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Abstract. In this paper, we establish some inequalities among the Lp-centroid
body, the Lp-polar projection body, the Lp-John ellipsoid and its dual, which are the
strengthened version of known results. We also prove inequalities among the polar of
the Lp-centroid body, the Lp-polar projection body, the Lp-John ellipsoid and its dual.
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1. Introduction. In [6, 7] Lutwak showed that the Fiery Lp-combination (see [2])
led to Lp-Brunn-Minkowski theory for p ≥ 1, which is also called Brunn-Minkowski-
Firey theory. For many notions, there are natural extensions of projection bodies,
centroid bodies, John ellipsoids etc. in the Lp-Brunn-Minkowski theory (see [7, 9, 11]).

Further, Lutwak, Yang, and Zhang proved that there are extensions of all of the
known inequalities involving projection bodies, centroid bodies and John ellipsoids to
the new Lp-version of them (see [7, 8, 9, 11]). More results regarding the Lp-analogues
are to be found in [1, 4, 5, 12, 13, 15].

In this paper, we continue the study of the volume inequalities among the Lp-
centroid body the Lp-polar projection body, the Lp-John ellipsoid and its dual.

The setting for this paper is n-dimensional Euclidean space �n. Let Kn denote
the set of convex bodies (compact, convex subsets with non-empty interiors). Let Kn

o
denote the subset of Kn that contains the origin in their interiors in �n. Let Sn−1 denote
the unit sphere in �n and ωn denote the n-dimensional volume of the unit ball B in �n,
namely

ωn = π
n
2
/
�

(
1 + n

2

)
.

For real p ≥ 1, define

cn,p = ωn+p

ω2ωnωp−1
.

If K is a star body about the origin in �n, and p ≥ 1, the Lp-centroid body �pK of
K is the origin-symmetric convex body whose support function is given by [4, 8, 9]

h(�pK, u)p = 1
cn,pV (K)

∫
K

|u · x|pdx, (1.1)

where the integration is with respect to Lebesgue measure.
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If K ∈Kn
o and p ≥ 1, then the Lp-polar projection body �−pK is an origin-

symmetric body whose radial function is given by [11]

ρ(�−pK, u)−p = 1
ncn−2,pV (K)

∫
Sn−1

|u · v|pdSp(K, v), (1.2)

where Sp(K, ·) denotes the Lp-surface area measure.
Note that our definition of �−pK is different from the definition given by Lutwak,

Yang and Zhang in [11]. That is for K = B, we have �−pB = B.

Lutwak, Yang, and Zhang (see [11]) have generalized the classical John ellipsoid
JK to the Lp-John ellipsoid EpK which can be associated with a fixed convex body K :
If K ∈Kn

o and p > 0, amongst all origin-centered ellipsoids E, the unique ellipsoid EpK
that solves the constrained maximization problem

V (EpK) = max
E

V (E) subject to Vp(K, E) ≤ V (K), (1.3)

will be called the Lp-John ellipsoid of K , denoted by EpK .
Corresponding to Lutwak, Yang and Zhang’s research, Yu, Leng and Wu in

[15] proposed the notion that a family of dual Lp-John ellipsoids ẼpK which can
be associated with a fixed convex body K : If K ∈ Kn

o and p > 0, amongst all
origin-centered ellipsoids E, the unique ellipsoid ẼpK that solves the constrained
maximization problem

V (ẼpK) = max
E

(
1

V (E)

)
subject to Ṽ−p(K, E) ≤ V (K), (1.4)

will be called the dual Lp-John ellipsoid of K , denoted by ẼpK .
Lutwak, Yang, and Zhang [11] showed that when p ≥ 1, the volume of EpK is

always dominated by the volume of K .

THEOREM A. Let K ⊂ �n be a convex body that contains the origin in their interiors
and p ≥ 1, then

V (EpK) ≤ V (K),

with equality if and only if K is an ellipsoid centered at the origin.

Yu, Leng and Wu [15] also showed that when p ≥ 1, the volume of K is always
dominated by the volume of ẼpK .

THEOREM B. Let K ⊂ �n be a convex body that contains the origin in their interiors
and p ≥ 1, then

V (K) ≤ V (ẼpK),

with equality if and only if K is an ellipsoid centered at the origin.

One of the aims of this paper is to establish the following strengthened versions of
Theorem A and B.

THEOREM 1.1. Let K ∈ Kn
o and p ≥ 1, then

V (EpK) ≤ V (�−pK) ≤ V (K) ≤ V (�pK) ≤ V (ẼpK), (1.5)

with equality if and only if K is an ellipsoid centered at the origin.
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Another aim of this paper is to establish several polar versions for inequalities (1.5).
In fact, we prove the following volume inequalities among the polar of Lp-centroid
body, Lp-John ellipsoid and its dual, between the polar of Lp-polar projection body
and the polar of Lp-John ellipsoid, respectively.

THEOREM 1.2. Let K ∈ Kn
o and p ≥ 1, then

V (E∗
p K) ≥ V (�∗

pK) ≥ V (Ẽ∗
pK), (1.6)

with equality if and only if K is an ellipsoid centered at the origin.

THEOREM 1.3. Let K ∈ Kn
o and p ≥ 1, then

V (E∗
p K) ≥ V (�∗

−pK), (1.7)

with equality if and only if K is an ellipsoid centered at the origin.

Section 2 contains some notation and background material. We shall prove these
theorems in the final section.

2. Notation and preliminaries. If K ∈ Kn, then the support function of K , h(K, ·) :
�n −→ (0,∞), is defined by [3, 14]

h(K, u) = max{u · x : x ∈ K}, u ∈ Sn−1

where u · x denotes the standard inner product of u and x.
For a compact subset L of �n, which is star-shaped with respect to the origin, we

shall use ρ(L, ·) to denote its radial function; i.e., for u ∈ Sn−1 [3, 14]

ρ(L, u) = max{λ > 0 : λu ∈ L}.

If ρ(L, ·) is continuous and positive, L will be called a star body. Let Sn
o denote the set

of star bodies in �n. Two star bodies K and L are said to be dilates if ρK (u)/ρL(u) is
independent of u ∈ Sn−1.

If K is a convex body that contains the origin in its interior, the polar body K∗ of
K , with respect to the origin, is defined by [3, 14]

K∗ = {x ∈ �n|x · y ≤ 1, y ∈ K}.

For K ∈ Kn
o, it follows from the definitions of support and radial functions, and

the definition of polar body, that [3, 14]

hK∗ = 1/ρK and ρK∗ = 1/hK .

For p ≥ 1, K, L ∈ Kn
o and ε > 0, the Firey Lp-combination K +p ε · L is defined as

the convex body whose support function is given by [6]

h(K +p ε · L, ·)p = h(K, ·)p + εh(L, ·)p. (2.1)

Firey combinations of convex bodies were defined and studied by Firey [2] (who called
them p-means of convex bodies).
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For p ≥ 1, the Lp-mixed volume, Vp(K, L), of the convex bodies K , L ∈Kn
o, can be

defined by

n
p

Vp(K, L) = lim
ε→0+

V (K +p ε · L) − V (K)
ε

.

That this limit exists was demonstrated in [6].
It was shown in [6], that corresponding to each convex body K contained the origin

in its interior in �n, there is a positive Borel measure, Sp(K, ·), on Sn−1 such that

Vp(K, Q) = 1
n

∫
Sn−1

h(Q, u)pdSp(K, u), (2.2)

for each convex body Q ∈Kn
o. The measure S1(K, ·) is just the classical surface area

measure of K and usually denoted by S(K, ·) or SK .
From the definition of the Lp-mixed volume, it follows immediately that for each

K ∈ Kn
o,

Vp(K, K) = V (K). (2.3)

We shall require a basic inequalities for the Lp-mixed volume. The Lp-Minkowski
inequality states that for K , L ∈ Kn

o and p ≥ 1 (see [6, 7])

Vp(K, L) ≥ V (K)(n−p)/nV (L)p/n, (2.4)

with equality if and only if K and L are dilates.

For star bodies K, L and p ≥ 1, ε > 0, the Lp-harmonic radial combination
K +−p ε · L is defined as the star body whose radial function is given by [7]

ρ(K +−p ε · L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p. (2.5)

The Lp-dual mixed volume Ṽ−p(K, L) of the star bodies K, L can be defined by

n
−p

Ṽ−p(K, L) = lim
ε→0+

V (K +−p ε · L) − V (K)
ε

.

The definition above and the polar coordinate formula for volume give the following
integral representation of the dual mixed volume Ṽ−p(K, L) of the star bodies K, L

Ṽ−p(K, L) = 1
n

∫
Sn−1

ρ
n+p
K (v)ρ−p

L (v) dS(v), (2.6)

where the integration is with respect to spherical Lebesgue measure S on Sn−1.
From the definition of the Lp-dual mixed volume, it follows immediately that for

each K ∈ Sn
o ,

Ṽ−p(K, K) = V (K). (2.7)

We shall also require a basic inequality for the Lp-dual mixed volumes. The Lp-
Minkowski inequality for the Lp-dual mixed volumes states that for star bodies K , L
and p ≥ 1 (see [7])

Ṽ−p(K, L) ≥ V (K)n+p/nV (L)−p/n, (2.8)

with equality if and only if K and L are dilates.
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3. Proof of the results. The following lemmas will be used later.

LEMMA 3.1. [9] If K is a star body about the origin in �n and p ≥ 1, then

V (�pK) ≥ V (K), (3.1)

with equality if and only if K is an ellipsoid centered at the origin.

LEMMA 3.2. [8] If K is a star body about the origin in �n and p ≥ 1, then

V (K)V (�∗
pK) ≤ ω2

n, (3.2)

with equality if and only if K is an ellipsoid centered at the origin.

LEMMA 3.3. Let K ∈ Sn
o , L ∈ Kn

o and p ≥ 1, then

Vp(L, �pK)
V (L)

= Ṽ−p(K, �−pL)
V (K)

. (3.3)

Proof. From the integral representation (2.6), definition (1.2), Fubini’s theorem,
definition (1.1), and the integral representation (2.2), it follows that

Ṽ−p(L, �−pK) = 1
n

∫
Sn−1

ρ
n+p
K (v)ρ−p

�−pL(v) dS(v)

= 1
nncn−2,pV (L)

∫
Sn−1

ρ
n+p
K (v)

∫
Sn−1

|u · v|pdSp(L, v) dS(v)

= 1
nncn−2,pV (L)

∫
Sn−1

∫
Sn−1

|u · v|pρn+p
K (v)dS(v) dSp(L, v)

= V (K)
nV (L)

∫
Sn−1

hp
�pK (v) dSp(L, v)

= V (K)
V (L)

Vp(L, �pK).

REMARK 1. Identity (3.3) for p = 2 can be found in [10].

Proof of Theorem 1.1. Taking EpK = K in inequality (3.3) and noticing that
�pEpK = EpK , we obtain

Vp(L, EpK) = Vp(L, �pEpK) = V (L)
V (EpK)

Ṽ−p(EpK, �−pL).

Letting K = L in the above equality and combining with inequality (2.8), we have

Vp(K, EpK) = V (K)
V (EpK)

Ṽ−p(EpK, �−pK)

≥ V (K)
V (EpK)

V (EpK)(n+p)/nV (�−pK)−p/n

= V (K)V (EpK)p/nV (�−pK)−p/n. (3.4)
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According to the equality conditions of inequality (2.8), we know that equality in (3.4)
holds if and only if EpK and �−pK are dilates, that is, equality in (3.4) holds if and only
if �−pK is an ellipsoid centered at the origin.

From the definition (1.3) of Lp-John ellipsoid EpK , it follows that

V (K) ≥ Vp(K, EpK), (3.5)

with equality if and only if K is an ellipsoid centered at the origin.
Combining inequalities (3.4) and (3.5) we have

V (K) ≥ V (K)V (EpK)p/nV (�−pK)−p/n,

and therefore we get

V (EpK) ≤ V (�−pK), (3.6)

which is the first inequality of (1.5).
Concerning the equality conditions of inequality (3.4) and (3.5), we know that

equality in (3.6) holds if and only if �−pK is an ellipsoid centered at the origin and K is
an ellipsoid centered at the origin, that is, K must be an ellipsoid centered at the origin.

In Lemma 3.3, let K = �−pL, and noting (2.3), we can get

V (L) = Vp(L, �p�−pL).

By inequality (2.4), taking K = L and using Lemma 3.1, we get

V (K) = Vp(K, �p�−pK) ≥ V (K)(n−p)/nV (�p�−pK)p/n

≥ V (K)(n−p)/nV (�−pK)p/n,

that is

V (�−pK) ≤ V (K), (3.7)

which is just the second inequality of inequalities (1.5).
According to the equality conditions of inequality (2.4) and (3.1), we know that

equality in (3.7) holds if and only if K and �p�−pK are dilates and �−pK is an ellipsoid
centered at the origin, that is, K must be an ellipsoid centered at the origin.

Taking ẼpK = L in inequality (3.3), noticing that �−pẼpK = ẼpK , and combining
with inequality (2.4), we have

Ṽ−p(K, ẼpK) = Ṽ−p(K, �−pẼpK)

= V (K)

V (ẼpK)
Vp(ẼpK, �pK)

≥ V (K)

V (ẼpK)
V (ẼpK)(n−p)/nV (�pK)p/n

= V (K)V (ẼpK)−p/nV (�pK)p/n. (3.8)

According to the equality conditions of inequality (2.4), we know that equality in (3.8)
holds if and only if ẼpK and �pK are dilates, that is, equality in inequality (3.8) holds
if and only if �pK is an ellipsoid centered at the origin.
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From the definition (1.4) of dual Lp-John ellipsoid ẼpK , it follows that

V (K) ≥ Ṽ−p(K, ẼpK), (3.9)

with equality if and only if K is an ellipsoid centered at the origin.
Combining inequalities (3.8) and (3.9), we have

V (K) ≥ V (K)V (ẼpK)−p/nV (�pK)p/n,

and therefore we get

V (�pK) ≤ V (ẼpK), (3.10)

which is the fourth inequality of inequalities (1.5).
Concerning the equality conditions of inequality (3.8) and (3.9), we know that

equality in (3.10) holds if and only if �pK is an ellipsoid centered at the origin and K is
an ellipsoid centered at the origin, that is, K must be an ellipsoid centered at the origin.

Combining with inequalities (3.6), (3.7), (3.1) and (3.10), we immediately obtain
inequalities (1.5), and we also know that equality holds if and only if K is an ellipsoid
centered at the origin.

Proof of Theorem 1.2. Because V (EpK)V (E∗
p K) = ω2

n, from Theorem A and
Lemma 3.2, we have

V (�∗
pK)V (EpK) ≤ V (�∗

pK)V (K) ≤ ω2
n = V (EpK)V (E∗

p K),

that is

V (E∗
p K) ≥ V (�∗

pK), (3.11)

which is the first inequality of (1.6).
According to the equality conditions of Theorem A and Lemma 3.2, we know that

equality in inequality (3.11) holds if and only if K is an ellipsoid centered at the origin.
According to the integral representation (2.6), definition (1.1) and Fubini’s

theorem, we immediately get

Ṽ−p(K, �∗
pL)

V (K)
= Ṽ−p(L, �∗

pK)

V (L)
. (3.12)

In equation (3.12), if we let L = Ẽ∗
pK , notice that �pẼ∗

pK = Ẽ∗
pK , and combine

with inequality (3.9), we have

Ṽ−p(Ẽ∗
pK, �∗

pK)/V (Ẽ∗
pK) = Ṽ−p(K, �∗

p Ẽ∗
pK)/V (K

= Ṽ−p(K, ẼpK)/V (K)

≤ V (K)/V (K) = 1.

By inequality (2.8), we have

Ṽ−p(Ẽ∗
pK, �∗

pK) ≥ V (Ẽ∗
pK)(n+p)/nV (�∗

pK)−p/n,
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therefore

V (�∗
pK) ≥ V (Ẽ∗

pK), (3.13)

which is the second inequality of inequalities (1.6).
According to the equality conditions of inequality (2.8) and inequality (3.9), we

know that equality in inequality (3.13) holds if and only if K is an ellipsoid centered at
the origin.

Combining inequalities (3.11) with (3.13), we immediately obtain inequalities (1.6),
and we also know that equality holds if and only if K is an ellipsoid centered at the
origin.

Proof of Theorem 1.3. From the integral representation (2.2), definition (1.2), and
Fubini’s theorem, it follows that

Vp(K, �∗
−pL)

V (K)
= Vp(L, �∗

−pK)

V (L)
. (3.14)

In equation (3.14), if we let L = E∗
p K , notice �−pE∗

p K = E∗
p K , and combine with

inequality (3.5), we have

Vp(E∗
p K, �∗

−pK)/V (E∗
p K) = Vp(K, �∗

−pE∗
p K)/V (K)

= Vp(K, EpK)/V (K)

≤ V (K)/V (K) = 1.

By inequality (2.4), we get

Vp(E∗
p K, �∗

−pK) ≥ V (E∗
p K)(n−p)/nV (�∗

−pK)p/n,

and therefore

V (E∗
p K) ≥ V (�∗

−pK).

According to the equality conditions of inequalities (2.4) and (3.5), we know that
equality in (1.7) holds if and only if K is an ellipsoid centered at the origin.
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