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ABSTRACT

The compound binomial model is a discrete time analogue (or approximation) of
the compound Poisson model of classical risk theory. In this paper, several
results are derived for the probability of ruin as well as for the joint distribution
of the surpluses immediately before and at ruin. The starting point of the pro-
babilistic arguments are two series of random variables with a surprisingly simple
expectation (Theorem 1) and a more classical result of the theory of random
walks (Theorem 2) that is best proved by a martingale argument.
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1. INTRODUCTION

The binomial model is a discrete time model, where the periodic premium is one
and where in each period there is at most one claim. Such a model is of an
independent interest, but it can also be used as an approximation to the continuous
time compound Poisson model. In any case it has the advantage that the pro-
babilistic reasoning is relatively elementary.

The purpose of this note is to adapt the methods and results of the continuous
time compound Poisson model (see Gerber, 1988) to the compound binomial
model.

2. THE MODEL

In this discrete time model

(1) U, = u + t-(Xi + - + XNl)

is the surplus of an insurance company at time t, t = 0 ,1,2, . . . . Here Uo = u is
the initial surplus, the premiums for each period are one, and Nt is the number
of claims in the first t periods. It is assumed that this is a binomial process, i.e.
that in any period there is a claim (with probability p) or no claim (with
probability q = 1 - p), and that the occurrences of a claim in different periods
are independent events. The amounts of these claims are denoted by Xi, X2,....
It is assumed that these random variables are independent and identically
distributed and independent of the claim number process. We assume further that
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they are positive and integer valued; let

(2) p(x)=Pr(Xi=x), x= 1,2,3,...

denote their common probability function. Finally, we assume that the premiums
contain a loading, i.e. that

(3) PH<1,

where /t is the mean claim size. In the following u ^ 0 is also integer valued.
'Ruin' is the event that Ut < 0 for some / ^ 1. We denote by \p(u) its proba-

bility, and let

be the period in which ruin occurs. By distinguishing according to what happens
in the first period, and using the law of total probability, we see that

and

(6) \p(u) = q^{u + 1) + p 2 <M" + 1 ~ x)p(x) + p 2 P(X)
x=1 x=u+1

for u = 1,2, 3 , . . . . We shall see that

(7) HO) = PH.

Thus formulae (5) and (6) can be used to calculate i/-(") recursively.
Illustrations: 1) If all claims are of size one, p(l) = 1 and p(x) = 0 for

x= 2, 3,... , ruin is only possible if u = 0 and if there is a claim in the first period.
Thus

(8) HO) = p,

which confirms (7) and

(9) Hu) = 0 for u= 1,2,....

2) In the more interesting case where all claims are of size 2,

(10) U, = u + t-2N,

This process and the resulting probability of ruin are discussed by many text-
books in the context of 'gambler's ruin problem'. Then

(11)

and

(12) t(u)=[-\ for u= 1,2,...

is the solution of (7), (5) and (6).
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In this note we shall try to show that there is more to the probability of ruin
than its recursive calculation.

3. TWO FANCY SERIES AND THEIR SIMPLE VALUES

In the following let So = 0 and Sk = X\ + ••• + Xk; we shall also use the notation
a(k) = kl(k) for the factorial powers of a. The following strange result, which is
the analogue of Theorem 1 of GERBER (1988), is the key to all further
developments.

THEOREM I.

a. For all x
\k ]

QI 1 — P\*-

b. For all x^O

k=o k\ \q) x'

PROOF: a. Let

(13) g(z) = E[zx']

denote the probability generating function of the Xfs. Then

(14) E[(Sk+x)ik)qs"+x] =qkDk[g(z)kzx]\z=q,

where D is the derivative operator. Thus the left side in Theorem la is

(15) fl^PkDk[g(z)kzx]\z=q.

Using the Taylor series we obtain

k=o kl J=o j \

With the new summation variable n = k + j this series can be written as

(17) t -̂  p"D" t (".
n=o n\ k = o \k,

Because of the binomial formula this is

(18) S^'O'KgW-DVll^!.
n = 0 n\

Since g ( l ) = 1 and g'(l) = n, this can be simplified to

(19) S PV = —— •
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b. The left side in Theorem \b is

(20) -qx + R,
x

where

°° i
- Lj T~\ P U \S\Z) Z

*=1 Kl

Setting n = k + j we see that

(22) /?= S l ^ D " - 1 2 f"

£ pD
n= 1 Hi

Thus the left side of Theorem \b is indeed 1/x.

4 . RESULTS FOR M = 0

In the following we shall assume u = 0. Some of the results can be easily
translated to the more realistic situation where u is positive. For example ^(0),
the probability of ruin with no initial surplus, can be interpreted more generally
as the probability that the surplus will ever fall back on or below its initial level.

4.1. The probability of ruin

We shall derive formula (7). Since the process Ut is skipfree upwards and tends
to infinity for /-»«>, 'ruin' is equivalent to the event that there will be a visit at
0 (U, = 0 for some t ^ 1). Thus the probability of ruin is the probability of a visit
at 0.

Given S*, a potential visit at 0 between (or with) the kth and the (k + l)th claim
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takes place at time t = Sk, and such a visit will take place provided that Nt = k.
Thus the conditional probability for a visit at 0 between (or with) the kth and the
(k + l)th claim is

(23)

Then the probability that the process visits 0 for the last time between (or with)
the Ath and (k + l)th claim is

(24)

Hence the probability of ruin, which is also the probability of a visit at 0, is

(25) 0(0) = t i?[(**)pV*"*] (1 - 0(0))
oo i / '

From this and Theorem 1 a it follows that

(26) 0(0) = ^ {1

i.e. that 0(0) = pp.

4.2. The number of visits at a given level

For x ^ 0 Theorem 1 a has a natural probabilistic explication. Let us consider the
number of visits at the level x. The probability that there are exactly n such visits
is \p(0)"'1{ 1 - 0(0)), for n = 1,2,.... Thus the expected number of visits at xis
1/(1 - 0(0)), which is the expression on the right side of Theorem la.

The expected number of visits at x can be calculated in a different way. Given
Sk, there will be a visit at x between (or with) the Ath claim and the {k + l)th claim
at time t = Sk + x, provided that Nt = k. Thus the probability for a visit at x
between (or with) the Ath claim and the (k + l)th claim is

(27)

Summation over k (k = 0,1,2,...) gives the expected number of visits at x; but
this is the expression on the left side of Theorem la.

4.3. A classical result

The following result, due to Dwass, Dinges and Keilson is about two conditional
probabilities given the event A = (£/< = x and Nt = k], where x is a positive
integer.
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THEOREM 2:

a) Pr(f/ ,< xfor 7= \,...,t- 1 \A) = xjt,
b) P r ( t / T >0 for r = 1 , . . . , / - 1 \A) = x)t.

An elegant proof due essentially to DELBAEN and HAEZENDONCK (1985) is as
follows.

a) We consider the sequence

(28) MT=X~UT for 7 = 0 , 1 , . . . , / - 1.
t - T

Given A, this is a martingale. Thus if v is a stopping time, it follows that

(29) M0 = E[M,\A].

Now let v be the first time when MT = 0 (UT = x), or v = / - 1 if MT > 0 (f/T < x)
for T = 1 , . . . , / - 1. For this stopping time (29) yields Theorem 2a).

b) We consider the sequence

(30) MT = — for 7 = 1 , . . . , / .
7

Given A, this is a backward martingale. Thus, if v is a backward stopping time,
it follows that

(31) M, = E[MV\A}.

Now let v be the last time T when MT = t/T = 0, or J- = 1 if MT > 0 for
7= 1 ,2 , . . . , / - 1. For this backward stopping time (31) yields Theorem 2b).

4.4. The probability of reaching a given level

Let x be a positive integer. By Theorem 2a the conditional probability (given Sk)
that the level x is visited for the first time between (or with) the kth claim and
the (k + l)th claim is

(32) i,.ir i . - k , yg

where / = Sk + x. Thus the probability that the level x will ever be visited is
k

(33)

Of course this probability is one, which illustrates Theorem \b.

4.5. 77ze surplus immediately before and at ruin

For x = 1,2,3,.. . and .y = 0 ,1 ,2 , . . . we can use Theorem 2b to see that the con-
ditional probability (given S*) for ruin with the (£+ l ) t h claim, such that
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UT- I = x and UT = - y, is

„ .x-lyK l>q*k+xxpp{x+ 1 + y).
k! \q)

We take expectations, sum over k and use Theorem \b to obtain

(35) Pr(7"< oo, UT-i = x,UT= -y) = pp(x+ 1 + y),

valid for x- 1,2, 3 , . . . and >> = 0 ,1 ,2 , . . . . This formula is also true for x= 0
(then it gives simply the probability that there is a claim of size 1 + y in the first
period). The compound Poisson analogue of (35) is derived by DUFRESNE and
GERBER (1988).

From (35) we get

(36) P r ( T < oo, U T = - y ) = P 2 P ( x + 1 + y ) = p [ l - P(y)] •

This is the discrete analogue of Theorem 12.4 of BOWERS et al. (1987). Finally,
we may sum (36) over y to confirm (7) once again.

5. RESULTS FOR U > 0

The reasoning of Section 4.1 can be adapted to this more general situation. Given
Sk, a visit at 0 between (or with) the kth claim and the (k + l)th claim is possible
if Sk ^ u; such a visit will take place at time t = Sk - u, provided that N, = k.
Thus the conditional probability for a last visit at 0 between (or with) the kth
claim and the (k + l)th claim is

(37)

if Sk ^ u, and 0 otherwise; the expression

(38) ' ( S * - ^

is the conditional probability for both cases. Then the probability for a last visit
at 0 before (or with) the kth claim and the (k + l)th claim is

(39)

Hence

(40) Hu)= t E\(iSk-u)+)pkqs'-'-k\{l-H0)]
k = \

k=\
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There is an alternative series expression for \p(u). From Theorem la it follows
that

(41) ? H (f)*^*)"1--]
Combining (40) with (41) we obtain

(42) LdM = q-» +
 u2 (

l - Pi* k=i k\ \q

This is the discrete time analogue of Shiu's formula (1988). Note that in (42),
unlike in (40), the summation with respect to k and 'E' is finite for any value of u.

ILLUSTRATION. If all claims are of constant size m (a positive integer), it
follows that Sk = km, and from (42) that

..kin - u

This result generalizes formulas (8), (9), (11) and (12), which are for m = 1 and
m = 2. It is the discrete analogue of a well known formula in classical ruin theory,
see, e.g. FELLER (1966, formula (2.11) of chapter XIV.2). DUFRESNE (1988)
shows that there is a close connection between the probability of ruin and the
stationary distribution of a bonus-malus system; thus (43) can be used to describe
such a stationary distribution analytically.
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