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PREDATOR-PREY SYSTEM WITH TIME DELAY IN A
TWO-PATCH ENVIRONMENT
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Abstract
By using the continuation theorem of coincidence degree theory, a sufficient condition

is obtained for the existence of a positive periodic solution of a predator-prey diffusion
system.

1. Introduction

Xu and Chen [4] considered a two-species ratio-dependent predator-prey diffusion
model with time delay given by

x1 (1) = x1(2) (al —anx, (1) — #3;1(2—1(_1)) + Dy (x2(2) — x, (1)),

x3(1) = x2(t)(az — anx2(t)) + Dy(x (1) — x2(1)), Wy
50 =50 (—ay + 2D )

mx3(t — 1) +x,(t — 1)

where x;(t) represents the prey population in the i patch, i = 1, 2, and x; (¢) represents
the predator population. Here t > Ois a constant delay due to gestation, D; is a positive
constant denoting the dispersalrate, i = 1,2,and a; (i = 1, 2, 3), ay;, a3, ax, a3 and
m are positive constants.

In Xu and Chen [4], the local and global asymptotical stability of the positive
equilibrium of the system (1.1) were studied. For an ecological interpretation of
system (1.1), we refer to [4] and references cited therein.
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Realistic models require the inclusion of the effect of change in the environment.
This motivates us to consider the following two species predator-prey diffusion model
with time delay:

x(t) = x1(0) (al(f) —an(x,(t) — m(tj)l;((tt))xj-(tx),(t))

+ Dy (1) (x2(2) — x1(1)),
x5(2) = x2(8) (a2(2) — an(t)x2(2)) + Da() (x1(2) — x2(1)),
ay(x,(t — 1) )

mx;(t—t)+x,(t—1)/)°

(1.2)

x3(8) = x3(1) (—az(t) +
In addition, the effects of a periodically changing environment are important for
evolutionary theory as the selective forces on systems in a fluctuating environment
differ from those in a stable environment. Therefore the assumptions of periodicity
of the parameters are a way of incorporating the periodicity of the environment (for
example, seasonal changes, food supplies, mating habits, and so on), which leads us to
assume that D; (i = 1, 2), a; (i = 1, 2, 3), a), a13, ax, a;; and m are strictly positive
continuous w-periodic functions.

As pointed out by Freedman and Wu [1] and Kuang [3], it is of interest to study
the global existence of periodic solutions for systems representing predator-prey or
competition systems. In this paper, our aim is to use the continuation theorem of
coincidence degree theory which was proposed in [2] by Gaines and Mawhin to
establish the existence of at least one positive w-periodic solution with w > 0 of
system (1.2).

Let X, Z be real Banach spaces, L : domL C X — Z a Fredholm mapping
of index zeroand P : X — X, Q : Z — Z continuous projectors such that
ImP=KerL,Ker@Q=ImL,X =KerL&Ker Pand Z =Im L &Im Q. Denote by
K, : Im L — Ker PNdom L the generalised inverse (of L) andby J : Im Q — Ker L
an isomorphism of Im Q onto Ker L.

For convenience we introduce a continuation theorem [2, page 40] as follows.

LEMMA 1.1. Let 2 C X be an open bounded set and N : X — Z be a continuous
operator which is L-compact on Q (thatis, ON : Q@ - Z and K,(I1- Q)N : QoY
are compact). Assume

(a) foreachi € (0,1), x € Q2NdomL, Lx # ANx;
(b) foreachx € 3NKerL, QNx #0;
(c) deg{JQNx,QNKerL,0} #0.

Then Lx = Nx has at least one solution in Q.
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2. Main result

For the sake of convenience we will use the notation

f= _l_fwf(;)d;, f'=min f(r) and f* = max f (1),
w Jo 1€(0,]

tel0,w)

where f is a strictly positive continuous w-periodic function.
We now state our fundamental theorem about the existence of a positive w-periodic
solution of system (1.2).

THEOREM 2.1. Assume the following:
() (a— D' > aff/m',

(i1) aél > as,
(iii) (a; — Dy)! > 0.

Then system (1.2) has at least one positive w-periodic solution.

PROOF. Let

a3 (1)e”® ay (et
Fi(t,s) = — and Fy(t,5) = — —.
m(1)er) 4 ents) m(t)ents-0 4 enls=1)

Consider the system

() = ai(®) = Di(t) — an(1)e”® — Fi(t, 1) + D (1),

y3(1) = ax(t) — Dy (1) — an(1)e™? + Dy(r)e” 20, (2.1)

y3() = —a3 (1) + Fa(t, 1),
where v, D; (i = 1,2), a; (i = 1,2,3), a1, a3, axn, a; and m are the same as
those in system (1.2). It is easy to see that if the system (2.1) has an w-periodic
solution (y; (), y3(r), y;(1))7, then (&1 ¥ %7 s a positive w-periodic solution
of system (1.2). Therefore for (1.2) to have at least one positive w-periodic solution it

is sufficient that (2.1) has at least one w-periodic solution. In orderto apply Lemmal.1
to system (2.1), we take

X = {010, 9200, »3)7 € C'(R, R) : yi (s + w) = yi(8), for i =1,2,3},
Z = {(z1(2), 2(1), z3())T € C(R, R®) : z:(t + w) = z,(2), for i =1,2,3)

and

[ @), y2(0), ys(NT || = max |y ()] + max |y,(1)] + max |ys()I.
1€{0,w} 1€(0,w}) 1€[0,w}

https://doi.org/10.1017/51446181100013298 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181100013298

236 Zhenggiu Zhang and Zhicheng Wang [4}

With this norm, X and Z are Banach spaces. Let

(1] [ai(®) — Di(t) — an ()e”® — Fy(t, 1) + D, (1) @O
Nily|= ax(t) — Da(t) ~ an(1)e”) + Dy(1)e 70 ,
| Y3 ] | —a3(t) + B (1, 1)
»] [ » (1/w) [y () dt b2
Liy:{=]|y]| Ply|=|0/w)f »n®d, |, |»|eX,
L ys] Ly 3 (1/w) [’ y3(r) dt ¥
Z (1/w) f;,wll(') dt 21
Olz|=|W/w [fa®dt|, |z|eZ
23 (1/w) f;° zs(r) dt 23

We note that Ker L = R3,

21 2 w
ImL = 2 ¥4 eZ,/ zi(t)dt =0, for i=1,2,3
23 23 0

is closed in Z and dim Ker L = codimImL = 3. Hence L is a Fredholm mapping of
index 0. Furthermore, the generalised inverse (of L) K, : InL — Ker P NdomL
has the form

t 1 w t 21
K,(z) = / z(s)ds — —/ / z2(s)dsdt, for z=|z| € Z.
0 w Jo Jo z
3
Thus ON : X —> Z,
i L [ — Di(0) — an(D)e® — Fi(t, 1) + Dy(1)e0-n0] dt
Y2 | — 1[5 [@(0) = Dy (D) — an(De™® + Dy (e O—70) dr ,
¥s L [Vl—a(t) + Fa(t, ]dt
K,(I - Q)N :X - X and
» Jo [a1(s) = Di(s) — an(s)e"® — Fi(s, s) + Dy(s)e»®9] ds
2| — Js [a2(s) — Dy(s) — an(s)e”® + Dy(s)en @] ds
y3 Jol=ax(s) + Fa(s, )} ds
L1 [ la(s) = Di(s) —an (s)e"® — Fy (s, 5) + Dy (s) ") ds dt

- L 15 Jolaa(s) — D2(s) — an(s)€”®) + Dy(s) e ) ds dt
L fil—as(s)+ Fa(s, 5))ds di
1 ¢ fow[al (13 — Dy () —an()e"® — Fy (¢, 1)+ Dy (1) e D] d¢
- (5 - E) INCIOE D;(r) —an(t)e” + Dy(r)e” @] dt
Iy [=as()+ Fa(t, D] dt
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Clearly QN and K,(I — Q)N are continuous by the Lebesgue theorem and moreover
ON(Q)and K »(I- Q)N () are relatively compact for any open bounded set 2 C X.
Hence N is L—compact on £ for any open bounded set Q C X.

Corresponding to the operator equation Lx = ANx, A € (0, 1), we have

Y@ = r[a(t) = Di\(1) — an(®)" — Fi(t, 1) + Dy(1)e> 0],
¥3(8) = A[ay(1) — Dy(1) — an()e™® + Dy (1) O], (2.2)
y3(8) = Al—a;(t) + Fy(¢, 1)].

Suppose that (y,(¢), y2(t), y3(t))7 € X is a solution of system (2.2) for a certain
A € (0, 1). By integrating (2.2) over the interval [0, w], we obtain

f ’ [a1(t) — D\(t) — an (1)e® — Fi(t, 1) + Dy ()] dt = 0,
0

f [a:2(6) = D2 (1) — an()e?” + Dy(1)e @] dt = 0
0
and
f [—as()) + Fa(t, )] dr = 0.
0
Thus

/ [an(ne*® + Fi(t, n]dt = (a; — Dpyw + / Dy()er"Wds,  (2.3)
0 0

f an(t)e’?V dt = (a; — D)w + / Dy ()= gy 2.4)
0 0
and

fo ’ Fz(), Ndt = Gw. (2.5)
From (2.2)—(2.5), it follows that
/ow ly|(Ddr < A fow lai(t) = Di(t) — an (e — Fi(t, 1) + D ()P} dr
< (a; — Dpw + /ow[a..(:)ef'“’ + Fi(1, )]d1
+ /0 ’ Dy (1)1 ® g4y
=2(a; — D)w + fo ’ D\ ()10 4y, (2.6)

f ly2(D)1dt < A / |ax(£) = Da(t) — an()e*® + Dy (1)@~ 7W| dy
0 - Jo
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w

< (a, — Dz)w +/ azz(t)e”(') dt+ / Dz(t)e"(')_”(') dt
0 0

=2(a; — D)w +2 f Dy() W gy 2.7
0
and

/ lys()]dt < A/ | —as(t)+ Fa(e, t)|dt <a_3w+/ F(t,t)dt=2a;w. (2.8)
0 0 0

Multiplying the first equation and the second equation of system (2.2) by ¢"® and
e, respectively, and integrating both over [0, w], we obtain

/ 'Oyl () dt= f [(a1())— D1 (0)e"? —a, (1)e?'® — Fy(t, t)"” + D, (1) ] dt
0 0 ’
and
f Py (1) dt = f [(@x2(t) — D2(t)) € — an(H)e?® + Dy(1)e ] dt.
0 0

That is,
/ an()e?'Vde + f F(, eV dr
0 V]

= /w(al ) — Dy()ede + fw Di(t)e”*® dt 2.9
0 0
and
/ ap(1)e?* W dr = / (a2(t) — Dy (1)) dt + f Dy (1) dt. (2.10)
[1] 0 0

Equation (2.9) implies that

ail/ eV dt < (a) - DI)M/ ey‘(')dt-i-D;"/ " dt,
0 0

0

. . . . 2 .
from which, using the inequality ( f;° " dr)” < w [’ €21 dt, we obtain

! w 2 w w
ﬂ(/ e"(’)dt) <(a,—D1)M/ ey'<‘>dt+D{"f e dr.
w 0 0 0

{ w I pM w 172
2@_/ PRACT P [(al — D)™ + [(al _ DI)M]2 +4a“_1/ e dt] ,
w Jo w Y

Thus

from which, using the inequality

(@a+b"?* <a?+ b2 fora>0and b>0, 2.11)
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it follows that

1] w { DM w 172
ﬂ/ &'dt < (a — DM + ,/a“—‘ (/ e dt) ) (2.12)
w 0 w 0

A similar argument to (2.12) implies from (2.10) that

{ w { DM w 1/2
3 / V4t < (ap — D)M + ,/ t st ( f ev'(')dt) . (2.13)
w Jo w 0

Substituting (2.13) into (2.12), we obtain

{ w
ﬂ/ " dt < (a; — D)
w Jo

: 12
w 172
+,/a§‘D‘w (aZ_DZ)Mwﬂ/aészi(f e’“”dt)/ ,
w aéz w aéz 0

from which, using (2.11), it follows that

! w
ﬂ/ "Dt <(a; — DM

w Jo
a.DM . al. DM w 1/4
+ n[ 1 [(a2 _ Dz)M]I/2+ {—22 2 (/ e’“"dt)
an w 0

Therefore there exists a positive constant p; such that

/ e'dr < p,. (2.14)
.

Substituting (2.14) into (2.13) implies that there exists a positive constant p, such that
/ eVt < p,. 2.15)

0
Choose ; € [0, w], i = 1,2, such that y;(#;) = min,q. ) yi(t), i = 1,2. Thenitis

clear that y;(#;) = 0, i = 1, 2. In view of this and system (2.2), we obtain

a; () — Dy(1) — an(n)e"™”) — Fi(t, 1) + Dy (n)e?W7® =0 (2.16)
and
ax(t;) — Dy(t) — an()e”?™? + Dy(r)e' @7 =0, 2.17)
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Thus
ap e > ay ()" = a,(n) - Di(n) — Fi(n, i) + Dy (1)1 ®
> (a; — Dy)! — ag/m’
and
a} e > an(h)e™™ = a(n) — Dy(n) + Da(1)" 7@ > (a, — Dy)'. (2.18)

Therefore
_D I _ M i —D !
yin) > 0 G PLZ @ s B0 o)
a a4y

Substituting (2.14), (2.15) and (2.19) into (2.6) and (2.7), we obtain

2DM pyat

()| d - D 24 2.20
/; ly1 ()] dt < 2(a, Dw + (@ =Dyl — /! 1 (2.20)
and
w - 2DM M
f ly; () dt < 2(a; — Dy)w + (‘I—LD"Z; £ 4, 221
0 2 2

Equations (2.14) and (2.15) imply that there exist two points £, n € (0, w) such that

y1(§) <In(pr/w),  y2(n) < In(pz/w). (2.22)

In view of this and (2.19), we have

- D I _ M i
1 (6)] <max[|1nﬂ|,]1n (@~ D) —ag/m I} (2.23)
w a;
and
- D))!
y2(n)| < max [lln&| , |1n @-D) ] (2.24)
w *Ayy
Since Vt € R

() < I}’1(§)I+[0 Iyi(9)lds and |y:(1)] < I}’z(n)|+f [y2(s)i ds,
0

from (2.20), (2.21) and (2.23), we obtain

- D P _ M {
M| <max{|lnﬂ|,|1n (@ = D) — ai/m “+d1 s g,
w ay
and
— D))
|y2()] < max {lln &I , Iln(az—MZ)- } +d, £ R,.
w ay
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Equation (2.5) implies that there exists a point £; € (0, w) such that

R+, +1)=a.
That is, @sm(t; + 1)e”*) = (a3 (1] + 1) — a3)e”"5. Hence

ay (1) —

ay(;+1)—as
m(t)as

— +R,. (225
m(t; + 1)a3 o )

In

lys ()] = |1 + |yi1(£)| < max
4

€[0,w]
Since Vr € R, |y3()} < lys(1 + jo'” ly3(s)| ds, from this and (2.8), we obtain

ay (1) —

R +2 2R
m(t)a; + R, + 2a;w = R;.

|y3(8)| < max |(In
te[0,w)

Clearly R; (i = 1, 2, 3) are independent of A. Denote M = R; + R; + R; + Ry; here
Ry is taken sufficiently large such that

D) — -
2 max l““all, In (a, 1L (a13/m) ] + ‘l a; — &
a) m-as
D vanD;s D
+max[ In (a; — D) + VapDsé, (02 2) ] <M. 2.26)
an an

Here /3, is the only real root of the equation

apanx* = ap (@ — D))+ anDi(a, — Dy) + a_ll-D_l\‘/FZ-Z-D—2x-

We now take 2 = {(y.(t), y2(8), y3(NT € X : |1, y2, )T < M}. This satisfies
condition (a) of Lemma 1.1. When (y;, 2, y3)7 € 0QNKer L = aQNR3, (y1, y2, y3)T
is a constant vector in R® with |y,| + |y2| + |y3] = M. We will prove that when
01,y y3)T € 9QNKerL =32 N R3,

] [@=Do-ame - & f7 s dien + Diern] o
ON | »|= (a; — D) — ape” + Dyen ™ £10
3 —a_3 + if() m(l;leyfl.z.eyl dteyl 0

If the conclusion is not true, that is, ON (y;, ¥2, y3)7 = (0,0, 0)7 with |y,| + |ya| +

|ys| = M. Since
ap (1) dt —
—ape — — ———— e’ 4+ D =0, 2.27
@Dy -aer - o [ DD, @27)
we have ajje?" < (al Dpe’r + Dye” < (a — Dy)e” + D,e”. Thus

2ane” <@ — D) + V(@ = D)) +4anDre” < 2(a, = D)) + 2 @D, e,
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That is,

ane’ < (a; — D)) ++JanD, &2 (2.28)
Since
(a; — Dy) — ane” + Dy ™ =0, (2.29)

we obtain ape?? < (a; — D,)e”? + Dye”. Thus
@ne” < (a; — D)+ anD, 2. (2.30)

From (2.28) and (2.30), it follows that

(02 Dy) + 022D251

e <b, €< — (2.31)
2

From (2.27) and (2.29), we obtain

e > @ l)_ (@s/m) and €” > —(az_ 2). (2.32)
an an
Hence
- D —_
lyil < max [Iln5,|, In (a 1)_ (a13/m) } and
an
(a,— Dy) +JZ22T2<31 @Dy
ly2l < max { |In — .
an an
Since —@; + (1/w) f” (a31(2)/(m()e” + €")) dre” = 0, the same argument as that
used for (2.25) gives
M _— —5_
m-as an
Therefore
3
— D —
Z lyil <2max {]Inél, [In (@ 1)_ (a3/m)
i=1 ap
+ max [ In (@ — D;) + Ya@zDsé, ) (az_Dz) ] + }ln e
a22 an m1a3
<M,
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which contradicts the fact that |y} + ly2] + |y3} = M. So when (y, y2, y3)7 €
aQNKerL =3QN R, ON(1, y2, y3)T # (0,0,0)7.

Finally we will prove that condition (c) of Lemma 1.1 is satisfied.

Define ¢ : DomL x {0, 1] - X by

(s — D)) —aje”
¢()’l,)’2»)’3y “’) = (QZ“DZ)—EC"Z
—a@ + (1/w) [y s dre”

Ners +e¥t

—(1/w) j;) ) __ Jeovs 4 Fle)’l_)ﬂ

m(t)er +e

+ i Dzeyl—yz
0

When (31, y2, y3)7 € 9Q N Ker L = a2 N R3, (1, y2, y3)7 is a constant vector in R?
with |y,| + |y2] + |y3| = M. Using a similar argument to that for QN (y;, y2, y3)7 #0,
when (y1, y2, y3)T € 3Q NKer L, we can show that when (yi, y2, y3)7 € 3Q2NKerL,
(1, y2, y3, ) # (0,0, 0)7. As aresult, we have

deg(‘l QN(ylv Y2, }’B)T, Qn Keer (01 01 O)T)

= deg (((an — Dy) —ane”, (@ — Dy) — ane”,

T
—@+ —f 1@ __ 4on) | @nKerL, (0,0,0)7
m(t)eyz +en

= deg (((01 D,) —ajje”, (az Dy) —ane”,

— T
— az e’ T
- ————} ,QNKerlL, (0,0,0)7 ),

@+ m(t*)e” + ey') er L. ( ) )

where t* € [0, w] is a constant.
Since the system of algebraic equations

(@ — D)) —aux =0,
(a2 — Dy) —any =0,
— a3+ ax/(m(")z +x) =0,

has a unique solution (x*, y*, z*) which satisfies x* > 0, y* > Oand z* > 0, thus
deg(((an — D) —ape”, (a; — Dy) — ape”,

a—“eyl
m(t*)e”» + e

T
) ,QNKerl, (0,0, O)T)
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—anx* 0 0
o 0 —any* 0
=SB am(r)z —m(t) @t
(m(t*)z* + x*)? (m(r*)z* + x*)?
. [—an azm()ay* (x*)?
= sign 0.
g mz 12?7

Consequently deg (J ON (y1, 2, ¥3)7, QN KerL, (0,0, O)T) # 0. This completes
the proof of condition (c) of Lemma 1.1.

By now we know that €2 verifies all the requirements of Lemma 1.1 and that system
(2.1) has at least one w-periodic solution. Therefore system (2.1) has at least one
positive w-periodic solution. This completes the proof of Theorem 2.1.
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