L
(2)
K/k,S(0,1G) = − 1

wk
hk,S · Rk,S,

where hk,S is the cardinality of Ak,S and Rk,S is the classical S-regulator of the free, rank two
Z-module Uk,S/µk. For a subset M of Uk,S, let Rk,S(M) denote the Z-submodule of C generated by

det
[
log |ε1|v1 log |ε1|v2

log |ε2|v1 log |ε2|v2

]
, for all ε1, ε2 ∈ M.

In particular, Rk,S is the unique positive generator of Rk,S(Uk,S). The Z-module Rk,S(M) is always
contained in Z ·Rk,S, and it is non-zero if and only if the subgroup ZM of Uk,S generated by M has
finite index in Uk,S. Assuming that ZM has finite index in Uk,S, one has the following equality:

[Z · Rk,S : Rk,S(M)] =
[Uk,S : ZM ]

[µk : µk ∩ ZM ]
.

For U defined above, let NG U := {NGu |u ∈ U}. Equality (6) divided by Rk,S and combined with
the S-class-number formula, implies firstly that Rk,S(NG U) �= {0}, and secondly that

Z · w2
K

wk
hk,S ⊆ Z · m · [Uk,S : Z(NG U)]

[µk : µk ∩ Z(NG U)]
⊆ Z · m · |Ĥ0

(G,UK,S)|
[µk : µk ∩ Z(NG U)]

.

The second inclusion above is a direct consequence of the equality Ĥ
0
(G,UK,S) = Uk,S/NGUK,S

and the inclusion Z(NG U) ⊆ NGUK,S. Since char K = p, we have µK ⊗ Zp = {1}. Therefore, if we
tensor the double inclusion above by the ring of p-adic integers Zp, and keep in mind that m ∈ Z(p),
we obtain

h
(p)
k,S � |Ĥ0

(G,UK,S ⊗ Zp)|, (7)

where h
(p)
k,S := |A(p)

k,S|. The main idea of the proof of Theorem 3.3.2 is to show that, under our working
hypotheses, inequality (7) does not hold true.

We first find an upper bound for h
(p)
k,S . Assume for the moment that k is any characteristic p

global field, of the exact field of constants Fq. Also, assume that S0 = {v0} and S are finite sets of
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primes in k, such that S0 ⊆ S. Then, we have an exact sequence of groups

0 → Pic0(k) → Ak,S0

degv0−−−→ Z/[Fq(v0) : Fq] · Z → 0,

where degv0
is the Z-linear map which takes the S0-ideal-class v̂ of a prime v into [Fq(v) : Fq]

mod [Fq(v0) : Fq] (see [Pop99], for example). The inclusion S0 ⊆ S also induces a natural surjective
group-morphism Ak,S0 � Ak,S. However, in our case, Pic0(k) = {0}. Also, [Fq(v0) : Fq] = p (see
§ 3.1). Therefore,

A
(p)
k,S0

∼−→ Z/pZ and h
(p)
k,S � p. (8)

Next, we find a lower bound for |Ĥ0
(G,UK,S ⊗ Zp)|. Remark 5 shows that, under our work-

ing hypotheses, Theorem 3.3.1 is applicable to Σ := S and � := p. We therefore obtain group
isomorphisms

Ĥ
i
(G,UK,S ⊗ Zp)

∼−→ Ĥ
i−2

(G,XS ⊗ Zp) for all integers i.

In particular, for i = 0, we have

|Ĥ0
(G,UK,S ⊗ Zp)| = |Ĥ−2

(G,XS ⊗ Zp)| = |H1(G,XS ⊗ Zp)|, (9)

where the second equality above is a consequence of the definition of Tate cohomology groups at
negative levels. Let us now recall that S = {v0, v1, v2}, with v1 and v2 completely split in K/k and,
therefore, Gv1 = Gv2 = {1}. This shows that if we tensor the exact sequence (4) with Zp, for Σ := S,
and use isomorphism (5), we obtain the following exact sequence of Zp[G]-modules:

0 → XS ⊗ Zp → (Zp[G] ⊗Zp[Gv0 ] Zp) ⊕ Zp[G]2 → Zp → 0.

Next, we write the long exact sequence of homology groups corresponding to the above short exact
sequence of G-modules. If we use Shapiro’s lemma for computing the homology groups of the middle
term, we obtain an exact sequence

· · · → H2(Gv0 , Zp) → H2(G, Zp) → H1(G,XS ⊗ Zp) → · · · .

Theorem 6.4(iii) of [Bro82] implies that, for any abelian group H, we have a canonical group
isomorphism

∧2
Zp

(H ⊗ Zp)
∼−→ H2(H, Zp). This result, combined with Lemma 3.1.6, parts ii and

iii, yields isomorphisms Z/pZ ∼−→ H2(Gv0 , Zp) and (Z/pZ)3 ∼−→ H2(G, Zp), respectively. Therefore,
the long exact sequence above becomes

· · · → Z/pZ → (Z/pZ)3 → H1(G,XS ⊗ Zp) → · · · .

This sequence, combined with equality (9), shows that

|Ĥ0
(G,UK,S ⊗ Zp)| = |H1(G,XS ⊗ Zp)| � p2. (10)

Inequalities (10), (8), and (7) lead to a contradiction (p � p2).

3.4 Proof of Theorem 3.2.1
In this section, we provide a proof of Theorem 3.2.1. Let us assume for the moment that K/k is
an arbitrary finite abelian extension of global fields (of arbitrary characteristic) of Galois group
G(K/k). Let Σ be a finite, non-empty set of primes in k, containing at least all the infinite primes
and those which ramify in K/k. Let � be a prime number. We denote by K

(�)
Σ the maximal abelian

extension of K of �-power degree, unramified everywhere, and totally split at all the primes in ΣK .
The maximality of the field K

(�)
Σ forces it to be a Galois extension of the base field k. This gives

G(K(�)
Σ /K) a natural Z[G(K/k)]-module structure, with σ ∈ G(K/k) acting on x ∈ G(K(�)

Σ /K) by
‘lift and conjugation’ (i.e. σ ∗x := σxσ−1, where σ is an arbitrary lift of σ to G(K(�)

Σ /k)). Class-field
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theory shows that the usual Artin map (11) gives a group isomorphism

A
(�)
K,Σ

∼−→ G(K(�)
Σ /K), (11)

which is also a Z[G(K/k)]-isomorphism. In the following, if H is a group and x, y ∈ H, then [x, y] :=
xyx−1y−1 denotes the usual commutator of x and y. Also, IH denotes the usual augmentation ideal
of Z[H].

Now, we return to the notation and definitions introduced in §§ 3.1 and 3.2. Since G is a p-group,
Zp[G] is a local ring whose maximal ideal is M := IGZp[G] + pZp[G]. Consequently, Nakayama’s
lemma implies that A

(p)
K,S0

can be generated by two elements as a Zp[G]-module if and only if the
associated module of G-coinvariants

(A(p)
K,S0

)G := A
(p)
K,S0

/IG · A(p)
K,S0

can be generated by two elements as an abelian group. By class field theory, the Artin reciprocity
map (11) identifies (A(p)

K,S0
)G with the Galois group Gal(L/K) of a finite, unramified, abelian

p-extension L of K, with the following properties. Each prime of K over v0 splits completely in L,
L is a Galois extension of k and Gal(L/K) is contained in the center of Gal(L/k). Let I be the
inertia group in Gal(L/k) of a fixed prime w over v0 in L. Since L/K0 is unramified and K0/k is
totally ramified over v0, we conclude that I maps isomorphically to G0 = Gal(K0/k) ∼−→ (Z/pZ)2,
under the natural restriction map Gal(L/k) −→ Gal(K0/k). Let σ1, σ2 be generators for I as an
abelian group. Since G0 is a quotient of G = Gal(K/k) ∼−→ (Z/pZ)3, we can find an element
σ ∈ Gal(L/k), such that the images of σ1, σ2 and σ in G generate G. Since G is abelian, the com-
mutators c1 := [σ, σ1] and c2 := [σ, σ2] lie in Gal(L/K). Since σ1 and σ2 lie in the abelian group I,
we have [σ1, σ2] = e. Let H be the subgroup of Gal(L/K) generated by c1 and c2. We claim that
the quotient Gal(L/k)/H is abelian. To show this, it will suffice to find a set X of generators of
Gal(L/k), such that [x, x′] ∈ H, for all x, x′ ∈ X. Let

X := {σ, σ1, σ2} ∪ Gal(L/K).

Since the images of σ, σ1 and σ2 in G = Gal(L/k) ∼−→ Gal(L/k)/Gal(L/K) generate G, X generates
Gal(L/k). Also, since Gal(L/K) is contained in the center of Gal(L/k), we have [x, x′] ∈ H, for all
x, x′ ∈ X. Therefore, Gal(L/k)/H is indeed abelian. Consequently, the field F := LH (maximal,
fixed by H) is an abelian p-extension of k, containing K, which is unramified over K, and which
has the property that every prime of K over v0 splits completely in F . Lemma 3.1.2, part iv implies
that F = K. This proves that Gal(L/K) = H and, therefore, Gal(L/K) is generated as an abelian
group by two elements c1 and c2. This implies that (A(p)

K,S0
)G is generated as an abelian group by

two elements, which implies Theorem 3.2.1, as we have shown above.

4. A refinement of Brumer’s conjecture

This section has two goals. First, we will provide links between Questions A and B and a natural
refinement of Brumer’s conjecture for arbitrary global fields. Secondly, as a consequence of the
results proved in § 3, we will show that the refinement of Brumer’s conjecture is, in general, false
in characteristic p > 0.

4.1 The statement

Let K/k be an abelian extension of global fields of Galois group G. Let S0 be a finite, non-empty set
of primes in k, containing at least all the infinite primes, as well as all the primes which ramify in K/k.
Let A(K/k) := AnnZ[G](µK) be the annihilator of the Z[G]-module µK of roots of unity in K.
The following remarkable integrality result was proved independently by Deligne and Ribet [DR80]
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and Barsky [Bar78] and Cassou-Nogues [Cas79] in the number field case, and Deligne (see
[Tat84, V]) and Hayes [Hay85] in the function field case.

Theorem 4.1.1. If α ∈ A(K/k), then α · ΘK/k,S0
(0) ∈ Z[G].

We are now ready to state Brumer’s conjecture, which is an attempt to generalize the classical
theorem of Stickelberger.

Conjecture 4.1.2 (Brumer). One has an inclusion of Z[G]-ideals

A(K/k) · ΘK/k,S0
(0) ⊆ AnnZ[G](AK,S0).

Equivalently, for all primes �, one has an inclusion of Z(�)[G]-ideals

Z(�)A(K/k) · ΘK/k,S0
(0) ⊆ AnnZ(�)[G](A

(�)
K,S0

).

In the case of function fields, Brumer’s conjecture was proved independently and with different
methods by Deligne [Tat84, V] and Hayes [Hay85]. In the case of number fields, this conjecture is
far from being proved. The statement has been known to hold true for a long time if k = Q, as
a result of the classical theorem of Stickelberger (see [Was96]). Wiles developed a series of results
and techniques in [Wil90], which lead to a proof of the conjecture above in the case where K is a
CM-field, k is totally real, � � |G| and S0 satisfies extra hypotheses. Finally, by using the techniques
developed in [Wil90], Greither proves the conjecture above, for a very special class of CM extensions
K of totally real fields k, under the assumption that � �= 2 (see [Gre00]).

If R is a Noetherian commutative ring and M is a finitely generated R-module, we denote by
FittR(M) the R-Fitting ideal of M . For the definition and properties of Fitting ideals used in this
paper, we refer the reader to [Pop99]. We will only recall here the fact that we always have an
inclusion FittR(M) ⊆ AnnR(M), and the equality is very rare. (Equality happens if, for instance,
M is a cyclic R-module.) We are now ready to state the refinement (or strong form) of Brumer’s
conjecture.

Statement SBr. The following inclusion of Z[G]-ideals holds true:

A(K/k) · ΘK/k,S0
(0) ⊆ FittZ[G](AK,S0).

For any prime �, we can formulate the following �-adic version of Statement SBr.

Statement SBr(�). The following inclusion of Z(�)[G]-ideals holds true:

Z(�)A(K/k) · ΘK/k,S0
(0) ⊆ FittZ(�)[G](A

(�)
K,S0

).

Since the Fitting ideal behaves nicely with respect to extensions of scalars and direct sums (see
[Pop99]), and since AK,S0 =

⊕
� A

(�)
K,S0

, Statement SBr is true if and only if Statement SBr(�) is
true, for all prime numbers �.

Remark 6. We would like to emphasize that Brumer himself never conjectured that Statement SBr
is true. However, the motivation for introducing the refinement Statement SBr of Brumer’s conjec-
ture is threefold. First, evidence in support of Statement SBr has been found by various researchers
over the years. In the case of function fields, we proved that a statement even stronger than State-
ment SBr holds true for constant field extensions (see Theorem 4.2.9 in [Pop99]). We also showed
that Statement SBr(�) holds true for general function field extensions K/k, provided that � � |G| (see
Theorem 3.1.1 in [Pop99]). In the case of CM-extensions K of totally real number fields k, Greither
[Gre00] showed that the ‘minus part’ of Statement SBr(�) holds true, provided that � �= 2 and K/k
satisfies extra properties of cohomological type. Also, our close analysis of [Wil90] revealed that
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Wiles’s techniques lead to a proof of Statement SBr(�), for CM-extensions K of totally real fields k
under his extra hypotheses on S0 for primes � � |G|.

Secondly, Statement SBr has very interesting links to the versions ‘over Z’ of Stark’s conjecture
for abelian L-functions of arbitrary order of vanishing at s = 0, formulated by Rubin in [Rub96]
and the present author in [Pop02]. We show in [Pop99, § 2] that, in the case of function fields
for example, a slightly stronger version of Statement SBr implies Rubin’s Conjecture B. A similar
argument can be used to show that the same strong version of Statement SBr also implies our
Conjecture C. Also, as the interested reader will see in § 4.2 below, Statement SBr has connections
to Questions A and B, formulated in § 2 above.

Thirdly, the methods employed so far by various researchers in their attempts to prove Brumer’s
conjecture seem to lead more naturally to Fitting ideals than annihilators of ideal-class groups. More
precisely, the main techniques employed in [Wil90] and [Gre00] rely in an essential way on the Main
Conjecture in Iwasawa theory. The Main Conjecture is a statement linking values of L-functions to
the Fitting ideal of a certain Λ-module, obtained as a projective limit of ideal-class groups, where
Λ is the Iwasawa algebra associated with the cyclotomic Zp-extension. Wiles [Wil90] and Greither
[Gre00] ‘project’ the Main Conjecture to finite levels of the Zp-extension and obtain statements
about Fitting ideals of ideal-class groups, in the spirit of Statement SBr. Finally, in the case of
function fields, in [Pop99] we use the Weil–Grothendieck interpretations of global L-functions in
terms of characteristic polynomials of the action of a Frobenius morphism on various �-adic étale
and crystalline cohomology groups, to prove statements of the type of Statement SBr(�), in the cases
mentioned above. Once again, the use of characteristic polynomials (and therefore determinants)
leads naturally to Fitting ideals rather than annihilators.

4.2 Links between Questions A and B and Statement SBr
In this section, we provide links between Statement SBr(�) and Questions B(�) and A(�), for a given
prime �. As a consequence, we show that Statement SBr(p) and, consequently, SBr are in general false
in characteristic p. We are still working under the hypotheses and notation of § 4.1. In particular,
our global fields are of arbitrary characteristic.

Proposition 4.2.1. Let � be a prime number. Let S = S0 ∪ {v1, v2}, with v1, v2 distinct primes in
k, split in K/k and not belonging to S0. Assume the following.

i) A
(�)
K,S is trivial.

ii) Statement SBr(�) is true.

Then, Question B(�) has an affirmative answer.

Proof. Let W = (w1, w2), with w1 and w2 primes in K, sitting above v1 and v2, respectively. For
i = 1, 2, let ŵi

(�) be the projection of the class ŵi of wi in AK,S0, onto the �-Sylow component A
(�)
K,S0

of AK,S0. Assumption i above shows that ŵ1
(�) and ŵ2

(�) generate the Z(�)[G]-module A
(�)
K,S0

(see
also Remark 5). Therefore, assumption ii above, combined with the definition of the Fitting ideal,
shows that there exist 2× 2 matrices Ak = (ak

ij)1�i,j�2, for k = 1, . . . , n, with entries ak
ij in Z(�)[G],

such that the following hold true.

i) ak
i1 · ŵ1

(�) + ak
i2 · ŵ2

(�) = 0 in A
(�)
K,S0

, for all k = 1, . . . , n, and i = 1, 2.

ii) wK · ΘK/k,S0
(0) =

∑n
k=1 det(Ak).

It is easy to see that, since AK,S0 is finite, part i above implies that one can find β ∈ Z, such that
ord�(β) = 0 (i.e. β−1 ∈ Z(�)), β · ak

ij ∈ Z[G], for all i, j, k, and:

i′) βak
i1 · ŵ1 + βak

i2 · ŵ2 = 0 in AK,S0, for all k = 1, . . . , n, and i = 1, 2.
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Let us fix β satisfying the above properties. Then part i′ implies the existence of S-units u
(k)
1 , u

(k)
2 ∈

UK,S, for k = 1, . . . , n, such that the following hold true:∑
σ∈G

ordwσ
j
(u(k)

i ) · σ = β · ak
ij , for all i, j, and k. (12)

Since v1 and v2 are finite primes, completely split in K/k, we have Θ(2)
K/k,S(s) = (1 − Nv−s

1 )(1−
Nv−s

2 )ΘK/k,S0
(s). Therefore, Θ(2)

K/k,S(0) = log(Nv1) log(Nv2)ΘK/k,S0
(0). If we combine this equality

with (12), part ii above, and the definition of the regulator RW , we obtain

Θ(2)
K/k,S(0) = RW (εS,�),

where εS,� := (β−1/wK)
∑n

k=1 u
(k)
1 ∧ u

(k)
2 is clearly in (1/wK)2 · Z(�)

˜∧
2
GUK,S. This shows that

Question B(�) indeed has an affirmative answer.

Corollary 4.2.2. Let K/k be the extension of global fields of characteristic p and S0 the set
of primes in k constructed in §§ 3.1 and 3.2. Then, Statements SB(p) and (consequently) State-
ment SBr(�) are false.

Proof. It is obviously sufficient to show that Statement SB(p) is false. Let S = S0 ∪ {v1, v2} be the
set of primes in k defined in Definition 3.2.2. Then Remark 5, shows that the hypotheses in Propo-
sition 4.2.1 are satisfied by K/k, S and the prime � := p. On the other hand, Theorem 3.3.2 shows
that Question B(p) has a negative answer. Therefore, Proposition 4.2.1 implies that Statement SB(p)

is false.

Remark 7. At Victor Kolyvagin’s suggestion, we also searched for counter-examples for the �-part
of the refinement of Brumer’s conjecture Statement SBr(�), in the case where char(k) = p > 0 and
� �= p. We would like to report here that we have found an infinite class of such counter-examples.
As the techniques involved in dealing with such counter-examples are quite different from those
developed in this paper, the detailed constructions will appear elsewhere.

Obviously, a proof almost identical to that of Proposition 4.2.1 leads to the following ‘global’
link between Question B and Statement SBr.

Proposition 4.2.3. Let S := S0 ∪ {v1, v2}, with v1, v2 distinct primes in k, split in K/k, and not
belonging to S0. Assume the following.

i) AK,S is trivial.

ii) Statement SBr is true.

Then, Question B has an affirmative answer.

The proof is similar to the proof of Proposition 4.2.1 and is left to the reader.
Next, we establish links between Question A and Statement SBr. We remind the reader that,

if G is a finite group and M is a Z[G]-module, we say that M is G-cohomologically trivial if
Ĥ

i
(H,M) = 0, for all subgroups H of G and all i ∈ Z.

Proposition 4.2.4. Let � be a prime number. Let S = S0 ∪ {v1, v2}, with v1, v2 distinct primes in
k, split in K/k and not belonging to S0. Assume the following.

i) A
(�)
K,S is trivial.

ii) A
(�)
K,S0

is G-cohomologically trivial.

iii) Statement SBr(�) is true.

Then, Question A(�) has an affirmative answer.
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We will need two lemmas of purely algebraic nature.

Lemma 4.2.5. Let R be a commutative, semi-local Noetherian ring and let P be a finitely generated,
projective R-module. Assume that the local ranks rkRm(Pm) are independent of the maximal ideal
m of R. Then, P is a free R-module of rank equal to the local ranks.

For a proof, see exercise 4.13∗ of [Eis94].

Lemma 4.2.6 (compare with Proposition 4 in [CG98]). Let R denote a commutative, semi-local
Noetherian ring, and let Q(R) be its total ring of fractions. Let M be a finitely generated R-module,
such that M⊗RQ(R) = 0. Assume that the projective dimension of M over R is at most 1. Then, the
following hold true.

i) FittR(M) is a principal ideal, generated by a non-zero divisor of R.

ii) Let X = {x1, . . . , xn} ⊆ M be a fixed set of generators for the R-module M . Then, we can
choose a generator for FittR(M) of the form det(A), where A = (aij)1�i,j�n is an n×n matrix
with entries in R, such that

∑n
j=1 aij · xj = 0 in M , for all i = 1, . . . , n.

Proof. We start by noting that, since R is Noetherian (and therefore the ideal (0) admits a primary
decomposition in R), Q(R) can be written as a direct sum of local Artin rings Q(R) =

⊕
pRp. Here

Rp denotes the localization of R at the prime ideal p, and p runs through the (finite) set of minimal
prime ideals of R. This observation also shows that the condition M

⊗
R Q(R) = 0 is equivalent to

Mp = 0 or, equivalently, AnnR(M) �⊆ p for all minimal prime ideals p of R.
We will now prove parts i and ii simultaneously. For the fixed set of generators X of M , we have

an exact sequence of R-modules

0 → K
i−→ Rn π−→ M → 0,

where π sends the elements of an ordered canonical basis E := (e1, . . . , en) of Rn into x1, x2, . . . , xn,
respectively, K := ker(π), and i is the inclusion map. Since pdR(M) � 1, K is a projective R-module
and, therefore, locally free (see [Mil71, Lemma 1.2]). Let m be a maximal ideal of R and αm :=
rkRm(Km). If we localize the exact sequence above at m, we obtain the following exact sequence of
Rm-modules:

0 → Rαm
m → Rn

m
πm−−→ Mm → 0.

However, there always exists a minimal prime ideal p of R, such that p ⊆ m. If we localize the above
exact sequence even further, at p, and take into account that Mp = 0, we obtain an isomorphism
of Rp-modules Rαm

p
∼−→ Rn

p . This shows that αm = n (see [Eis94, Corollary 4.4(b)]). We now apply
Lemma 4.2.5 to the R-module K to conclude that K is a free R-module of rank n. Let us fix an
ordered R-basis K := (k1, · · · , kn) for K, and let A = (aij)1�i,j�n be the matrix representation
of the R-morphism i with respect to bases K and E . Since i is injective, det(A) is a non-zero
divisor in R. On the other hand, since K

∼−→ Rn, the definition of the Fitting ideal shows that
FittR(M) = det(A)R.

Proof of Proposition 4.2.4. Let w1, w2, W , ŵi, and ŵi
(�), for i = 1, 2, be as in the proof of Propo-

sition 4.2.1. We will apply Lemma 4.2.6 to the semi-local ring R := Z(�)[G], the finitely generated

R-module M := A
(�)
K,S0

and its set of R-generators X := {ŵ1
(�), ŵ2

(�)}. Since M is finite and
Q(R) = Q[G], we clearly have M ⊗R Q(R) = 0. Also, since M is G-cohomologically trivial, we have
pdR(M) � 1 (see [CF67, IV.9, Theorem 9]). According to Lemma 4.2.6, we can choose a matrix
A = (aij)1�i,j�2 with entries in R, such that FittR(M) = det(A) · R, det(A) is a non-zero divisor
in R, and

∑2
j=1 aij · ŵj

(�) = 0 in M for all i = 1, 2. Moreover, if we multiply the entries of A

by a suitably chosen β ∈ Z×
(�)

, as in the proof of Proposition 4.2.1, we can further assume that
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A in fact has entries in Z[G], and
∑2

j=1 aij · ŵj = 0 in AK,S0, for all i = 1, 2. As in the proof of
Proposition 4.2.1, these equalities imply the existence of two S-units u′

1, u
′
2 ∈ UK,S, such that

RW (u′
1 ∧ u′

2) = log(Nv1) log(Nv2) det(A). (13)

Now, hypothesis iii in Proposition 4.2.4, combined with the fact that det(A) is a non-zero divisor,
shows, for a suitably chosen β′ ∈ Z×

(�), that there exists a set {ξα|α ∈ A(K/k)} ⊆ Z[G], satisfying

β′ · α · ΘK/k,S0
(0) = ξα · det(A) and ξα = (α/wK) · ξwK

, for all α ∈ A(K/k). (14)

For a unit u ∈ UK,S, let ũ denote its image in QUK,S via the canonical Z[G]-morphism UK,S −→
QUK,S. Let ε := ũ′

1

(ξwK
/wK) ∈ QUK,S. Let εα := u′

1
ξα ∈ UK,S, for all α ∈ Z[G]. Equalities (14)

imply that the following hold true.

i) εα = ε̃α, for all α ∈ A(K/k).

ii) εγ
α = εα

γ , for all α, γ ∈ A(K/k).

We combine the last equalities with Proposition 1.2 in [Pop02] to conclude that there exists a
unit u1 ∈ UK,S, such that ε = ũ1

1/wK in QUK,S, and K(u1/wK

1 )/k is a Galois abelian extension.
Let u2 := u′

2
wK · u1 ∈ UK,S. Then, we clearly have an equality of fields K(u1/wK

1 ) = K(u1/wK

2 ).
Moreover, (13) and (14) show that

Θ(2)
K/k,S = log(Nv1) log(Nv2)ΘK/k,S0

(0) = (β′−1
/w2

K)RW (u1 ∧ u2).

This shows that, indeed, Question A(�) has an affirmative answer.
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CF67 J. W. S. Cassels and A. Fröhlich, Algebraic number theory (Academic Press, New York, 1967).

Cas79 P. Cassou-Nogues, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta p-adiques, Invent.
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