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Abstract. In this paper, Berger spheres are regarded as geodesic spheres with suf-
ficiently big radii in a complex projective space. We characterize such real hypersurfaces
by investigating their geodesics and contact structures from the viewpoint of submanifold
theory.
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1. Introduction. Klingenberg ([4]) proved the following: Let M be an even dimen-
sional compact simply connected Riemannian manifold having the sectional curvature K
with 0 < K � L on M , where L is a constant. Then the length � of every closed geodesic on
M satisfies �� 2π/

√
L .

Berger gave examples of metrics on S3 for which this inequality does not hold. This
3-sphere is called a Berger sphere with a Riemannian metric from a one-parameter fam-
ily, which can be obtained from the standard metric by shrinking along fibers of a Hopf
fibration. Chavel constructed similar metrics on higher odd-dimensional spheres.

Weinstein ([10]) gave a description of these Berger and Chavel examples as geodesic
hyperspheres G(r) (0 < r < π/

√
c ) with tan2(

√
c r/2) > 2 in a complex projective space

CPn(c), n � 2 of constant holomorphic sectional curvature c(> 0). Indeed, let G(r) be a
(2n−1)-dimensional geodesic sphere of radius r (0 < r < π/

√
c ) with tan2(

√
c r/2) > 2 in

CPn(c). Then in this case there exists a closed geodesic on G(r) whose length is shorter
than 2π/

√
L , where L is the maximal sectional curvature of G(r). In general, the sec-

tional curvature K of every geodesic sphere G(r) of radius r (0 < r < π/
√

c ) satisfies sharp
inequalities 0 < (c/4) cot2(

√
c r/2)� K � c + (c/4) cot2(

√
c r/2)(= L) at each point (see

Section 4).
In this paper, geodesic spheres of radius r (0 < r < π/

√
c ) with tan2(

√
c r/2) > 2 in

CPn(c), n � 2 are called Berger spheres. It is natural to characterize Berger spheres as real
hypersurfaces isometrically immersed into CPn(c).

The purpose of this paper is to prove the following two theorems.
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THEOREM 1.1. Let M2n−1 be a real hypersurface of CPn(c), n � 2 through an
isometric immersion. Then M is locally congruent to a Berger sphere, namely a geodesic
sphere G(r) of radius r with tan2(

√
c r/2) > 2, with respect to the full isometry group

SU(n + 1) of the ambient space CPn(c) if and only if at each point p of M there exists
an orthonormal basis v1, . . . , v2n−2, ξp of TpM such that all geodesics γi = γi(s) (1 � i �
2n − 2) with initial condition that γi(0) = p and γ̇i(0) = vi are mapped to circles of the
same positive curvature k(p) with k(p) <

√
c /(2

√
2 ) in the ambient space CPn(c), where

ξp is the characteristic vector of M at p ∈ M. In this case, the function k = k(p) on M is
automatically constant with k = (

√
c /2) cot(

√
c r/2).

THEOREM 1.2. Let M2n−1 be a real hypersurface of CPn(c), n � 2 through an isomet-
ric immersion. Then M is locally congruent to a Berger sphere if and only if M satisfies
the following two conditions.

(1) There exists a positive constant k with k <
√

c /(2
√

2 ) such that the exterior
derivative dη of the contact form η on M satisfies either dη(X , Y ) = kg(φX , Y )

for all X , Y ∈ TM or dη(X , Y ) = −kg(φX , Y ) for all X , Y ∈ TM, where g and φ

are the Riemannian metric and the structure tensor on M, respectively.
(2) There exists a point x of M satisfying that every sectional curvature of M at x is

positive.

We here recall the definition of dη on a real hypersurface M : dη is given by
dη(X , Y ) = (1/2){X (η(Y )) − Y (η(X )) − η([X , Y ])} for all X , Y ∈ TM . For further com-
ments on Theorems 1.1 and 1.2, see Section 5.

We note for comparison the recent paper of Li, Vrancken, and Wang ([5]), which
gives a characterization of three-dimensional Bereger spheres as Lagrangian submanifolds
of CP3. They showed the following (for details, see Theorem 1.2 in [5]): Let φ be a
Lagrangian isometric immersion (an open part of) one of the homogeneous 3-manifolds
M3 into a complex space form M3(c)(= CP3(c), CH3(c) or C3). Then c > 0 and φ is
minimal and M3 is locally congruent to the Berger sphere.

2. Preliminaries. Let M2n−1 be a real hypersurface with a unit normal local vector
field N of an n(� 2)-dimensional complex projective space CPn(c) of constant holo-
morphic sectional curvature c(> 0) through an isometric immersion. The ambient space
CPn(c) is furnished with the standard Riemannian metric g and the canonical Kähler struc-
ture J . The Riemannian connections ∇̃ of CPn(c) and ∇ of M are related by the following
formulas of Gauss and Weingarten:

∇̃X Y = ∇X Y + g(AX , Y )N , (2.1)

∇̃XN = −AX (2.2)

for arbitrary vector fields X and Y on M , where g is the Riemannian metric of M induced
from the standard metric of the ambient space CPn(c) and A is the shape operator of M
in CPn(c). An eigenvector of the shape operator A is called a principal curvature vector
of M in CPn(c) and an eigenvalue of A is called a principal curvature of M in CPn(c).
We denote by Vλ the eigenspace associated with the principal curvature λ, namely we set
Vλ = {v ∈ TM |Av = λv}.

On M it is well-known that an almost contact metric structure (φ, ξ, η, g) associated
with N is canonically induced from the Kähler structure (J , g) of the ambient space
CPn(c), which is defined by
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g(φX , Y ) = g(JX , Y ), ξ = −JN and η(X ) = g(ξ, X ) = g(JX ,N ).

φ, ξ and η are called the structure tensor, the characteristic vector field and the contact
form on M , respectively. It follows from (2.1), (2.2) and ∇̃J = 0 that

(∇X φ)Y = η(Y )AX − g(AX , Y )ξ, (2.3)

∇X ξ = φAX . (2.4)

Needless to say, M has two almost contact metric structures (φ, ξ, η, g) associated with N
and (φ, −ξ, −η, g) associated with −N .

Denoting the curvature tensor of M by R, we have the equation of Gauss given by

g
(
(R(X , Y )Z, W

) = (c/4)
{
g(Y , Z)g(X , W) − g(X , Z)g(Y , W)

+ g(φY , Z)g(φX , W) − g(φX , Z)g(φY , W) − 2g(φX , Y )g(φZ, W)
}

+ g(AY , Z)g(AX , W) − g(AX , Z)g(AY , W).

Hence, the sectional curvature K(X , Y ) of the real plane spanned by a pair (X , Y ) of
orthonormal vectors is given by

K(X , Y ) = (c/4)
(
1 + 3g(φX , Y )2

) + g(AX , X )g(AY , Y ) − g(AX , Y )2. (2.5)

We usually call M a Hopf hypersurface if the characteristic vector ξ is a principal
curvature vector at each point of M . The following is a key lemma in this paper.

LEMMA 2.1. ([6]). Let M be a Hopf hypersurface of CPn(c), n � 2. Then the follow-
ing hold.

(1) If a nonzero vector v ∈ TM orthogonal to ξ satisfies Av = λv, then Aφv = (
(δλ +

(c/2))/(2λ − δ)
)
φv, where δ is the principal curvature associated with ξ .

(2) The principal curvature δ associated with ξ is locally constant.

REMARK 2.1. For every Hopf hypersurface M in CPn(c) we find easily that 2λ − δ �= 0
because if 2λ − δ = 0, we have δλ + (c/2) = 0 (see Lemma 2.1(1)), which contradicts to
c > 0.

THEOREM 2.1. ([8, 3]). For a real hypersurface M2n−1 of CPn(c) (n � 2), M is homo-
geneous in the ambient space CPn(c), that is, M is an orbit of a subgroup of the full
isometry group I(CPn(c))(= SU(n + 1)) of CPn(c) if and only if M2n−1 is a Hopf hyper-
surface all of whose principal curvatures are constant on M in CPn(c). Moreover, M is
locally congruent to one of the following:
(A1) A geodesic sphere of radius r, where 0 < r < π/

√
c ;

(A2) A tube of radius r around a totally geodesic CP�(c) (1 � �� n − 2), where 0 < r <

π/
√

c ;
(B) A tube of radius r around a complex hyperquadric CQn−1, where 0 < r < π/(2

√
c );

(C) A tube of radius r around the Segre embedding of CP1(c) × CP(n−1)/2(c), where
0 < r < π/(2

√
c ) and n (� 5) is odd;

(D) A tube of radius r around the Plücker embedding of a complex Grassmannian
CG2,5, where 0 < r < π/(2

√
c ) and n = 9;

(E) A tube of radius r around a Hermitian symmetric space SO(10)/U(5), where
0 < r < π/(2

√
c ) and n = 15.

These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D) and (E).
Unifying real hypersurfaces of types (A1) and (A2), we call them hypersurfaces of type (A).
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The numbers of distinct principal curvatures of these real hypersurfaces are 2, 3, 3, 5, 5, 5,
respectively. The principal curvatures of these real hypersurfaces in CPn(c) are given as
follows:

(A1) (A2) (B) (C, D, E)

λ1

√
c

2 cot
(√

c
2 r

) √
c

2 cot
(√

c
2 r

) √
c

2 cot
(√

c
2 r − π

4

) √
c

2 cot
(√

c
2 r − π

4

)

λ2 — −
√

c
2 tan

(√
c

2 r
) √

c
2 cot

(√
c

2 r + π
4

) √
c

2 cot
(√

c
2 r + π

4

)

λ3 — — —
√

c
2 cot

(√
c

2 r
)

λ4 — — — −
√

c
2 tan

(√
c

2 r
)

δ
√

c cot
(√

c r
) √

c cot
(√

c r
) √

c cot
(√

c r
) √

c cot
(√

c r
)

The principal curvatures and their multiplicities of all homogeneous real hypersurfaces in
CPn(c) are given in [8, 9].

At the end of this section we review the definition of circles in Riemannian geometry.
A smooth real curve γ = γ (s) parametrized by its arclength s on a Riemannian manifold M
with Riemannian connection ∇ is called a circle of curvature k if there exist a nonnegative
constant k and the unit vector field Ys orthogonal to the tangential vector γ̇ along the
curve γ satisfying the ordinary differential equations ∇γ̇ γ̇ = kYs and ∇γ̇ Ys = −kγ̇ . It is
well-known that a curve γ is a circle if and only if it satisfies the following differential
equation:

∇γ̇ ∇γ̇ γ̇ + g(∇γ̇ γ̇ , ∇γ̇ γ̇ )γ̇ = 0, (2.6)

where g is the Riemannian metric on M . A circle of null curvature is nothing but a geodesic.

3. Proof of Theorem 1.1. (=⇒) By assumption we can regard our real hyper-
surface M as a geodesic sphere G(r) of radius r with tan2(

√
c r/2) > 2 in the ambient

space CPn(c) , n � 2. So the tangent bundle TM of M is decomposed as: TM = {ξ}R ⊕ Vλ,
where Aξ = √

c cot(
√

c r)ξ and λ = (
√

c /2) cot(
√

c r/2). We take an arbitrary geodesic
γ = γ (s) on M with an initial vector γ̇ (0) perpendicular to the characteristic vector ξγ (0).
Then, using a fact that φA = Aφ holds on M and equation (2.4), we obtain the following:

γ̇ (s)
(
g(γ̇ (s), ξγ (s))

) = ∇γ̇ (s)

(
g(γ̇ (s), ξγ (s))

) = g
(
γ̇ (s), ∇γ̇ (s)ξγ (s)

)
= g

(
γ̇ (s), φAγ̇ (s)

) = g
(
γ̇ (s), Aφγ̇ (s)

)
= g

(
Aγ̇ (s), φγ̇ (s)

) = −g
(
φAγ̇ (s), γ̇ (s)

) = 0,

so that g(γ̇ (s), ξγ (s)) is constant along the curve γ = γ (s), which, together with
g(γ̇ (0), ξγ (0)) = 0, yields that g(γ̇ (s), ξγ (s)) = 0 for each s. Hence we can find that
Aγ̇ (s) = λγ̇ (s) for every s. This, combined with equations (2.1) and (2.2), shows that
∇̃γ̇ (s)γ̇ (s) = λNγ̇ (s) and ∇̃γ̇ (s)Nγ̇ (s) = −λγ̇ (s). Thus we know that the curve γ , consid-
ered as a curve in the ambient space CPn(c), is a circle of the same positive curvature
λ(= (

√
c /2) cot(

√
c r/2)) which is independent of the choice of γ . Moreover, by the
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assumption that tan(
√

c r/2) >
√

2 we get λ <
√

c /(2
√

2 ). Therefore we can obtain the
“only if” part.

(⇐=) Let γi = γi(s) (1 � i � 2n − 2) be geodesics on M satisfying the hypothesis.
Then it follows from (2.6) that

∇̃γ̇i(s)

(
∇̃γ̇i(s)γ̇i(s)

)
= −k2(p)γ̇i(s). (3.1)

On the other hand, from (2.1) and (2.2) we obtain

∇̃γ̇i(s)

(
∇̃γ̇i(s)γ̇i(s)

)
= g

(
(∇γ̇i(s)A)γ̇i(s), γ̇i(s)

)N − g(Aγ̇i(s), γ̇i(s))Aγ̇i(s). (3.2)

Comparing the tangential components of (3.1) and (3.2), we have

g(Aγ̇i(s), γ̇i(s))Aγ̇i(s) = k2( p)γ̇i(s) for 1 � i � 2n − 2,

which, combined with k(p) �= 0, yields that Avi = k(p)vi or Avi = −k(p)vi for 1 � i �
2n − 2 at the point p = γi(0). Note that ξ is principal. Indeed, g(Aξ, vi) = g(ξ, Avi) = 0 for
1 � i � 2n − 2. Thus, we know that our real hypersurface M is a Hopf hypersurface hav-
ing at most three distinct principal curvatures δ, k and −k. We here note that the function
k = k(p) is automatically constant on M . In fact, from Lemma 2.1(1), we see that

k = kδ + (c/2)

2k − δ
or k = −kδ + (c/2)

2k − δ
.

However the latter case does not hold, since c > 0. Then we know that our real hypersurface
M is a Hopf hypersurface having at most three distinct constant principal curvatures δ, k
and −k. So, by virtue of Theorem 2.1 and the table of principal curvatures we find that our
real hypersurface M is locally congruent to either a geodesic sphere G(r) (0 < r < π/

√
c )

or a real hypersurface of type (A2) of r = π/(2
√

c ). In the latter case, the constant function
k is expressed as k = √

c /2, which contradicts to the hypothesis k <
√

c /(2
√

2 ). Again,
using the hypothesis k <

√
c /(2

√
2 ) for geodesic spheres G(r) (0 < r < π/

√
c ), we can

see that tan2(
√

c r/2) > 2, so that we can obtain the “if” part.

4. Proof of Theorem 1.2. Before proving Theorem 1.2 we first compute the sec-
tional curvature K of every geodesic sphere G(r) (0 < r < π/

√
c ). We take a pair (X , Y )

of orthonormal vectors that are orthogonal to ξ . In order to estimate the sectional curvature
K of M , it suffices to calculate K(sin θ · X + cos θ · ξ, Y ). It follows from (2.5) that

K(sin θ · X + cos θ · ξ, Y ) = (c/4){sin2 θ
(
1 + 3g(φX , Y )2

) + cot2(
√

c r/2)}.
This gives the following inequalities:

(c/4) cot2(
√

c r/2)� K � c + (c/4) cot2(
√

c r/2). (4.1)

We remark that K(X , φX ) = c + (c/4) cot2(
√

c r/2) and K(X , ξ) = (c/4) cot2(
√

c r/2) for
each unit vector X orthogonal to ξ .

We are now in a position to prove Theorem 1.2.
(=⇒) Let M be a geodesic sphere G(r) of radius r with tan2(

√
c r/2) > 2 in

CPn(c) , n � 2. Since M is totally η-umbilical in the ambient space CPn(c) and√
c · cot(

√
c r) = (

√
c /2) cot(

√
c r/2) − (

√
c /2) tan(

√
c r/2), the shape operator A of M

is expressed as follows:

AX = (
√

c /2) cot(
√

c r/2)X − (
√

c /2) tan(
√

c r/2)η(X )ξ for all X ∈ TM . (4.2)
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In view of (2.4), (4.2) and a fact that φA = Aφ on M we shall compute dη.

dη(X , Y ) = (1/2)
{
X (η(Y )) − Y (η(X )) − η([X , Y ])}

= (1/2)
{
X (g(ξ, Y )) − Y (g(ξ, X )) − η(∇X Y − ∇Y X )

}
= (1/2)

{
g(φAX , Y ) + g(ξ, ∇X Y ) − g(φAY , X ) − g(ξ, ∇Y X )

− g(∇X Y − ∇Y X , ξ)
}

= (1/2)g
(
(φA + Aφ)X , Y

) = g(φAX , Y )

= (
√

c /2) cot(
√

c r/2)g(φX , Y ),

so that k = (
√

c /2) cot(
√

c r/2) > 0, which, together with the assumption
tan2(

√
c r/2) > 2, yields Theorem 1.2(1). Theorem 1.2(2) is an immediate consequence of

(4.1). Thus we have proved the “only if” part.
(⇐=) Let M be a real hypersurface satisfying Conditions (1) and (2) in Theorem 1.2

in the ambient space CPn(c), n � 2. By virtue of the above calculation we can make use
of the following equality:

dη(X , Y ) = (1/2)g
(
(φA + Aφ)X , Y

)
for all X , Y ∈ TM . (4.3)

It follows from Condition (1) and (4.3) that

(φA + Aφ)X = ±2kφX for all X ∈ TM . (4.4)

The equality (4.4) shows φAξ = 0, so that our real hypersurface M is a Hopf hypersur-
face. So we can set Aξ = δξ . We take a principal curvature vector X orthogonal to ξ with
AX = λX . Then, by Lemma 2.1(1) and (4.4) we see that λ satisfies

λ + δλ + (c/2)

2λ − δ
= ±2k,

so that λ is a solution to the following quadratic equation with constant coefficients:

4λ2 − 8kλ + c + 4δk = 0 or 4λ2 + 8kλ + c − 4δk = 0.

Hence our Hopf hypersurface M has at most three distinct constant principal curvatures.
Thus, from Theorem 2.1 we find that M is locally congruent to one of homogeneous real
hypersurfaces of types (A1), (A2) and (B). So, in the following we shall check (4.4) one by
one for these three homogeneous real hypersurfaces. We here note that (φA + Aφ)ξ = 0 =
±2kφξ , since ξ is principal.

Let M be of type (A1) of radius r (0 < r < π/
√

c ). Then the above calculation guar-
antees (4.4). Moreover, by Condition (1) we have (

√
c /2) cot(

√
c r/2) <

√
c /(2

√
2 ), so

that tan2(
√

c r/2) > 2. Hence, in this case our Hopf hypersurface M is locally congruent to
a Berger sphere.

Let M be of type (A2) of radius r (0 < r < π/
√

c ). It is sufficient to check (4.4)
for every X (∈ TM) perpendicular to ξ . But, from Lemma 2.1(1) we get both φVλ1 = Vλ1

and φVλ2 = Vλ2 , where λ1 = (
√

c /2) cot(
√

c r/2) and λ2 = −(
√

c /2) tan(
√

c r/2). These
imply that Equation (4.4) does not hold for each r ∈ (0, π/

√
c ).

Let M be of type (B) of radius r (0 < r < π/(2
√

c )). Then M has three distinct
constant principal curvatures:

λ1 =
√

c

2

1 + x

1 − x
, λ2 = −

√
c

2

1 − x

1 + x
and δ =

√
c

2

(
x − 1

x

)
,
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where x = cot(
√

c r/2) > 1. Note that φVλ1 = Vλ2 and φVλ2 = Vλ1 (see Lemma 2.1(1)).
Furthermore, we see λ1 + λ2 = (2

√
c x)/(1 − x2) < 0. So, in this case for the purpose

of checking (4.4) we must solve the equation: λ1 + λ2 = −2k. Then we find easily x =
(
√

c + √
c + 4k2 )/(2k). Moreover, it follows from

(−λ1) + (−λ2)

2
= k <

√
c

2
√

2
that x >

√
2 + √

3 .

Thus we can see that our real hypersurface of type (B) of radius r with cot(
√

c r/2) =
(
√

c + √
c + 4k2 )/(2k) and cot(

√
c r/2) >

√
2 + √

3 satisfies Condition (1). We remark
that such real hypersurfaces of type (B) do exist. In fact, since the constant k is written as:
k = √

c x/(x2 − 1), by setting x satisfying an inequality x >
√

2 + √
3 we can guarantee

that the above real hypersurfaces of type (B) exist, where x is a solution to kx2 − √
c x − k =

0 and x = cot(
√

c r/2) > 1.
Next, we shall check Condition (2) for Berger spheres and the above homogeneous

real hypersurface of type (B). The former case is obvious (see (4.1)). We investigate the
latter case. It follows from (2.5) that

K(X , ξ) = c

4
+ λ1δ = c

4
− c

4

(1 + tan(
√

c r/2))2

tan(
√

c r/2)
< 0 for each unit X ∈ Vλ1

and

K(Y , ξ) = c

4
+ λ2δ = c

4
+ c

4

(1 − tan(
√

c r/2))2

tan(
√

c r/2)
> 0 for each unit Y ∈ Vλ2 .

Thus we see that every homogeneous real hypersurface of type (B) does not satisfy
Condition (2). Therefore we have proved the “if” part.

5. Comments on Theorems 1.1 and 1.2. (1) In the statement of Theorem 1.1, if we
remove k(p) <

√
c /(2

√
2 ), this theorem is no longer true. All geodesic spheres G(r) (0 <

r < π/
√

c ) and a certain homogeneous real hypersurface of type (A2) satisfy Theorem 1.1
without an inequality k(p) <

√
c /(2

√
2 ). We here recall a fact that if every geodesic γ

on a submanifold Mn into a Riemannian manifold M̃n+p through an isometric immersion
is mapped to a circle (of curvature k) in the ambient space M̃n+p, then the curvature k
does not depend on the choice of γ . On the other hand, we know that CPn(c) admits no
real hypersurfaces all of whose geodesics are mapped to circles in this space. Hence it is
natural to consider real hypersurfaces some of whose geodesics are mapped to circles of
the same curvature in CPn(c). In this context, we establish Theorem 1.1.

(2) In the statement of Theorem 1.2, if we remove Condition (2), this theorem does
not hold. The Berger sphere and a certain homogeneous real hypersurface of type (B) sat-
isfy Theorem 1.2(1). We here review a fact that CPn(c) admits no real hypersurfaces with
dη = 0 (see [7]). On the other hand, a complex Euclidean space Cn has real hypersurfaces
M2n−1 with dη = 0 (e.g., the totally geodesic real hypersurface R2n−1 satisfies this condi-
tion). So, in some sense the geometry of real hypersurfaces of CPn(c) is more complicated
than that of Cn. Motivated by them, we establish Theorem 1.2.

(3) We review the length spectrum of every geodesic sphere G(r) (0 < r < π/
√

c )

for readers (for details, see [2]). We first note that every integral curve γξ of the char-
acteristic vector field ξ is a closed geodesic on G(r) with length 2π sin(

√
c r)/

√
c . In

fact, the curve γξ satisfies ∇ξ ξ = 0, ∇̃ξ ξ = √
c cot(

√
c r)N and ∇̃ξN = −√

c cot(
√

c r)ξ
with γ̇ξ = ξ , where ∇ and ∇̃ are the Riemannian connections of G(r) and CPn(c),
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respectively. These mean that the curve γξ can be regarded as a small circle of positive
curvature

√
c | cot(

√
c r)| on S2(c)(= CP1(c)). Hence, the length � of γξ is repre-

sented as: � = 2π/
√

c cot2(
√

c r) + c = 2π sin(
√

c r)/
√

c . We here consider an inequal-
ity 2π sin(

√
c r)/

√
c < 2π/

√
c + (c/4) cot2(

√
c r/2), where c + (c/4) cot2(

√
c r/2) is the

maximal sectional curvature of G(r). Solving this inequality, we get tan2(
√

c r/2) > 2.
Every geodesic sphere G(r) (0 < r < π/

√
c ) admits countably many congruence

classes of closed geodesics with respect to the full isometry group I(G(r)) of G(r). All
integral curves of the characteristic vector field ξ are congruent to each other with respect
to I(G(r)) and the shortest closed geodesics (with common length 2π sin(

√
c r)/

√
c )

on G(r). Furthermore, the lengths of all closed geodesics except integral curves of the
characteristic vector field ξ on G(r) are longer than 2π/

√
c + (c/4) cot2(

√
c r/2).

(4) We consider all geodesic spheres G(r) (0 < r < π/
√

c ) from the viewpoint of con-
tact geometry (cf. [1]). A geodesic sphere G(r) is a Sasakian manifold (with respect to
the almost contact metric structure (φ, ξ, η, g) induced from the Kähler structure J of
CPn(c)) if and only if (

√
c /2) cot(

√
c r/2) = 1. This Sasakian manifold M has automati-

cally constant φ-sectional curvature c + 1, so that it is a Sasakian space form of constant
φ-sectional curvature c + 1. Since an inequality 1 <

√
c /(2

√
2 ) leads to an inequality

c > 8, by the discussion in our paper we find that all Sasakian space forms of constant
φ-sectional curvature c̃ with c̃ > 9 are Berger spheres.

(5) We comment on the sectional curvature K of Berger spheres, that is, geodesic
spheres G(r) with tan2(

√
c r/2) > 2 in CPn(c). The sectional curvature K satisfies

sharp inequalities δL � K � L for some δ ∈ (0, 1/9) at its each point, where L = c +
(c/4) cot2(

√
c r/2). In this context, we recall the following, which is derived from direct

computation.

LEMMA 5.1. Let G(r) be a geodesic sphere of radius r (0 < r < π/
√

c ) in CPn(c).
Then the following three conditions are mutually equivalent:

(1) The radius r satisfies an inequality tan2(
√

c r/2) > 2.
(2) The sectional curvature K of G(r) satisfies sharp inequalities δL � K � L for some

δ ∈ (0, 1/9) at its each point.
(3) The length of every integral curve of the characteristic vector field ξ on G(r) is

shorter than 2π/
√

L , where L is the maximal sectional curvature of G(r).

Needless to say, for every geodesic sphere G(r) (0 < r < π/
√

c ) in CPn(c) every
integral curve of the characteristic vector field ξ on G(r) is a geodesic.
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