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ABSTRACT

The problem of the best fit to set ideal values under general inequality
order restrictions is examined for asymmetric, quadratic, absolute, and
Chebyshev norms. Special solution procedures are given in terms of network
flow algorithms over a network associated with the given isotonic order
relations, and the nature of the optimal solutions is characterized for the
different norms.

The model is formulated in terms of finding an optimal insurance rate
structure over given risk classes for which a desired pattern of tariffs can be
specified. The suitability of different norms is considered in the context of
corporate profitability, and the relationship to a simple rate relativities
model is described.
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i. INTRODUCTION

There are many different problems associated with the deter-
mination of rate structures in the insurance industry: the search
for patterns in the data; development of underlying causal factors
and analysis of their importance; subdivision of a group of existing
risk classes into new tariff categories; fitting of experience data to
standard formulae or rating bureau schedules; consideration of
reserve liquidity, competitive, or legislative factors, and so on.

In this paper we shall examine the problem of determining the
best set of premium rates over a finite set of premium classes, where
the desired structure of tariffs is not given by a precise causal model,
but can be specified in terms of inequality constraints between tariffs
in different classes which reflect desirable "patterns" or "profiles".
This approach allows the decision-maker a great deal of flexibility
in specifying the acceptable set of solutions, and to some extent
diminishes the need to determine causal factors, since rate struc-
tures seem more often to reflect "reasonable" relationships, parallels
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176 ISOTONIC OPTIMIZATION

with existing rate patterns, or competitive factors, than they do
some underlying physical law.

The simplest such rate relationship is a partial order between the
tariffs; we shall see that this leads to a model in which the feasible
solutions can be described in terms of a network optimization
problem, similar to a critical path schedule. The optimal solution,
or "best fit", of course depends upon the norm chosen, and the
ideal solution without structure constraints; we shall examine the
appropriateness of three major objective forms in a later section.

The advantage of network formulation for this problem lies in the
fact that the structure constraints can be easily visualized, and
modified if necessary. For small problems, the computations can be
easily carried out "on the network", and are much more revealing
than table or tableau formats; for larger problems, efficient com-
puter codes of the network flow optimization type are available.

The mathematical ideas on which this approach is based are not
new, having appeared in the literature with the names isotonic
regression [2], isotonic optimization [23], or majorized network flows
[24]. However the original papers are somewhat obscure, and
consider more general and abstract formulations than are needed
here. We shall emphasize the algorithmic approach, along the lines
of previous programming approaches to approximation theory [8],
[18], [14], [10], [25], [26], [22], [16], [19], [5], [4].

2. THE MODEL

Suppose we wish to determine a premium structure y = {yi, y%,
. .., yn) for n well-defined risk classes. Assume that from some other
model (of profitability, competitive factors, group experience rating,
etc.), a set of ideal premium rates, f = {/1./2, • • •»/»}. has been deter-
mined, and a norm, E(y) = \\ y — / |j , has been specified to reflect
the undesirability, cost, or error in picking y different from /.

Three objective functions will be considered in the sequel:

E(y) =

E(y)

E(y) =

(1/2) S

= Sw(

max

Hyt -ft)2

yi —ft 1

Wi | Vj — f i

( I )

(2)

(3)
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where the {wi\ are given positive weights associated with each class.
The first is the classical regression, least-squares or L% norm; the
second is the weighted absolute or L\ norm; the last is called variously
the weighted Chebyshev, uniform, or I r o norm [19]. Actually, we
shall allow unsymmetric generalizations of these norms [10];
motivations will be discussed in a later section.

3. ISOTONIC CONSTRAINTS AND THE ASSOCIATED GRAPH

The concept of structure or pattern implies a certain relationship
betv/een premiums in different classes; this is why the ideal solution
is not y = / . In some situations (such as the determination of clas-
sification relativities [13], [i]), one may postulate a certain mathe-
matical form of relationship, and then approximate that form
through adjustment of parameters.

In our model, we assume only that a certain natural ordering
between tariffs is specified by external considerations, for instance
that

VI > yt (4)

between two classes i and j . An example of this might be in auto-
mobile insurance, where one reasonably expects that the categories:
"for pleasure only", "less than 10 miles to place of work", "greater
than 10 miles to place of work", and "used for business purposes",
reflect increased hazard, and therefore should have monotonic
rates. Or perhaps competitive factors influence the relationship
between different premiums, or there is a concern that an un-
natural pattern will induce "moral hazard" on the part of the
policyholder.

Of course, if the ideal rates also reflect this ordering, then there is
no problem; y =f will be the optimum choice with any norm.
However, the {/{} may be determined by small sample data, or by
profitability considerations and hence may be contradictory to
(4); therein lies the problem of determining the best tariff pattern
within feasible structures.

If (4) holds for j = i -\- 1 (i = 1, 2, . . ., n — 1), after possible
relabelling, then we speak of a complete ordering of the risk classes.
This can be visualized as the sequence of directed arcs, called a

shown in Figure ia; each of the n — 1 arcs represents an
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178 ISOTONIC OPTIMIZATION

inequality constraint (4) between two of the n tariffs represented
by the nodes.

In the more general case, (4) will hold only between certain given
pairs of indices, and we speak of apartial ordering between risk classes.
The relationships (4) can be represented as a directed graph G =
{n; A}, with the set of nodes n = {1, 2, . . ., n} representing the

(a) COMPLETE ORDERING

(b) PARTIAL ORDERING

Fig. 1. Graphs Associated With Isotonic Ordering.

risk classes, and the set of directed arcs A representing each ordered
set of indices (i, j) in an isotonic relationship (4).

We will assume that the graph G is connected; otherwise there is no
structural relationship between certain sets of classes, and the
problem falls apart into two or more separate ones. Also, the fact
that we have a partial order means there are no directed cycles
(loops of arcs all in the same orientation) within G; (4) would then
imply that all the yi were equal for classes corresponding to nodes in
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ISOTONIC OPTIMIZATION 179

the cycle, and in more general models below might lead to contradic-
tions. It is also well-known that for a partial order, we can arrange
the indexing so that i < j across every arc in A.

Figure ib shows the graph of the partial order:

jx <yz <y3 <y6 < y9; yz <y5 < y? <yw;
yi<yn<y&; yxo>y<>-

Even this G may not indicate the generality of the model, as it is
planar. In a realistic problem, one may have many more arcs, with
complicated "connectivity".

It turns out to be possible to generalize the structure constraints
somewhat, and stay within the network formulation. Accordingly
we shall allow more general forms of (4)

y, —yi> Rti, (*,;) s A (5)
and/or

yt — yi< Su (6)
for given constants i?y < Sy. (4) corresponds to i?y = o, Sy = 00;
setting Rij = 5y clearly specifies an exact tariff differential.

Finally, we admit absolute bounds A% < Bt on the individual
tariffs:

A1 <yi <Bu izn (7)

to reflect legislative, competitive, or profitability constraints. We
assume A% <fi < Bi. Setting A% = B\ uniquely "anchors" a tariff.

4. NETWORK OPTIMIZATION

Instead of the tariffs {yi}, we shall work with a set of unrestricted
error variables

n = yi —fi, izn (8)
vi unrestricted

and, further, will split the error V{ into its positive and negative
parts.

vi = ui — ui • i S n

ul > o u^ > 0, (9)

so that assymmetric norms can be considered.
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l 8 o ISOTONIC OPTIMIZATION

The assy-metric least-squares isotonic optimization [regression)
problem, corresponding to norm (i), (5), (6), (7), then becomes:

Min£=( i /2) 2 [ < « ) 2 + ^r(M-)2] (I0)

subject to (9) and:

Rii + fi —fi < VJ < sij + fi —fj [i, j) e A (11)

Ai—fi<Vi<Bi—fi. izn (12)

Here we have generalized the quadratic weights w% to assymetric
quadratic weights {w^ ; w^}.

The assymetric absolute isotonic optimization problem, correspond-
ing to norm (2), is:

Min E = 2 \w\wl + in>l u[] (13)

subject to (9), (11), and (12).

Finally, the assymmetric Chebyshev isotonic optimization problem,
corresponding to norm (3), can be expressed in terms of a new
(nonnegative) variable e:

Min E = e (14)

e — w£ Uf > o
i sn (15)

e — wl ul > 0

In principle, the mathematical problem is solved at this point.
The least-squares optimization is a quadratic programming problem
[20], [12], [15], [6], while the other two norms are linear programs
[21], and any general-purpose computer code could be used for
numerical solutions.

But there is independent interest in seeing what characteristics
the special structure inequalities (11) bring to the solution, and how
one may solve small problems by hand. The mathematical dual
programs will turn out to have an independent network flow inter-
pretation [11], and from duality theory we can better understand
the economic price we pay for structural consistency.

The interpretation of general isotonic regression as a network
problem has been made by Veinott [24] and others. However,
anyone who has worked with critical path scheduling will recognize
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(n) as scheduling constraints, and realize that the dual is a flow
problem over the associated precedence network. Apparently no one
has previously investigated the actual algorithmic features in this
formulation.

5. ABSOLUTE ISOTONIC OPTIMIZATION

Basic Network Model

We consider the absolute norm first, since it is most closely
related to network flow theory, and its dual most easily inter-
preted. We concentrate first on expressing (13), (9), (11), (12) as
the dual to an optimal capacitated flow problem [21], [11].

Henceforth, let

ra = R t j - (fi - f i ) ; rjt = (f} — / , ) - St}, (i, j ) z A . ( 1 6 )

(Note reversal of indices and signs.) If the ideal tariffs, fi and/y,
satisfy the isotonic constraints (5) and (6) strictly, then the cor-
responding nj and rji are negative; if/j and fj violate either (5) or (6),
this is a conflict of interest, and the corresponding ry (or r^, but not
both) is positive.

Ignore, temporarily, the individual constraints (7). Define a
reference variable v0 = o, and henceforth write:

The absolute isotonic optimization problem can then be written:

Min E = 2 [P'vi + wiuio + wiuoi\
is n

Vj Vi > fy (i, j) £ A

{Vj Vi) > Tji (l8)

Vi — Vo + Uoi > O

Vo — Vi -\- U{o 2^0 1 s n

Vo = O

Vi unrestricted

Uio, Uoi ^ O.

(We have used the fact that not both Vio and voi will be positive in a
basic solution.)
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l 8 2 ISOTONIC OPTIMIZATION

The reader should have no trouble in verifying that the mathe-
matical dual to (19) is the optimal capacitated flow problem:

Max D = 2 2

S (#y Xji) = 0 j £ M ° (19)

o <xij < my (i, j) e A0

for an enlarged network G° = {n°; A0}, constructed from G in the
following fashion:

(i) A node 0, corresponding to vo, is added; n° = n + {0};
(ii) Two new feeder arcs, (i, o) and (o, i) are added for every u « ;

(iii) For every (i, j) z A, add the reverse arc {j, i) (if Sy finite).

Thus, if there were a original arcs in A, there are 2{a -\- n) arcs in
yl °. This network is said to be in circulation form because there are no
external flow requirements. If there are any profits to be made, they
must be from loop flows, passing over arcs with positive ry.

The unit flow profits, r%$, are given by (16) for the original arcs and
the reversed arcs; but r\a = roi = o for the feeder arcs. Conversely,
the flow capacities, my, are:

ml0 = wl j
[ isn (20)

mot = wl )

my = 0 0 i, j zn

Figure 2 illustrates the conversion of a portion of the graph of
Figure i(b) to network flow form.

Nature of Dual Flow Solution.

Clearly, the optimal flow pattern x* = {#y; (i,j) z A0} always
exists, since x = o is always feasible. It is always finite, since the
capacities on the feeder arcs are positive (weights), and the condi-
tion Ry < Sy guarantees ry -\- r^% < 0, i.e. no profit can be gotten
from a "whirlpool" between i and/.

Thus, to make D increase, flow must pass from node o through
arc (0, s) to some starting node, s, thence along a series of (forward or
reverse) arcs, the sum of whose ry must be positive, to some terminal
node t, and thence back to node o via (t, 0). The increase in /) being
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ISOTONIC OPTIMIZATION 183

proportional to the sum of fy along this (s, t)-path and to the com-
mon flow <f> around this elementary loop, it follows that we want to
increase <f> = xos = xto = . . . as much as possible, until it is limited
b y M i n [w~, Wf).

Fig. 2. Conversion of Graph G to Flow Network G°.

Fig. 3. Piecewise Linear Convex Norm.

Fig. 4. Feeder Arc Configuration for Piecewise Linear Convex Norm.
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184 ISOTONIC OPTIMIZATION

Thus, the desirable flow paths include arcs for which ry > o, i.e.
isotonic relationships unsatisfied by the ideal/< and/;. In the simplest
case, these positive profit arcs are nonadjacent, and have neighbor-
ing arcs which have large negative vy (well satisfied fi, fj relation-
ships), so that combined flows are unprofitable; in other words,
infeasible/i, fj relationships are local and weak. Then it is clear that
the optimal x* consists of the union of several disjoint loop flows
over one regular and two feeder arcs.

We can understand the nature of the general solution better if we
imagine that the set P of all s, t paths, Pst, for which

R(s, t) = 2 rt} > o (21)

has been enumerated; this is a combinatorial task for large G° but
quite reasonable for small problems. Let <f>st be the elementary loop
flow along (0, s) + pst + (t, o). Then it can be shown that (19) is
equivalent to:

M a x D = 2 Rst<f>st

2 (j>st <v»s s,tsn (22)

s <f>st < u>; p s t t p
t

<f>st > O.

In other words, in the general case (large, complex violations of
structure by/) , the profitable elementary loop flows are competing
for entry and exit capacity. Rather larger sequences ("blocks", in
[3]) of arcs, some possibly with negative ry, are included in order to
use up adjacent capacity.

This approach can be made the basis of a good feasible starting
solution x° to (19); one merely begins allocating loop flows in a
myopic way, starting with an Rst-ordeved list of paths. When
capacity runs out, one skips the associated paths. Clearly D(x°) =
D° <D* = D(x*).

Turning now to the relationship between the dual (19), and the
primal (18) {A%, B% still neglected), we see that it is trivial to get a
feasible set of potentials {v°}. Assume the indices have been chosen
so i < j for all (i, j) z A.
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ISOTONIC OPTIMIZATION 185

(i) Set the v\ of lowest index equal to zero;

(ii) Go through the indices in increasing order, and for index j

5 { J ^ , / , }

(iii) Repeat (ii) until all v° defined.

The v°{ can then be adjusted on an ad hoc basis to reduce the value of
E{v°} = £°.

Network algorithms can be based on starting with either a
feasible primal, v°, with a feasible dual x°, or with both. The
advantage to having both is that the optimal value of the total
norm can be bounded via the duality theorem [21]:

D° <D* = E* <E°: (23)

then, further improvement to v° may be judged unnecessary.
Further descriptions of algorithms can be found for example in
references [21] and [11].

There are important relationships between optimal flows x* and
optimal potentials v* given by the complementary slackness principle

[21]:

(i) If *;, < u>i and x*i0 < w*, then v\ = o {y\ = / , ) :

(ii) If v\ > o [yt>ft), then x*i0 = < , or if v\ < o (yj <ft),

t hen x%t = Wf ;

(iii) If x*v > 0 [Xjt > 0] for (i, j) s A, then v*} — v\ = rfj; y* — y\

= Rij [rji or Stj, respectively],

(iv) If Vj—v\ >rijt y*—y\ > Rtj, then x^ = o; similarly for

irH> si)< xji\-

Finally, we note the sensitivity analysis results, valid in general:

(i) If y* = fp %lt [#j0] is the level to which wj [w£] must decrease

before y* becomes < f{ [ >f{]',

(ii) Xy > o [xjt > o] for (i, j) s A is the marginal rate at which
/)* = £'* will increase, if Ry is increased [S# is decreased].

These are valuable in re-examining the formulation, once the first
solution has been obtained.
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l 8 6 ISOTONIC OPTIMIZATION

Nature of the Optimal Solution

The nature of the optimal solution to (29) is well-known [21]. In
addition to the complementary relations between primal and dual
variables, a key concept is that of the optimal basis for the optimal
extremal solution. For a network of A arcs and N nodes, the basis
is a spanning tree of N — 1 arcs—a connected configuration with no
loops. On this tree, the [v*] can be calculated uniquely from tight
isotonic relationships v*} —1£ = ri}, and v0 = o, and the x^ can
have any feasible value o < x*} < m^. The remaining A — N + 1
arcs are called the co-tree; for these arcs, either x*y = 0 (v^ — v*t <
r^), or x*j = Wy (v*-—v$ > r^). (If the problem parameters are
perturbed slightly to eliminate tieing solutions, the above inequali-
ties can be changed to strict inequalities.) Clearly, not both (i, j)
and (j, i) can be tree arcs.

In terms of our original problem, this means that in the optimal
solution the n classes represented by the nodes n are partitioned into
some number 1 < r < n of solution blocks n = {Bi, B2, • •. Br},
each block containing a variable number of nodes. A singlet block
of only one node k means that either (0, k) or (k, o) can be placed in
the optimal tree, but no other (i, k) or (k, i); x*Ok = x*k0 = o, and
v*k = 0 [y\ = fk). Conversely, if there is only one solution block Bu

then a tree of n — 1 relationships (i, j) must be tight (v^ — i>l =
rfj) among the nodes n, and this is augmented by one feeder arc
(0, s) [or (t, o)] to make a spanning tree for G°; v* [or v^] = o, and
this defines the potentials uniquely over the block. Dual flows must be
zero or saturated on all other feeder arcs, and zero on co-tree arcs ini?i.

In the general case of several blocks of differing sizes:

(i) If block k contains Njc nodes, there is a shrub (small tree) of
Nic — 1 arcs within the block, over which the isotonic relations
are tight (v* — v\ = rtj; i, j s Bk);

(ii) Each blocks has a reference node, sk[ortk], for which v*Sk[v*t ] =
0, which then determines the potentials uniquely;

(iii) The union of the r shrubs and the feeder arcs (o, sjt) [or (tic, o)j
gives the n arcs corresponding to the optimal tree for G°.

(iv) Cotree arcs within blocks, or between blocks (but not feeder
arcs) must have x*^ = o, and v^ — v^ > r^;
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(v) Feeder arcs not in the tree must have x^ = w^ if v\ < o, or
x*i0 = w\ if v\ > o.

Other characteristics which come out upon closer examination are:

(a) Some arcs with ry < o may have, but not every arc with ry > o
need have, Xy > o;

(b) Nonunique values of {v*} and {y*t} may result if opposing
weights [ie>j] are balanced within a block;

(c) Nonunique values of {x^} may result if the constants {r^} are
conservative around a loop, thus making v*- — v*t = ry on an
interblock cotree arc.

Individual Constraints, Piecewise Linear Norms

We now return to the problem of individual class constraints, A{
and Bf, in a roundabout manner that will provide additional
generality. Suppose that the norm (2) is replaced by the sum of n
piecewise-linear convex norms, for each class, as follows:

E(y) = 2 gt{yt

(A—yt) yi<Ai

At<yt<ft

fi<yi<Bi

A typicalg^y^ is shown in Figure 3. To be convex, w\+ > w\* > 0;
w\~ > w\~ > o.

A straightforward application of duality shows that in this case
each feeder arc in G° is replaced by two feeder arcs; (i, o) becomes
(i, o)1 and (i, o)2, etc., the new parameters are:

Ki =-- o; wj4 = w\~ ; r\0 = 0; m\0 = w\+ ;

<• = — {ft — At); mlt = w\-; r% = — {Bi — / , ) ; m% = w\ +. (25)

In this way, the problem remains a network flow problem, with a
new configuration as shown in Figure 4.

Loosely speaking, the new arcs permit dual flow in the feeder arcs
above the values w]+ and w\~, by imposing a positive unit cost,
+ (ft — Af) or + (Bi —fi). The interested reader can easily work
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out the other details of duality, or extend the curve to several
linear segments.

Finally, to impose strict limits of the type A% < yi < B{, we let
the {w\ * } and {w\ ~ } increase without limit. If there is any elementary
loop using path Pst for which r%g -f- Rst -\- rf0 > o, then the optimal
dual flow will increase without limit, which means that the con
straints As and Bt on classes s and t have rendered the original
isotonic problem primally infeasible. Network computer codes
would check this possibility automatically.

6. CHEVYSHEV ISOTONIC OPTIMIZATION PROBLEM

As a preliminary to consideration of norm (14), suppose we have
a two-variable Chevyshev isotonic problem ys < yt, but rst > o.
Then clearly y* = y*t, and from (15), we find, in the new notation:

1 * 1*

w 0
_ y* = u> I- ' * F

os w-

where
W^Wt

-; E* = e* == frsl. (2b)

Thus the basic property of this norm is that (at least) two opposing
errors of class s and t are equalized.

If we take the dual of (14), (9), (11), (12), (15), we obtain an
optimal flow problem with variable capacities on the feeder arcs:

Max D = S S fijXij
(i.i) e.A«

2 (xn — Xji) ----- 0 j z ii°
ten0

0 < x O i < w ^ -zOi > o i z n (27)

o < xOi < wf -zOi > o

The last inequality is effectively an equality when e* > o, and
provides for a weighted allocation of dual flow capacity only to
those feeder arcs (0, s) and (t, 0) which correspond to equalized
weighted errors in the sense of (26).
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One can easily develop an algorithm to work directly with (14),
(15) and (27) along the lines of other Chebyshev approximation
algorithms [5], [10], [14], [17]. [18], [22], [23], [25], and [26].

Loosely speaking, it would proceed as follows:

(i) Start with a feasible tariff structure {v°}, say the optimal solu-
tion to the absolute isotonic problem with the same weights,
and with x° = z° = o;

(ii) Identify the current largest weighted error, e°, say w~(vos)
[or u>t (w"0)] and allow the capacity on this arc to increase from
zero;

(iii) Increase v°s decrease v°t, and all potentials linked together
(v° — v\ = rtj) in the same block, by an amount 6. The de-
crease e° — 0 will be limited by:

(a) an increase in weighted error of another node t[s] in the
same block to the same value;

(b) the attainment of a tight constraint v° — v\ = r^ at some
extremity of the block with a new node k not in the block;
or

(c) the decrease of e° — 8 to the fixed maximal weighted error
of some node s' or t' in a different block;

(Note that when a potential changes sign, a different weight
must be used.)

(iv) In case (a), the optimal solution is attained, with the new node
t[s] being the exit [entry] point for dual flow. Equations (26)
are satisfied, with <j>* being the optimal dual flow around the
elementary loop, D* = E*, and ZQS,

 z*ta adjusted to suit.

(v) In case (b), the structure constraints merge node k (and other
nodes in its block) into the current block. One continues as in
Step (iii) with the enlarged block;

(vi) In case (c), weighted error equality is between two candidate
nodes (s or t) and (s' or t') not in the same block, and further
decreases of both errors is necessary to determine which block
contains the limiting equality pair. A generalized Step (iii) is
now performed except that 0 and 0' must be in the ratio
w~,Q' = wsQ, etc., to keep the weighted maximal errors in the
different blocks identical. If further steps (iiic) are reached, one
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190 ISOTONIC OPTIMIZATION

may be working on many different blocks at the same time.
However, except in tieing cases (which can be easily perturbed),
the optimal solution is still a balance between some s and some
t in the same block.

In general, the Chebyshev norm is characterized by a great deal
more freedom than the absolute norm, since only one block defines
the two matched maximal weighted errors e*, and other blocks are
free to have their potential shifted up and down within the limits
imposed by e* and the slack between blocks. The advantage to
starting with the optimal solution to the absolute norm problem
with the same weights is that, when the optimal Chebyshev solution
is obtained, a particular solution within the freedom just described
is found which minimizes the absolute norm of classes outside the
limiting block.

The classical approach described above suffices for small prob-
lems solved manually. For large problems, a more convenient for-
mulation is gotten by pricing in the extra constraints in (27). After
some simplification because of the nature of the optimal solution,
we find a new optimal flow problem with parametric costs:

Max F = 2 2 ry#y

2 (xij — Xji) = 0 j en0 (28)
izn«

xij > o (i, j) z A0

with new feeder arc unit profits:

X X
ri0 = — —z ; rOj = — — . izn (29)

1 wi
 l w^

This corresponds to a restatement of the original problem as:

Find feasible {vt} such that

V) — vt > ry (i, j)zA°
— X X

< vt < — r . izn (30)

Here X is a Lagrange Multiplier which is increased slowly from zero
to the first value X* at which (30) is feasible, at which point X* =e*,
and F* -> 0.

https://doi.org/10.1017/S0515036100009326 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100009326


ISOTONIC OPTIMIZATION 191

In this formulation, (28) is an ordinary optimal profit flow
problem, except that there are parametric costs (29) on the feeder
arcs, which increase from zero, until F* = o. (Thus, these dual
flows are not those of (27).) The most convenient way to solve the
problem is then:

(i) Add, temporarily, the constraints (20), and solve the corre-
sponding absolute norm problem for {v0} and {x0};

(ii) Decrease the unit profits on the feeder arcs according to (29) by
increasing A, and resolving (28), "extinguishing" the flows in the
various blocks until x° just reaches zero.

There are network flow algorithms available to do this parametric
variation directly, or it may be carried out through man-machine
interaction with any computer code. A computational advantage is
that one need not keep separate track of all the weighted errors,
and that the final {v^} will be automatically adjusted to their final
values, in the sense described above of the best absolute error
particular solution within the optimal Chebyshev solution. The last
(s, t) flow path to be extinguished gives the limiting pair of maximal
weighted errors.

7. ISOTONIC REGRESSION PROBLEM

The symmetric least-squares norm (1) has been extensively
studied in the statistical literature; see in particular Reference [2]
and the bibliography therein.

We describe first the elegant algorithm for the simple isotonic
regression problem (4) over a complete order, with no side constraints,
due to Reid-Brunk-Grenander [2]:

(a) Compute cumulative weighted ideals and cumulative weights:
i i

Fj == 2 Wifu Wj = 2 wt (j = 1, 2, . . ., n). (31)

(b) Plot the points P; = (WJ; FJ) in the Cartesian plane, connected
by straight lines, and stretch a string, attached at Po = (o, 0)
and Pn, from below until it is taut. (This is the Newton-
Puiseux polygon, or greatest convex minorant of the graph

{Pi}-)
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(c) If, for any^', the string is below P}, then y*} = y}+1, and so on,
until a point j -\- 1, or j -\- 2, or . . . k is reached where the
string reaches a support P^.

(d) This partitions the m classes into 1 < r < m solution blocks,
{Bi; B2 •.. Br} over which the optimal solution is constant. By
direct calculation:

y; = (S wJJ 2 u>t) jzBk (32)
feflt te3t

which is also the slope of the taut string from j — 1 to j .

(e) If the string follows the segment (Pj-i, Pj), then Pj is in a
solution block of one member, y* = fj, and yj > y^_i-

Other "pooling" algorithms for this case are given in Reference [2].
This approach is easily extended to the case where the graph G of

the partial order is an arborescence. The algorithms proposed for an
arbitrary G are more complicated to understand as are the modifica-
tions imposed by constraints (6) and (7). (See the algorithms of
Thompson, Kruskal, Alexander, and van Eeden in Chapters 1 and 2
of [2].) We shall follow instead the remark of Veinott [24] (in a more
general context), that general isotonic regression problem "is a
separable quadratic network flow problem for which special al-
gorithms are available."

Suppose that the constraints are expressed as in (18), but with
the unsymmetric quadratic norm:

Min E = 1/2 S < K o ) 2 + w~t K ) 2 . (33).
fen

Then the Dorn dual [3] becomes:

Max D = 2 £ ry#y — 1/2 2 (wjo^o + UoiXoi)

2 (xi} — Xji) = 0 jen°
fen"

xti>o {i,j)sA° (34)

= mOi{Oi{uQi)

Notice the presence of the primal variables in the dual functional
and in the (varying) capacities of the feeder arcs. Using comple-
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mentary slackness and the fact that the weights are positive, we
infer that in the optimal solution:

x*0 = wfu*i0 = ffl(
+[max v\, o]

x*Oi = wtu^ = Wf max [— v*, o] (35)

and re-express the dual as:

Max D=VY rijXij - x/2 V

Z (xu — Xji) = 0 jz n° (36)

x{] > o (i,j) s A0.

which is essentially the Dennis dual [8]. In this form, we have an
optimal flow problem with quadratic costs in the feeder arcs.

The structure of the optimal flow solution is as discussed earlier:
the nodes are separated into solution blocks, which, together with
their linking arcs, form shrubs of 1, 2, . . . , or up to n nodes, over
which tight primal relationships (5) or (6) obtain. Thus, the relative
values of the v\ and y* within a solution block B^ are completely
defined by a set of simple equality relations.

If one finds a certain relative solution {77°; i zBk} for a block k,
then by (35), the exogenous flows {xto) xOt} into and out of the block
are completely defined; if these flows balance over Bu, then the
current solution is optimal. (An isolated node k can then only have
11* = xlk = x*^ = 0.) Contrary wise, an excess [deficit] of flow in
Bk indicates that potentials v\ should be raised [lowered] by an
amount 6. The adjustment of exogenous flows at node i will be
± [T] w\® by (35), and thus a choice of the correct 6 to achieve
Kirchoff's conservative law will also determine the correct absolute
value of the tariffs in that solution block. The result will be the
appropriate generalization of (32).

Thus, the key problem is that of separating the nodes into solu-
tion blocks, rather than finding the best regression within the block.
For small problems, a manual solution can proceed as follows:

(1) Establish a tentative partition of n into blocks {Bi, B2, . . ., Br],
by linking together nodes for which ry or r^ > o with arcs of
correct orientation. v\ = 0 is thus initially feasible for inter-
bloc arcs.
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(2) Select a block Bjc not previously examined, and pick a set of
relative potentials satisfying v® — v°t = ri} (i, j s Bk) and cal-
culate exogenous flows from (35):

(a) If the flows balance, the current solution is (locally) opti-
mal ; pick another block;

(b) If there is excess [deficit] flow, all v\(i s Bk) must be
increased [decreased] by an amount 0 until the flows from
(35) balance, or until;

(i) If a v\ changes sign, the computation should stop, and
recommence with new asymmetric weight;

(ii) If an arc flow x°j decreases to zero, the computation
stops, and the block is split between i and j \

(iii) If the final solution violates v° — v\ > ri} for one or
more arcs between blocks, then merge the current block
with that block for which the discrepancy is greatest,
and repeat (2) for the enlarged block j .

(3) The above process of merging and dissolving blocks, and
floating potentials is repeated until:

(a) Flows balance within blocks;
(b) v°j — v\ = ry within blocks;
(c) v°4 — v°, > f,-,- and x0,, = o across blocks.

These values are then optimal.

As a final check, the weighted mean-square error E* should be
computed and checked with F = S S rijx%'> the result should be
E* = 1/2 R*. This is related to well-known theorem about power
dissipation in electrical engineering [8]!

If bounds (7) are added, this places flow capacities of
mto = wl(Bi—fi); niH ^w^fi — Ai) (36)

on the feeder arcs, and complicates the procedure somewhat.

Unfortunately, there do not seem to be any quadratic network
computer codes available for large problems. One possibility is to
use a general quadratic linear programming code (see, e.g. [12],
[15], [16]). However, because of the efficiency of ordinary linear
network algorithms, my personal suggestion for a large problem
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would be to approximate the quadratic (or other convex) norms by
a simple piecewise linear convex function, in a manner similar to
Figures (3) and (4), over some reasonable ranges. Then, when the
initial solution values {u°i0; u°Oi) were known, one could redefine
current feeder arc parameters as:

m°i0 = wtu\Q; r% = — 1/2 u°i0;

m°H = WfU°Oi; r°Oi = — 1/2 u°Oi. (37)

(thus effectively having only one feeder arc), and then re-iterate.
In most problems, the solution should stabilize quickly into solution
blocks; side calculations could then replace the within-block
convergence to v*t. An out-of-kilter code [21], [11] would be ideal lor
this interaction.

8. SOLUTION EXAMPLES

To illustrate these ideas, the isotonic ordering of Figure ib and
the ideal values and weights shown in Table I, were used to find
optimal solutions for the three different assymetric norms, referred
to below as L\, L%, and ZA (A missing weight indicates it is not
influential in the final solution.)

Figure 5 shows the ideal values f% on each node, and the derived
rij; the example is probably atypical, in that six out of ten isotonic
relationships are violated. The optimal solution to the L.% norm is
shown in Figure 6a; v* are shown on the nodes, x^ > o (solution
blocks) on solid arcs, and x*Qi or x*i0 > o as numbers on feeder ar-
rows. Figure 6b show the L* with the v* which also make L\ as small
as possible; more general ranges for y\ and y* are possible, as shown
in Table I. The last flow to be extinguished is that from node 1 to
node 10 over the solid arcs; the final value of the LaGrange multi-
plier in (30) and the weighted errors at nodes 1 and 10 is X* = e* =
18.75. The final solution for the L% norm, as shown in Figure 6b,
also has two solution blocks, node 4 as a singlet and all others linked
together; notice the complexity of the flow, and the uniqueness of
11* and v*. The x*j are not unique, however, since the ry were
chosen to be conservative around the two paths from node 2 to
node 10; this means that arc (5, 7) (shown dotted) is actually priced
in, and up to 5 1/3 units of dual flow could be rerouted via the lower
path.
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Fig. 5. Ideal Values/j and ry for Example.

(a) L] NORM.

LAST FLOW
LAST FLOW

(b) L I NORM.

https://doi.org/10.1017/S0515036100009326 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100009326


ISOTONIC OPTIMIZATION 197

2 2/3

10

6 2/3

13 1/3

(c ) L , NORM.

Class i

Weights

Ideal Values ft

* Li* Norm

•.p <8 L00
±Norm

- > L2± Norm

i

3

I O

2

2

I

5

2

3-75

2 2/3

£>ata

3

8

8

3

3

TABLE I

and Solution for Example.

4

5

3

2

2

(-4-25.
3-75)

2

5

4

i

3

2

6

2

O

3

3-75

7

6

4

4

(3
4-
2

8

6

I

2

•75.
125)

2/3

9

4

i

3

(3-75.
5-6875)

I O

5

o

4

3-75

TABLE 2

Relative Value of All Norms for Different Optimal Solutions

L i *

Solution Norm
and Optimal Value

E* :

E* :

E* •.

= 68

,= 18 3/4

= 128

Relative

E for Li±

1.000

1.280

1.258

Value of

E for L-

1.239

1.000

1.172

All Norms

2* E for Ls*

1.039

I-I73
1.000
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Although the different optimal norms are not, strictly speaking,
comparable, Table II may be of interest in showing the relative
trade-offs. (For the L^ norm, the best L\ solution was assumed.)

9. NATURE OF SOLUTIONS

Let us summarize briefly the nature of the optimal solutions for
the three norms applied to the simple isotonic problem (4) with
arbitrary G°. In general (although not necessarily for a single
problem):

(i) The L^ norm gives the greatest freedom in the {y*}, followed
by the L\ and L\ solutions, which are almost always unique;

(ii) L% tends to have fewer and larger solution blocks than L\ for
the same problem;

(iii) In the constrained block, the i* solution is usually related to a
harmonic mean (26) of the weights of two classes, and the
values in other blocks can be conveniently adjusted to mini-
mize the local value of L.%;

(iv) In the L\ optimal solution, the "weight of evidence" within a
block sets all y\ to the same reference ideal fs or /{;

(v) In the L\ optimal solution, a complicated weighted consensus
(32) is used for the values of y\ within the same block.

Further characterizations are possible for special G°, as in the
complete ordering [2].

10. MODELS FOR NORMS AND IDEAL VALUES

Let us now consider various models which might be appropriate
in an insurance context for picking a norm and ideal tariffs for the
different risk classes.

In the classical statistical formulation, one assumes a set of «j
independent measurements {%u, t = 1, 2, . . ., ni\ for each tariff
class i, and minimizes the sum of squared errors of each measure-
ment, weighted equally. This is equivalent to using the sample
mean as ideal, fi = %% = (S xu/ni), and Lz symmetric weights

proportional to observations, wt = %i. Or, one may start with a
normality assumption and known variances, a^, for each class, and
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obtain a maximum likelihood estimate over all observations, with
fi = H and wi = nj(j2

t.
Statistical arguments for the absolute norm [7] usually emphasize

the difficulty with outliers, and the relative "freedom" of a norm
E = 2 tit I ji —fi\ (with fi as the sample median or sample
average), even though it has no direct statistical interpretation.

In my opinion, greater emphasis should be placed upon economic,
rather than statistical models of rate-making. To illustrate this, let
us first suppose that the premium volume in class i is Nt, and that
it is relatively insensitive to the premium level yn over the range of
interest. Then the net profit in class i is:

Pi(yi) = Nt{yt - h) (38)

where k% is the (known) expense-loaded fair premium. Clearly
Ai = ki in (7) if the company is unwilling to lose money on any
tariff class; or, it could be set at Ai = 0.95 ki, etc. To maximize
total profit as an objective, one would then set fi = B{ and use an
L\ norm, with only one weight w^ = Nt; clearly the result depends
upon how greedy the company is (for one class within each solution
block) in this perfectly inelastic market! Perhaps the Bi are fixed
by the insurance commissioner, or some rate-of-return rule, or can
be determined as a level at which the (high) tariffs become too
visible to customers and competitors.

A more realistic model would assume, for instance, that the
market was slightly elastic with price, say:

# ? - « , ( * - kt), (39)
where N$ is a reference volume at the breakeven level, and an a
known elasticity coefficient. Then (38) above leads to a quadratic
profit function, in which penalties will occur for variation about the
point of maximal profit, y% = /<. In terms of the above:

ft = kt + (iVf/2Ki) (40)

and the maximal profit is:

iifi fV

The symmetric L2 norm would be used with fi given by (40) and

Wi = 20Li. (42)

13
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Of course, a linear approximation could be made to the above
norm, as discussed previously, especially if fi turned out to be
outside the range (Ai, Bi) allowed by competitive or other factors.
The piecewise linear norm is, strictly speaking, only exact in the
above model when there are discontinuous steps in Ni{yi), as when
we automatically lose a certain fraction of business when we go one
cent over a competitor's rates.

It seems quite difficult to justify the L* norm in the insurance
context, unless one assumes that competitors, customers, or the
insurance commissioner are looking for rates or profits that are
excessively "out of line". Perhaps the norm would be appropriate
if the classes were poorly defined or monitored, or the insuree were
self-rated, and there was a certain moral hazard of shifting to
nearby categories. This would seem, however, to be better handled
by using (6) to avoid large neighboring class discontinuities.

Finally, the complete rate-making process involves a complex
series of interactions between different parties of interest, and it may
be that the actuary-operations researcher will prefer one norm over
another solely in terms of the nature of the solutions it gives, its
ease of computation, or its defensability to management or regulato-
ry agencies. Even the specification of the desired structure between
tariffs involves a certain element of judgement, and, in the real
world, would involve continued iterations between solution and
formulation.

i i . LIMITATIONS

To conclude, we consider the ways in which this model could be
extended, but which would lead outside the network flow formula-
tion.

First, we must realize that our model is essentially an approxi-
mation theory for a single function for each class. For example, if we
were trying to approximate a given function {gi} as closely as pos-
sible by another function {hi + (3}, (3 unknown, we could force this
problem into our model by setting fi = gi — hi, and then force
yi = yz = .. . yn = P by using a complete order G with i?y =
Sij = o. Alternatively, if we had a free multiplication parameter
choice, a, in an approximand {alii}, we could use our model with
fi = Sil^v a n ( i n e w weights w\\hi for the L\, L* norms, or wy(ht)

2
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for the L\ norm, again using a complete order to force yx = y1 =
. . . yn = «~

But, a two-dimensional approximand {<xA< + [3} is already outside
the realm of our model, since by setting yi = ahi -\- (3 or y$ = a +
(fi//̂ ) one can get rid of either a or (3, but not both, through the dif-
ference v; — y^ For this and higher-dimensional approximation
theory, with or without order restrictions on the coefficients, one
needs more general methods of linear or quadratic programming
[8], [18], [12], [22], [16], [I9], [5], [4].

12. RATE RELATIVITIES

Interestingly, a double-classification, additive problem in rate
relativities [13], [1], can be formulated as a network model, with
arbitrary norm, and solved by the methods here. Let —yi (i = 1,
2, . . ., p) be the relativities for the first classification factor, -\- yj
(j = p -\- z, p -\- 2, . . ., p + q) the relativities for the second, and
fij the observed risk variable for joint class (i, j). The problem can be
stated as the problem of determining the best-fit relativities {y =
yi, yi, • • •, yp+g} in the sense of minimizing the norm | \ yj — yi =
fij I [ over all joint classes.

When the details are carried through, one finds that the network
G is of the transportation type [21], with p "plants" and q "cus-
tomers", and unit profits ry = fy on every arc (i, j) from plant to
customer.

The flow dual depends upon the norm chosen; in the L\ case, the
exogenous "supplies" and "demands" are zero, but the flows can be
negative, — w^ < x^ < x^. In the L% case, the capacities are
—Wyiiy < xtj < WyUy, and so on.

Supplementary partial ordering among the yi can be forced by
adding additional arcs between appropriate nodes, while absolute
bounds can be imposed by feeder arcs connecting a reference node 0,
etc. Further details are left to the reader.
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