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We investigate the motion of weakly negatively buoyant spheres settling in surface gravity
waves using laboratory experiments. The trajectories of the settling spheres are tracked
over most of the water depth with simultaneous measurements of the background fluid
flow. These experiments are conducted in the regime relevant for environmental and
geophysical applications where both particle inertia and fluid inertia are important. Using
these data, we show that the sphere motion is well described by the kinematic sum of
the undisturbed fluid velocity and the particle terminal settling velocity as long as the
fluid inertia is not too large. We show how this result can be understood in the context of
an ad hoc Maxey–Riley–Gatignol-type equation where the drag on the particle is given
by the Schiller–Naumann drag correlation. We also evaluate whether inertial particles
experience enhanced settling in waves, finding that measurement uncertainties in the
particle terminal settling velocity and the presence of Eulerian-mean flows do not allow the
small percentage increase in the settling velocity to be measured. When the fluid inertia
becomes large enough, we observe path instabilities caused by particle wake effects in
both quiescent and wavy conditions. However, the particle velocity fluctuations associated
with the path instabilities are unaffected by the background flow. The minimal influence
of the wavy flow on the particle path instabilities is thought to be due to the large-scale
separation between the waves and the particle.

Key words: surface gravity waves, ocean processes, particle/fluid flow

1. Introduction
Particle motion is important in environmental and geophysical applications because
it determines the transport of nutrients, pollutants and carbon in lakes and oceans
(e.g. Moulton et al. 2022; Sutherland et al. 2023). These particles (e.g. plankton,
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(micro)plastics, marine aggregates, sediment) often exist in the regime where their size and
density differences with respect to the flow length scale and fluid density, respectively, are
both small. This makes the Basset–Boussinesq–Oseen (BBO) and Maxey–Riley–Gatignol
(MRG) equations an attractive framework to model the particle dynamics since they take
into account how the particle’s inertia modifies its transport and predict, for example, how
the particle settling rate is affected.

Most relevant to this study, there have been a number of investigations into how
particle settling is affected by the coupling between particle inertia and flow in surface
gravity waves using theoretical expansions and numerical solutions of BBO- and
MRG-type equations (e.g. Eames 2008; Santamaria et al. 2013; Bakhoday-Paskyabi
2015; DiBenedetto, Clark & Pujara 2022) and measurements in laboratory experiments
(e.g. Clark et al. 2020). Some of these investigations reported enhanced particle settling
and dispersion due to the coupling between particle inertia and wave-induced flow, with
settling velocity up to 20 % greater than the particle terminal settling velocity in quiescent
fluid.

While the BBO and MRG equations are derived under the assumption that the Reynolds
number of the relative motion between the particle and the fluid is small, DiBenedetto
et al. (2022) demonstrated that in many applications involving particle settling in surface
waves, this Reynolds number is not necessarily small and can be as large as 103. In
this range of particle Reynolds number, a common ad hoc extension of the BBO- and
MRG-type equations uses the Schiller–Naumann drag correlation to estimate the drag
force on the particle (Balachandar 2024). Additionally, in practical applications where
fluid velocity fields are not available at a fine enough resolution, or where computational
costs need to be reduced, particle motion is often approximated in an ad hoc manner as
the kinematic sum of the background fluid velocity and the particle’s terminal settling
velocity. However, predictions of particle trajectories from such ad hoc models are rarely
tested against experimental data for particle settling at large particle Reynolds number.

Apart from the geophysical and environmental applications mentioned above, an
investigation of inertial particles settling in surface waves is also attractive from a
fundamental point of view. Surface waves offer a naturally two-dimensional, unsteady
and non-uniform flow, where the flow field varies over a single length and time scale.
While the flow is irrotational, limiting the scope of flow–particle interactions, this does
provide certain advantages. In particular, the Saffman lift forces are absent (Balachandar
2024), and the Faxén corrections are irrelevant (DiBenedetto et al. 2022). Furthermore, in
the laboratory it is possible to obtain well-resolved simultaneous measurements of settling
particle trajectories and the background fluid flow with a single camera.

Finally, it is known that particles settling at large enough particle Reynolds number in
quiescent fluid can have path instabilities that include lateral motions and rotations. The
path instabilities for weakly negatively buoyant particles settling in otherwise quiescent
fluid at different particle Reynolds numbers have been explored via numerical simulations
(Jenny, Dušek & Bouchet 2004; Zhou & Dušek 2015) and laboratory experiments
(Veldhuis & Biesheuvel 2007; Horowitz & Williamson 2010; Raaghav, Poelma &
Breugem 2022; Cabrera-Booman, Plihon & Bourgoin 2024). The path instabilities emerge
as the effects of fluid inertia break the axial symmetry in the particle wake, which leads to
asymmetric forces and torques (Horowitz & Williamson 2010; Ern et al. 2012). However,
for particles settling in an unsteady and non-uniform background flow, it remains unclear
whether the presence and structure of these path instabilities would be modified through
interaction with the flow.

In this paper, we investigate how inertia (due to both the particle and the fluid) affects
the motion of weakly negatively buoyant particles settling in surface gravity waves.
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We do this via experiments where the motion of inertial spheres settling in a wavy flow
is measured simultaneously with the background flow field. We compare the experimental
data with predictions from an ad hoc MRG-type equation that uses the Schiller–Naumann
drag correlation, and examine how this comparison varies with different dimensionless
parameters. We check whether enhanced settling can be observed in the data, and whether
path instabilities in the particle motion are modified by the wavy flow. The remainder of the
paper is organised as follows. Section 2 gives a description of the relevant dimensionless
parameters and the dynamics of particle motion. Section 3 describes the laboratory
experiments, with the particle motion analysis given in § 4. We end with a summary of
the main points and directions for future work in § 5.

2. Theoretical background

2.1. Surface waves
In small-amplitude (linear) wave theory, the dimensionless free-surface displacement for
monochromatic progressive waves is given by η = ka cos(x − t), and the dimensionless
velocity field is given by

ux = εw

cosh(z + kh)

cosh kh
cos(x − t), (2.1a)

uz = εw

sinh(z + kh)

cosh kh
sin(x − t), (2.1b)

where εw = ka/ tanh kh is the wave nonlinearity parameter. Here, a is the wave amplitude,
k is the wavenumber, ω is the wave angular frequency, and h is the undisturbed water
depth. The dimensionless coordinates x and z point in the direction of wave propagation
and upwards against gravity, respectively, with the origin of z being at the undisturbed
free surface. All variables are made dimensionless using the wavenumber k and angular
frequency ω.

2.2. Dimensionless parameters
The parameters that characterise the settling of small, weakly negatively buoyant spheres
in surface gravity waves are as follows. The flow field in small-amplitude surface gravity
waves is characterised by three length scales, namely the wavelength L (or wavenumber
k = 2π/L), the wave amplitude a, and the water depth h, and by a single time scale, the
wave period T (or angular frequency ω = 2π/T ). The spherical particle is characterised
by its density ρp, diameter dp, and terminal settling velocity in quiescent fluid v′

s .
Together with the fluid properties (namely, density ρ and kinematic viscosity ν), and
the gravitational acceleration g, there are a total of ten dimensional variables and three
fundamental dimensions, which yields seven independent dimensionless parameters.
Note that the need to include v′

s as an additional parameter arises since its value
cannot be determined from other variables when the particle Reynolds number is not
small such that the settling velocity is no longer given by the classical Stokes settling
velocity. Additionally, the gravitational acceleration is implicitly included in the variables
describing the waves since it links the wave period and water depth to the wavelength
via the dispersion relation (ω2 = gk tanh kh), but it needs to be included separately when
considering particle settling in waves due to its role in the vertical dynamics of particle
motion.
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We choose the seven dimensionless parameters as follows. The wave-induced flow is
characterised by the wave steepness ka and the relative water depth kh. The particle
settling in quiescent fluid is characterised by the specific gravity γ = ρp/ρ and the
terminal settling velocity particle Reynolds number Rep,t = v′

sdp/ν, which quantifies
the importance of fluid inertia. Note that since the terminal settling velocity is not
known a priori, a better indicator of the importance of fluid inertia, instead of Rep,t ,
is the Galileo number Ga = v′

gdp/ν, where the characteristic settling velocity is the
inertia-gravitational velocity scale v′

g = ((γ − 1)gdp)
1/2. We will use both dimensionless

numbers as appropriate, but only one of them should be included in the list of seven
dimensionless parameters.

For the remaining three dimensionless parameters, we choose to characterise the
interaction between the particle and wave-induced flow by the ratios of length, time and
velocity scales between the particle and the fluid, given respectively by

Sz = kdp, St = ωd2
p(γ + Cm)

18ν(1 + 0.15 Re0.687
p,t )

(= ωτp,SN ), Sv = v′
s

gka/ω
. (2.2)

Here, Sz is the size number, which quantifies the ratio between the particle diameter (dp)
and the wavelength (L); St is the Stokes number, which quantifies the particle inertia
via the ratio between the time scale for an inertial particle to relax to the flow using
the Schiller–Naumann drag correlation (τp,SN ) and the wave period (T ); and Sv is the
settling number (sometimes called the Rouse number), which quantifies the importance of
gravitational settling via the ratio between the particle terminal settling velocity (v′

s) and
the characteristic velocity scale of fluid motion in waves (uw = gka/ω). In the particle
time scale, the added mass coefficient for a sphere is taken to be Cm = 1/2, and the particle
Reynolds number is determined based on the terminal settling velocity.

2.3. Particle motion under the MRG framework
A widely used simplified version of the MRG equation (without the history force and
Faxén corrections, e.g. see Maxey & Riley 1983; Bergougnoux et al. 2014; DiBenedetto
et al. 2022) is given in dimensionless form by

dv

dt
= (u − v − vs ez)

Stlin
+ β

Du
Dt

, (2.3)

where all variables are made dimensionless using k and ω. Here, v is the particle velocity,
u is the undisturbed fluid velocity, vs is the dimensionless terminal settling velocity, ez is
the unit vector antiparallel to gravity, and β = (1 + Cm)/(γ + Cm). The term on the left-
hand side signifies the particle acceleration, the first term on the right-hand side signifies
the combined forces of drag and buoyancy, and the second term on the right-hand side
signifies the forces due to added mass and fluid acceleration (Bergougnoux et al. 2014). To
emphasise that the particle motion is in the small particle Reynolds number regime, the
particle Stokes number is written as Stlin = ωτp,lin where ‘lin’ refers to the fact that the
(Stokes) drag is linear with respect to the slip velocity. The particle relaxation time scale is
given by τp,lin = d2

p(γ + Cm)/18ν, and the dimensional terminal settling velocity is given
by the classical Stokes settling velocity v′

s = τp,lin(1 − β)g.
In the limit of small and weakly negatively buoyant particles ((1 − β) → 0, St → 0),

the equation reduces to the simple kinematic model

v = u − vs ez, (2.4)
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where the particle velocity is the sum of the undisturbed fluid velocity at the particle
position and the particle terminal settling velocity. In this state, the particle drag force
and buoyancy are the only forces in play, and they are in balance. When St is small but
finite, a kinematic solution for particle motion can be obtained from an St expansion.
However, for larger or denser particles, an increase in St (quantifying particle inertia) is
also accompanied by an increase in particle Reynolds number (quantifying fluid inertia)
since larger particle size and density also result in faster relative motion between the
fluid and the particle. This can render the problem outside the bounds of validity of the
MRG formulation since the relative motion between the particle and the fluid is no longer
characterised by a low Reynolds number.

Bergougnoux et al. (2014) investigated the applicability of (2.3) and (2.4) for particle
settling based on laboratory experiments of spheres settling in a two-dimensional, steady
cellular flow. Comparing particle trajectories from the full MRG equation ((2.3) with
the history force and Faxén corrections included) with experimental data, they found
that the motion of settling particles at low Stokes numbers (St � 0.1) and finite particle
Reynolds numbers (Rep,t � 10) was well predicted by the simple kinematic model (2.4).
This was true as long as one used the measured settling velocity rather than the classical
Stokes settling velocity. However, as Bergougnoux et al. (2014) noted, the applicability
of (2.3) and (2.4) for larger particle diameters and densities is questionable since the larger
Stokes numbers (quantifying particle inertia) would also be accompanied by larger particle
Reynolds numbers (quantifying fluid inertia).

DiBenedetto et al. (2022) used an ad hoc form of the MRG equation to study particle
settling in waves that takes the dimensionless form

dv

dt
= (u − v)

StSN
+ β

Du
Dt

− vs

StSN,t
ez, (2.5)

where the Stokes number based on the Schiller–Naumann drag correlation is given by
StSN = ωd2

p(Cm + γ )/[18ν(1 + 0.15 Re0.687
p )] and StSN,t is the same quantity replacing

Rep with Rep,t . Using the Schiller–Naumann drag correlation to approximate the drag
force for Rep � 103 yields a modified definition of the particle Stokes number, denoted
as StSN, where the subscript SN indicates the use of the Schiller–Naumann drag model.
While StSN is a dynamic quantity that evolves as the particle travels through the flow,
StSN,t = ωd2

p(Cm + γ )/[18ν(1 + 0.15 Re0.687
p,t )] is constant. Here, Sv appears implicitly in

the dimensionless particle terminal settling velocity since it can be written as vs = εw Sv.
DiBenedetto et al. (2022) derived an explicit expression for the particle velocity based

on an expansion in St to quantify effects of particle inertia, and used a multiple time
scale analysis to obtain the wave-averaged particle drift velocity. They also discussed the
mechanisms for enhanced settling and dispersion of inertial particles in waves, extending
the Santamaria et al. (2013) results to arbitrary depth (kh value) and drag force that
is nonlinear with respect to the particle slip velocity using the Schiller–Naumann drag
correlation.

3. Laboratory experiments
We conducted experiments in a rectangular tank that was 504 cm long, 50 cm deep, and
20 cm wide, constructed with glass walls mounted on a steel frame, as shown in figure 1.
The water depth was h = 31.5 cm, with water temperature 21 ◦C (kinematic viscosity
ν = 9.78 × 10−7 m2 s−1). The coordinates (x ′, z′) are aligned with the wave propagation
and antigravity directions, respectively, with the origin at the still-water level 2.5 m
downstream of the wavemaker. Triangular prisms of coarse-pored sponges were placed at
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Figure 1. Schematic of the experimental set-up.

Wave case ω (rad s−1) a (mm) k (rad m−1) cw (m s−1) uw (m s−1) ka kh

W1 (C) 9.56 7.6 9.37 1.02 0.073 0.071 2.95
W2 (T) 5.49 9.2 3.72 1.48 0.061 0.034 1.17
W3 (T) 7.56 15.1 6.11 1.24 0.119 0.092 1.92

Table 1. Parameters of each wave case, where C and T in the wave case column indicate that waves are
generated by the cylindrical and triangular wavemakers, respectively.

both ends of the tank to dissipate wave energy and limit reflection. To generate waves, we
used a cylindrical plunging wavemaker with diameter 7.4 cm, and a right-angled triangular
plunging wavemaker with dimensions 24 cm (height) by 15 cm (length). Below, the
primed quantities refer to dimensional quantities, with the unprimed counterpart referring
to its dimensionless version.

3.1. Waves and wave-induced flow
The waves and wave-induced flow were characterised as follows. A wave gauge
(Toughsonic 3, Senix Corporation) was used to measure the free surface displacement
time series η′(t ′). The wave angular frequency ω was found from the location of the peak
in the spectrum of the wave gauge data. The wave amplitude a was estimated by fitting the
data to η′ = a cos ωt ′, allowing for an arbitrary phase shift. Finally, the wavenumber k was
calculated from the dispersion relationship ω2 = gk tanh kh. Table 1 summarises the wave
characteristics and dimensionless wave parameters for each wave case, including the wave
speed cw, characteristic wave-induced fluid velocity uw = gka/ω, wave steepness ka, and
relative depth kh.

We measured the wave-induced flow using particle image velocimetry (PIV). The PIV
field of view spanned 16.5 cm in the x ′ direction, and 26 cm in the z′ direction, covering
80 % of the water depth over −26 cm < z′ < 0. No measurements were made in the bottom
5.5 cm of the water column. It was illuminated with an LED line light with average light
sheet thickness 1 cm, and seeded with tracer particles (d50 = 10μm, γ = 1.1; 110P8 Potter
Industries). We took images at 20 Hz with a camera (LaVision Imager MX 2M-160, 1936
× 1216 px) fitted with a 16 mm lens (Tamron) to get magnification factor 7.14 px mm−1.
To obtain the flow velocity field, we used a PIV algorithm with an iterative multi-pass
cross-correlation method (DaVis v10.2; LaVision), where the last pass used 64 × 64 px
with 50 % overlap and a Gaussian fit for subpixel accuracy. The final velocity vectors had
spatial resolution approximately 4.5 mm, and were checked for quality by examining the
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Figure 2. Wave-induced flow spanning −26 cm � z′ �−3a. (a,b) Velocity amplitude profiles for oscillatory
flow; data with 95 % confidence intervals (circles) and linear wave theory (solid lines). (c) Horizontal Eulerian-
mean flow (W1), U

′
x . (d) Vertical Eulerian-mean flow (W1), U

′
z .

relative heights of the first and second correlation peaks. Low-quality vectors (< 2 %) were
removed without interpolation. For wave cases W1 and W2, the reflection of the moving
water surface on the flume side wall contaminated the image data near the surface. For
wave case W3, the vertical gradients in the flow were large, and the flow near the moving
surface resulted in tracer streaks. Despite these challenges, we were able to obtain velocity
data for all wave cases below depth z′ �−3a (figure 2).

To evaluate whether the wave-induced flows conform to linear wave theory (2.1), we
compared the PIV velocity measurements with the dimensional velocity field given by

u′
x = U ′

x (z
′) cos(kx ′ − ωt ′) + U

′
x , (3.1a)

u′
z = U ′

z(z
′) sin(kx ′ − ωt ′) + U

′
z, (3.1b)

where U ′
x (z

′) and U ′
z(z

′) denote the oscillatory velocity amplitudes in the horizontal and
vertical directions, respectively, and U

′
x and U

′
z represent the Eulerian-mean velocities in

the horizontal and vertical directions, respectively. For pure monochromatic progressive
waves, U ′

x (z
′) = (gka/ω) cosh(k(z′ + h))/ cosh kh and U ′

z(z
′) = (gka/ω) sinh(k(z′ +

h))/ cosh kh, and U
′
x = U

′
z = 0. Figure 2 displays the wave-induced velocity amplitudes

for wave cases W1–W3, and the Eulerian-mean flow field for wave case W1, obtained from
the experimental data by fitting the velocities at each PIV grid point to (3.1). The velocity
amplitudes are averaged in the horizontal direction, with the 95 % confidence intervals
calculated using the bootstrap technique. The velocity amplitudes show good agreement
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Particle Material dp (mm) ρp (g cm− 3) v′
s (cm s−1) τp,SN (s)

N1 Nylon 2.38 ± 0.05 1.12 ± 0.01 7.45 ± 0.1 0.082
N2 Nylon 3.18 ± 0.05 1.12 ± 0.01 9.46 ± 0.1 0.11
N3 Nylon 6.35 ± 0.05 1.12 ± 0.01 14.6 ± 0.1 0.21
N4 Nylon 12 6.00 ± 0.10 1.03 6.17 ± 0.1 0.31
T1 Torlon 3.18 ± 0.05 1.40 ± 0.01 17.5 ± 0.2 0.085

Table 2. Dimensional particle parameters. Uncertainty bounds show the 95 % confidence intervals using the
bootstrap method.

with linear wave theory, except for a small deviation near the free surface. Furthermore, the
magnitudes of Eulerian-mean flow are small compared to the amplitudes of the oscillatory
flow.

3.2. Particle settling
We measured the settling dynamics of five solid spherical particles whose properties are
summarised in table 2. The nylon (N1, N2, N3) and Torlon (T1) particles were purchased
(US Plastics Corp.), whereas the nylon 12 particles (N4) were 3-D printed (selective
laser sintering, Fuse 1, Formlabs). We checked that the manufacturer’s reported particle
diameters (dp) were accurate to the resolution of standard callipers. Since particle mass
(and density) are expected to be altered by water absorption, we stored the particles in
water before and in between experiments. The particle mass was then measured using a
precision balance scale, allowing us to calculate the particle density (ρp) and the relative
density (γ ).

We measured the terminal settling velocity (v′
s) of each particle with 10 repetitions

by particle tracking (described below) in quiescent water in the same tank. We also
estimated the particle relaxation time scale using the Schiller–Naumann drag correlation
τp,SN = d2

p(γ + (1/2))/[18ν(1 + 0.15 Re0.687
p,t )]. Data from particles settling in quiescent

fluid showed that the particle vertical velocities reached the terminal settling velocities
over a time that was O(τp,SN ), similar to the exponential approach to the terminal settling
velocity in the Stokes drag regime. Thus, we concluded that τp,SN provides a reliable
estimate for the particle relaxation time scale of our inertial particles.

For N4 particles, the mass measurements were less reliable due to variability in water
adherence. So we estimated its relative density from the measured terminal settling
velocity, solving for γ in v′

s = √
(4/3)(γ − 1)dpg/CD , where CD = (24/Rep,t )(1 +

0.15 Re0.687
p,t ) is the Schiller–Naumann correlation for the drag coefficient.

Table 3 lists all experiments for particles settling in waves with the relevant
dimensionless parameters. In all cases, the particles are small compared to the wavelengths
so that the size number is small (Sz � 1), and the particles are weakly negatively buoyant
so that the specific gravity is just above unity, (γ − 1) � 1, with the possible exception of
T1 particles, where (γ − 1) = 0.4. However, the particle relaxation time scale is not small
compared to the wave period, and the Stokes number is St = O(1). The settling number
covers the range 0.8 � Sv � 2.4, with values below, at and above unity. The Rep,t and Ga
values span a range that includes particles both below the threshold for path instabilities
(N1) and above the threshold for path instabilities (N2–N4, T1).

3.2.1. The N1, N2, N3, N4 and T1 particles in wave case W1
Experiments with N1, N2, N3, N4 and T1 particles in wave case W1 were used to
investigate the particle settling dynamics at different Galileo numbers (126 � Ga � 549) at
1014 A33-8
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Wave case Particle γ Rep,t Ga St (τp,SN /T ) Sz Sv

W1 N1 1.12 177 126 0.78 (0.12) 0.022 1.0
W1 N2 1.12 300 194 1.0 (0.16) 0.030 1.3
W1 N3 1.12 927 549 2.0 (0.32) 0.060 2.0
W1 N4 1.03 370 252 3.0 (0.48) 0.056 0.84
W1 T1 1.40 556 354 0.81 (0.13) 0.030 2.4
W2 N2 1.12 300 194 0.58 (0.093) 0.012 1.6
W3 N2 1.12 300 194 0.80 (0.13) 0.019 0.80

Table 3. Dimensionless parameters for each experiment. Ratios of the particle relaxation time to the wave
period (τp,SN /T ) are also presented, alongside St.

St = O(1) (0.78 � St � 3.0) and Sv = O(1) (0.84 � Sv � 2.4). To gather data for particle
settling dynamics, we simultaneously tracked the spheres and measured the velocity field
using a combined particle tracking and PIV approach.

In each experiment, a single sphere was released with a tweezer at approximately
1 cm below the wave trough once the waves were established. We followed this procedure
after preliminary experiments suggested that if a particle is dropped from above the water
surface, then its initial velocity in the water may exceed its terminal settling velocity, and
its trajectory may be altered by air bubbles trapped underneath the particle. The release
points were confined to within a few centimetres of the origin in the horizontal direction.

We conducted 10 repetitions for N1, N3, N4 and T1 particles, and 25 repetitions for
N2 particles (as detailed in § 3.2.2), varying the initial phase of the wave when the particle
was dropped, and excluding drops where the particle travelled outside the light sheet in the
spanwise direction. We waited at least 10 minutes between drops to minimise the influence
of the previous drop. Occasionally, we had to remove settled particles from the tank before
the next release, and this procedure likely altered the structure of the Eulerian-mean flow
even though we waited approximately 30 minutes between releases in such cases.

To obtain particle trajectories from the image data, we first removed the background
image over the set of images for each trajectory by subtracting the minimum count for each
pixel. We determined the particle centroid in each image via the imfindcircles function
in MATLAB, which employs a circular Hough transform, setting the radius range based
on the expected particle size in pixels. This procedure had an uncertainty of 0.5 pixel
(≈ 0.07 mm), which was estimated by checking that circles with centroids shifted from the
estimated centroid did not cover the entire particle in the image. Finally, a Savitzky–Golay
filter (sgolayfilt in MATLAB) with a second-order polynomial was applied to the data to
reduce noise in particle centroid positions. Particle velocities were then calculated using
a first-order finite difference scheme using the filtered data. Using the finite difference
scheme ensures that the particle velocity data are synchronised with the fluid velocity PIV
data.

Since the filter performance depends on the fitting window L f , we compared the
trajectories of the raw and filtered particle centroids for different L f for the N1 particle
(figure 3a). The filtered data with L f = 5 help to reduce the noise in the particle centroid
positions, but larger L f values change the particle positions more than the measurement
uncertainty (0.5 pixel or 0.07 mm) (inset in figure 3a). Additionally, the effect of filtering
on particle velocity shows that using L f = 5 reduces noise, but further increases in
L f result in excessive smoothing (figure 3b). This is evident from the reduction in the
magnitude of the velocity spectra at the peak (figure 3c). Thus, we use L f = 5 points
across all data.
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Figure 3. Representative raw and filtered data for N1 particles: (a) positions, (b) velocities, (c) velocity
spectra. Insets offer close-up views.

The fluid velocity data were obtained using PIV (as described above), with low-quality
vectors (< 2 %) removed without interpolation, which also included vectors where the
interrogation window overlapped with any portion of the settling particle. The undisturbed
fluid velocity at the particle position was calculated with linear interpolation of the velocity
vectors in space, using the particle position at the midpoint between successive images.
Since the fluid velocity data are well resolved in space and time, the linear interpolation
method was found to be sufficiently accurate. In the interpolation, we excluded fluid
velocity vectors within a radius 3dp from each particle centroid and from near the free
surface (z′ �−3a).

We examined the effect of the exclusion radius on the interpolation; see the example
of flow velocities at the particle position for an N3 particle (largest size and Ga) in
figure 4. The interpolated fluid velocity at the particle centroid is not sensitive to the
size of the exclusion region at 3dp or above. The maximum velocity difference between
using exclusion radii 3dp and 5dp is approximately 10−3, which is much smaller than
the magnitude of the slip velocities (see figure 7(e) below). Thus, we concluded that an
exclusion radius of 3dp was sufficient to obtain the background fluid velocities at the
particle centroid positions.

It is worth noting that while our experimental set-up allows us to obtain well-resolved
simultaneous measurements of the particle trajectories and background fluid velocities
over most of the water column, we are not able to capture the particle wake within the fluid
since the light is delivered from below the tank, and the wake flow immediately above the
particle is blocked by the particle. Some part of the wake structure may influence the fluid
velocity vectors in the vicinity of the particle, but since the wake flow is not measurable,
these vectors are excluded from the analysis as explained above.

3.2.2. The N2 particles in wave cases W1, W2 and W3
Experiments with N2 particles in wave cases W1, W2 and W3 were used to investigate how
the path instabilities of settling spheres in quiescent fluid would be affected by unsteady
and non-uniform wavy flow. The N2 particles (γ = 1.12, Ga = 194) were chosen since
their Galileo number is above the previously found threshold for steady vertical trajectories
in quiescent fluid (Ga ≈ 155). Across wave cases W1, W2 and W3, the wave frequency was
varied to vary the flow time scale relative to the dominant time scale of the particles’ path
instabilities. At the low frequencies of W2 and W3, we used the triangular wavemaker,
as the cylindrical wavemaker was unable to produce waves without also increasing the
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Figure 5. Particle trajectories in wave case W1 normalised by wavelength and water depth: (a) N1, (b) N2,
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amplitude (table 1). This resulted in some variation in Sv in this experimental set, but
all experiments were still at St = O(1) (0.58 � St � 1.0) and Sv = O(1) (0.8 � Sv � 1.6)
(table 3). We conducted 25 repetitions for each wave condition and in quiescent conditions
to reduce the statistical uncertainty in the results. Measurements of the flow and particle
motion were made using the same methods as described in § 3.2.1.

4. Analysis of particle motion
We begin with a qualitative examination of typical particle trajectories and particle
velocities relative to the background flow, before proceeding to more quantitative analysis
for different subsets of the data.

Figure 5 shows particle trajectories in wave case W1 (§ 3.2.1). The x ′ and z′ coordinates
are made dimensionless by the wavelength and water depth, respectively, and all
trajectories are shown with initial horizontal position x ′ = 0. The N1 particles, released at
different wave phases, spread out immediately after release in the region −0.3 � z′/h � 0,
and later fall predominantly in the vertical direction, with small and regular horizontal
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Figure 6. Representative normalised particle velocity (v) and normalised undisturbed fluid velocity (u) data:
(a,c) N1, (b,d) T1, for (a,b) horizontal components, (c,d) vertical components, including the kinematic model
(vz = uz − vs ).

oscillations in the region z′/h �−0.3. The horizontal oscillations decay as the particles
settle deeper, and appear to be consistent in magnitude across different trajectories.
In contrast, the trajectories of the other particles (N2–N4, T1) show larger horizontal
motions than the N1 particles, with some particles (N3, T1) showing qualitatively different
trajectories from the start. Notably, the horizontal motions do not seem to decay with
depth.

Moving on to the particle velocities, figure 6 shows typical time series of the
dimensionless particle velocity and the corresponding dimensionless fluid velocity at the
particle position for N1 and T1 particles. The wave-induced flow clearly affects the motion
of both particles, but there are differences in the particle slip velocity (defined as vslip =
v − u). In particular, the particle velocities are well predicted by the kinematic model
(see (2.4), vslip = −vs ez) for the N1 particle (γ = 1.12, Ga = 126, St = 0.78) in both
directions after an initial transient period, whereas for the T1 particle (γ = 1.40, Ga =
354, St = 0.81), only the vertical velocity follows the kinematic model after an initial
transient period, and the horizontal velocity continues to deviate from the undisturbed
fluid velocity.

To further examine whether particle velocity can be predicted by the kinematic
model (2.4), we show data of particle slip velocity for all experiments in wave case
W1 in figure 7. The data show that to a good approximation, the vertical slip velocities
for all particles relax to the terminal settling velocity (vz − uz) ≈ −vs , with fluctuations
about this state that are small relative to the magnitude of vs . Further, all particles
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appear to reach this quasi-steady vertical slip at t ′ ≈ 4τp,SN after their release (red
dashed lines), regardless of the initial conditions, similar to the exponential approach to
terminal settling velocity in the Stokes drag regime. Together with the same observation
in quiescent conditions, this observation shows that the particle time scale estimated
using the Schiller–Naumann drag correlation serves as a reliable estimate for the particle
relaxation time in both quiescent and wavy conditions. In contrast to the vertical slip
velocities, the horizontal slip velocities show stark differences across different particles.
While N1 particles reach a state where the horizontal slip velocity becomes negligible
((vx − ux ) ≈ 0), the other particles never reach this state.

Below, we investigate the particle dynamics more quantitatively. We separate the
dynamics of N1 particles from the others, given that their motion shows an unexpected
agreement with the kinematic model (§ 4.1). We then investigate how the path instabilities
affecting the other particles in quiescent fluid influence their settling in waves (§ 4.2).

4.1. The N1 particle

4.1.1. Approach to the kinematic model
As mentioned above, the MRG equation (2.3), which is valid for small particle Reynolds
number (Rep � 1), reduces to the kinematic model (2.4) in the limit of small Stokes
number (St � 1) for weakly negatively buoyant particles ((1 − β) � 1) because the first
term on the right-hand side of the equation dominates. Here, we have found that N1
particles in wave case W1, which have Stokes number St = O(1) and particle Reynolds
number Rep = O(100), also follow the kinematic model. In the following, we show how
this finding can be rationalised in the context of the ad hoc extension of the MRG equation
for large particle Reynolds number (2.5).

Starting with (2.5), we consider the scenario where the fluctuations in the particle
slip velocities are small relative to the slip velocity: |
vslip|/vslip � 1. We observe this
in the N1 particle data when the slip approaches the terminal settling velocity. As
Rep (= |v′ − u′| dp/ν) remains nearly constant in these condition, StSN can be
approximated by a constant, which in this case is StSN,t . This gives

dv

dt
= (u − v − vs ez)

StSN,t
+ β

Du
Dt

. (4.1)

We now simplify this equation further using the following scalings, where εw is the
wave nonlinearity parameter: u = O(εw), v = O(εw), St = O(1), (1 − β) = O(εw) and
Sv = O(1), which implies vs = O(εw) since vs = εw Sv. We can write the last term as

β
Du
Dt

= Du
Dt

− (1 − β)
Du
Dt

= du
dt

+ (u − v) · ∇u − (1 − β)
Du
Dt

= du
dt

+ O(ε2
w). (4.2)

By dropping terms of O(ε2
w), (4.1) can be written as

d(v − u + vs ez)

dt
+ (v − u + vs ez)

StSN,t
= 0, (4.3)
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where we have used dvs/dt = 0. The solution is given by

(v − u + vs ez)

(v − u + vs ez)t0
= exp

(
−(t − t0)

StSN,t

)
, (4.4)

which shows that the particle slip velocities approach the kinematic model with an
exponential decay with a dimensionless time scale given by StSN,t , with an ‘initial
condition’ (v − u + vs ez)t0 at t = t0. At (t − t0) � StSN,t , we recover the kinematic model
v = u − vs ez .

Figure 8 shows how the data compare against (4.4) during the particles’ approach to the
kinematic model. We have to select the ‘initial time’ t0 in (4.4) with care since the noise in
the data is amplified when (v − u + vs ez)t0 is small, and the particle release mechanism
will impart some unknown initial motion to the particle. In the horizontal direction, we
select tx0 as the time when the horizontal slip velocity reaches its peak (see figure 7a),
after which it decays towards zero. For trajectories where the horizontal slip velocity does
not have a clear peak, tx0 is chosen as the time when |(v − u)x | begins to be smaller than
0.15vs . In the vertical direction, tz0 is defined as the time when |(v − u)z| exceeds 0.7vs ,
by which time StSN is also within 20 % of StSN,t .

Overall, the data show a reasonable agreement with the prediction in the horizontal
direction, while it appears that the approach to the kinematic model in the vertical direction
takes longer than predicted. The slower approach to the kinematic model in the vertical
could be due to the history force (ignored here), which has been shown in previous
experiments to have this effect (Mordant & Pinton 2000). Additionally, we see that forces
related to drag, buoyancy, added mass and fluid acceleration are all important in the
approach to the kinematic model. This is different to the case for particles with St � 1,
where the kinematic model results from the drag–buoyancy forces being dominant. Finally,
the Stokes number is important only to describe the transient phase in approaching the
kinematic model. After that, only Sv influences the particle motion.

4.1.2. Enhanced settling and dispersion
Since we found that St does not influence the particle motion after an initial transient
phase, we can use the experimentally validated kinematic model (2.4) for particles below
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Figure 9. (a) Double wave-averaged velocity profiles of the N1 particles made dimensionless with the terminal
settling velocity. Markers show data with 95 % confidence intervals, dashed lines show predicted enhanced
settling (4.5), and vertical black dash-dotted lines indicate 95 % confidence interval of the terminal settling
velocity (table 2). (b) Vertical profile of the standard deviation of the wave-averaged horizontal particle position
for N1 particles.

the Ga threshold for path instabilities to perform the same multiple time scale analysis as
in DiBenedetto et al. (2022) to obtain the wave-averaged particle drift velocities. We find
these (in dimensionless form) to be

vx-dri f t = 1
1 + v2

s
uSD, vz-dri f t = −vs

[
1 + 1

1 + v2
s

uSD

]
, (4.5)

where uSD = ε2
w cosh 2(Z p + kh)/2 cosh2 kh is the classical dimensionless Stokes drift

velocity with wave-averaged vertical particle position Z p, and vs is the dimensionless
particle settling velocity, with all velocities made dimensionless using the wave speed
ω/k. Equation (4.5) predicts that the horizontal drift is reduced while the vertical drift
is enhanced, with both effects related to how the particle samples the fluid flow, and
quantified by the term uSD(1/(1 + v2

s )). The settling velocity enhancement increases in
percentage terms as the wave steepness increases and as the dimensionless particle settling
velocity decreases.

To check how well (4.5) predicts the settling velocity enhancement, we compute the net
settling velocity using a single particle trajectory, following the double wave-averaging
approach in DiBenedetto et al. (2022). Defining the wave average of quantity s over wave
period T as s = (1/T )

∫ t+T
t s(τ ) dτ , we wave average the particle vertical position and

velocity once to remove the wave-induced oscillations, and once more to remove the
influence of the initial wave phase at the release point. The double wave-averaged vertical
velocity vz is then only a function of the double wave-averaged vertical position z′

p.
Figure 9(a) shows profiles of vz as a function of z′

p for N1 particle data binned in vertical
increments 0.1(z′/h) and averaged across different particle releases. For z′

p/h > −0.3,
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the vertical drift is affected by the initial relaxation of the particle to the wave-induced
flow, where its vertical slip velocity is smaller than the terminal settling velocity. Below
this region, where the particle motion follows the kinematic model, the data appear to
show a very small (1 %) settling enhancement, which in turn is much greater than the
enhancement predicted by (4.5) at these depths.

However, the settling enhancement suggested by the data should be interpreted with care
since it falls within the uncertainty in the terminal settling velocity (dash-dotted lines).
While (4.5) does not correctly predict the settling enhancement, it also does not account
for the presence of Eulerian-mean flow. As seen in figure 2, although the Eulerian-mean
flow is small compared to the wave-induced oscillatory flow, it is approximately 1 % of
vs , and could be the cause of the settling enhancement in the data. We conclude that
although a wave-induced settling enhancement cannot be ruled out, it is challenging to
conclusively demonstrate it given the unavoidable sources of uncertainty and the smallness
of the enhancement predicted from theory.

Apart from enhanced settling, DiBenedetto et al. (2022) also provided a discussion
of the mechanisms by which inertial particles disperse in the horizontal direction while
settling in waves. While no horizontal dispersion is predicted by divergence of the drift
velocities (4.5), there is dispersion in the wave-resolved sense due to variations in the
wave phase at the point of initial particle release. The variation in the initial phase can be
understood as vertical variations in the effective wave-averaged initial positions, which are
acted upon by the shear in the Stokes drift near the surface.

To quantitatively inspect the horizontal dispersion of the N1 particles, we compute
the standard deviation of their wave-averaged horizontal positions. As the N1 particles
undergo five wave periods while settling in the measurement area, we obtain their wave-
averaged particle positions (x ′

p and z′
p) for each wave period. The standard deviations

of the horizontal particle positions with corresponding mean vertical positions are then
determined by bootstrapping using data for each wave period. Note that since the
particles are subjected to similar wave-induced flows, their vertical displacements are
nearly uniform across the particles for each wave period, leading to negligible confidence
intervals in z′

p.
Figure 9(b) shows the vertical profile of the dimensionless standard deviations of

the wave-averaged horizontal particle positions. While the standard deviation increases
near the surface as particles with different initial wave phases spread out, it remains
relatively constant in z′

p/h < −0.2, which is consistent with the mechanism discussed
in DiBenedetto et al. (2022). Note that the small changes in the standard deviation in
z′

p/h < −0.2 could be due to the weak Eulerian-mean flows, and they are not investigated
further.

4.2. Path instabilities
To understand why certain particles show large deviations from the kinematic model,
we compared how spheres settle in waves with the corresponding data in quiescent
water. Figure 10 shows images of particles N1 and N3 (smallest and largest Ga values,
respectively) with black markings on them to visualise particle rotation. The markings on
the N1 particle do not move, showing that the particle had little to no rotation, as expected
for a particle settling in a quiescent fluid and an irrotational flow. However, the markings
on the N3 particle change consistently, indicating that the particle rotates while settling
in both quiescent fluid and in irrotational waves. Since there is no mechanism by which
irrotational wavy flow can cause rotations of spherical particles, we conclude that the
oscillations in horizontal slip velocity in wavy flow for our larger Ga particles must be due
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Quiescent Waves Quiescent Waves

N1 N3

t′ = 1.0 s t′ = 1.0 s

t′ = 2.0 s t′ = 2.0 s

t′ = 3.0 s t′ = 3.0 s

t′ = 0.5 s t′ = 0.5 s

t′ = 0.75 s t′ = 0.75 s

t′ = 1.0 s t′ = 1.0 s

Figure 10. The N1 and N3 particles with surface markings settling in quiescent water and waves.

to path instabilities. In other words, the deviations of particle motion from the kinematic
model are due to fluid inertia rather than particle inertia.

To explore the path instabilities more quantitatively, we calculated spectra of the particle
slip velocity P( f ), where f is the frequency. Specifically, we used the dimensional slip ve-
locity in waves (v′ − u′), and the dimensional particle velocity in quiescent conditions v′.
Note that by using the particle slip velocity, we avoid the spectral peak produced by the
wave-induced oscillations in particle motion. We used the data over the vertical region
−0.8 < z′/h < −0.3, where the vertical slip has already relaxed to the particle’s terminal
settling velocity, but the particle motion is still affected by the wave-induced flow. To
compute the spectra, we first matched the length of the slip velocity data time series for
all data of a given particle in both waves and quiescent conditions by excluding the last
few data points in order to ensure consistency in the frequency resolution. Typically, no
more than three data points were excluded. We also subtracted the mean from the time
series of each particle release to obtain time series of zero-mean velocity fluctuations
(slip velocity in waves (v′ − u′)∗ and particle velocity in quiescent conditions (v′)∗). The
spectrum for each particle release was then computed using the fast Fourier transform on
the zero-mean time series before being ensemble averaged across different particle releases
(as recommended in Bendat & Piersol 2011). Finally, the ensemble mean spectrum and
its confidence interval at each frequency were determined via bootstrapping across the
spectra.

Figure 11 shows the ensemble mean spectra for each particle type using 10 particle
releases in both quiescent fluid and waves. While the spectra for the N1 particle (Ga = 126,
below the Ga ≈ 155 threshold for path instabilities) show no peaks, the spectra of the
other particles show clear peaks with magnitudes 1–2 decades larger in the horizontal
direction compared to the vertical. The normalised frequencies at which the spectral peaks
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Figure 11. Normalised ensemble mean spectra of particle slip velocity fluctuations in waves and quiescent
fluid for (a) N1, (b) N2, (c) N3, (d) N4, (e) T1. Vertical dashed lines indicate the dimensionless wave frequency
(dp/T v′

g), with dp/T v′
g ≈ 0.22 in (d) not shown.

occur in our data agree with previously reported values for similar Ga- and γ -valued
particles settling in quiescent conditions (Veldhuis & Biesheuvel 2007; Raaghav et al.
2022; Cabrera-Booman et al. 2024). Since the wake instabilities of spheres settling in
quiescent fluid are determined solely by particle and fluid properties, the spectral peaks
occur at the same frequencies regardless of whether the particles are settling in quiescent
fluid or in waves, and these frequencies are distinct from the wave frequency, we conclude
that the deviations from the wave-induced flow in the horizontal direction (figure 7) are
indeed due to asymmetric wakes and path instabilities, and that these path instabilities are
unaffected by the waves. Note that the lack of influence of the oscillatory wave-induced
flow on the path instabilities caused by particle wakes is different to, for example, the case
where spheres or cylinders are forced to oscillate transversely across a free stream flow
(Williamson & Roshko 1988; Peter & De 2016), in which the wake vortex frequency is
influenced by the forced oscillation frequency.

While the data in figure 11 suggest that the wave-induced flow has little influence on
the particle path instabilities, the spectral peaks are broad and the frequency resolution
is coarse. Furthermore, the data are from a single wave case, leaving open the question
of whether the waves might affect the path instabilities at different wave frequencies. We
address these points using N2 particle data spanning wave cases W1, W2 and W3 (§ 3.2.2)
and further analysis.

Figure 12 shows further analysis of N2 particles settling in quiescent fluid. In the
example trajectories in figure 12(a), we observe two distinct regimes of path instabilities:
a low-frequency oscillating oblique regime (circles), and a chaotic regime (asterisks). This
is not surprising since N2 particles are at the boundary between the two different regimes
in Ga–γ space (see figure 5 in Raaghav et al. 2022), and the particle properties have
small variations across different particles of each type. In the oscillating oblique regime,
there are multiple oscillations, but the sign of the horizontal velocity remains unchanged,
resulting in a non-negligible mean (figure 12b). In contrast, in the chaotic regime, there
is one or fewer oscillations, but they occur around a near-zero mean horizontal velocity
with a change in sign (figure 12b). These differences are reflected in the horizontal
velocity autocorrelations (Rxx (lag) = 〈v′∗

x (t ′) v′∗
x (t ′ + lag)〉/〈(v′∗

x )2〉, where 〈·〉 denotes a
mean over the time series; see figure 12c), which show a distinct peak for the oscillating
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Figure 12. The N2 particles settling in quiescent fluid: (a) example trajectories; (b) normalised horizontal
particle velocities; (c) horizontal particle velocity autocorrelation function; (d) normalised spectra of horizontal
particle velocities.
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Figure 13. The N2 particles settling in waves. Examples of normalised horizontal slip velocities and the
corresponding horizontal slip velocity autocorrelation functions for different wave cases: (a,d) W1, (b,e) W2,
(c,f ) W3.

oblique regime, and no distinct peak for the chaotic regime. The horizontal velocity spectra
(figure 12d) show that the peaks for the two regimes are at different frequencies. While
the spectral peaks for the oscillating oblique regime occur at frequencies corresponding to
the lags associated with the peaks in the autocorrelation functions (≈ 0.6 and 0.8 s), the
spectral peaks for the chaotic regime occur at the smallest resolved frequency (i.e. the first
non-zero bin) since the trajectories are too short to observe complete oscillations. We also
note that the variance of the horizontal particle velocity for the oscillating oblique regime
is much smaller than that for the chaotic regime, which results in a smaller spectral peak.

Figure 13 shows the corresponding analysis for N2 particles settling in waves. The
wave-induced oscillatory motion of particles makes it difficult to identify different path
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Figure 14. Normalised ensemble mean spectra of N2 particle slip velocity fluctuations in waves and quiescent
fluid: (a) oscillating oblique regime; (b) chaotic regime. Vertical dashed lines indicate the dimensionless wave
frequency (dp/T v′

g), with different colours corresponding to different wave cases.

instability regimes from particle trajectories, but we find that the horizontal slip velocities
show features that resemble the same two different regimes: a low-frequency oscillating
oblique regime (circles), and a chaotic regime (asterisks) (figure 13a–c). As in the data
from quiescent fluid, there are multiple oscillations with the same sign for the oscillating
oblique regime, whereas there are one or fewer oscillations with a change in sign in the
chaotic regime. The corresponding slip velocity autocorrelation functions (figure 13d–f )
show distinct peaks for the former, while no distinct peak is observed for the latter, just as
in the quiescent fluid case.

With the knowledge of the two different path instability regimes, we can return to the
comparison between the spectra in quiescent fluid and in waves presented in figure 11,
and use the N2 particle data to confirm that the magnitude and width of the spectral
peaks are unaffected by the waves. Figure 14 shows the ensemble mean spectra split
into the low-frequency oscillating oblique regime and the chaotic regime. Each spectrum
comes from the mean of approximately 12 particle releases (from a total of 25 releases,
with both regimes being equally likely), and the particle in each release experiences a
significant wave-induced flow for at least one wave period while settling through the region
of analysis (−0.8 < z′/h < −0.3). We note that while the coarse frequency resolution is a
fundamental limitation of the short particle trajectories (see also Veldhuis & Biesheuvel
2007; Cabrera-Booman et al. 2024), which themselves are limited by the finite depth of
the wave-influenced region, the time domain analysis in figures 12 and 13 confirms the
robustness of the spectral peaks.

We observe that in both path instability regimes, the presence of the waves does not
affect either the magnitude or the width of the spectral peak in figure 14. This is true across
the three different wave cases with different frequencies, where T/Toscillating oblique =
0.80, 1.4, 1.0 and T/Tchaotic = 0.40, 0.70, 0.51, with Toscillating oblique and Tchaotic being
the periods associated with spectral peaks for the two path instability regimes, and T
being the wave period. Moreover, the spectral peaks occur at dimensionless frequencies
that are distinct from those associated with the wave period. These results demonstrate
that path instabilities of settling particles observed in quiescent fluid persist in the unsteady
wave-induced flows, and account for the deviation of particle velocities from the kinematic
model. We suspect that the lack of interaction between the particle wakes and the wavy
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flow is due to the smallness of Sz (table 3), which implies a large-scale separation between
the particles and the flow length scale.

5. Conclusions
We have investigated the effects of particle and fluid inertia on the dynamics of spherical
particles settling in the two-dimensional, non-uniform, unsteady and irrotational flow
induced by surface waves. The particles are small (Sz < 0.06) and weakly negatively
buoyant ((γ − 1) < 0.4, (1 − β) < 0.21), are inertial from both the particle perspective
(St = O(1)) and the fluid perspective (125 < Ga < 550, corresponding to 100 < Rep,t <

1000), and settle over a range of velocities relative to the fluid velocity (0.8 � Sv � 2.4).
By capturing the motion of the particle and tracers simultaneously using a single camera,
particle velocities and flow velocity fields are estimated via particle tracking and particle
image velocimetry, respectively, with the latter used to estimate the undisturbed flow
velocity at the particle position.

We observed that particle motion is well described by the simple kinematic model v =
u − vs ez after a transient period, as long as the effects of fluid inertia are small enough
that they do not induce path instabilities. To rationalise this observation, we show how an
ad hoc Maxey–Riley–Gatignol (MRG) equation, where the Stokes drag is replaced with
the drag force from the Schiller–Naumann drag correlation, can be simplified to show
that particle dynamics will approach the kinematic model. In this analysis, we find that
all terms in the MRG equation (particle acceleration, drag, buoyancy, fluid forcing, and
added mass) are important. Additionally, while St is important to predict the time scale
over which the particle dynamics approach the kinematic model, only Sv is required to
predict particle motion once the particle motion is well described by the kinematic model.
Thus, although ad hoc extensions of the MRG equation have been developed to extend
its applicability to large particle Reynolds number, the motion of settling particles with
significant particle and fluid inertia is actually better described by the simple kinematic
model v = u − vs ez .

For particles that follow the kinematic model, we give the wave-averaged particle drifts.
While the data show qualitative agreement with the mechanism for horizontal dispersion
from DiBenedetto et al. (2022), we find that the settling velocity enhancement, if it exists,
is too small to be measurable within experimental uncertainties.

As fluid inertia increases (Ga � 155, corresponding to Rep,t � 210), we observed path
instabilities in particle trajectories. By examining the similarities in the horizontal velocity
of settling particles in quiescent fluid, and the horizontal slip velocity of settling particles
in waves, along with their autocorrelation and spectra, we confirmed that these path
instabilities are caused by wake effects that have been reported previously to occur for
settling particles in quiescent fluid. Remarkably, these path instabilities appear to be
unaffected by the background flow even when St = O(1), Sv = O(1), and the ratios
between the wave period and dominant path instability period are below, at and above
unity. Thus, we conclude that this lack of interaction between the background flow and
the particle wakes is because Sz � 1, meaning that there is a large separation between the
particle size and the length scale of the flow.

For applications of inertial particle settling in non-trivial flow environments, future
studies should focus on the role of fluid inertia (as well as particle inertia) as even
small, weakly negatively buoyant particles (γ ≈ 1.1, dp ≈ 3 mm particles in water) can
be expected to have path instabilities. Similarly, other particle types, such as positively
buoyant particles, bubbles, and particles with complex shapes, will have their own
regimes of path instabilities. While we have found wave-induced flow (two-dimensional,
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unsteady and non-uniform) to be an attractive testing ground to understand flow–particle
interactions that is also relevant to environmental and geophysical applications, it is
difficult to extrapolate our findings directly to more complex flows since wavy flow is
irrotational and varies over a single length and time scale. Thus, it would also be interesting
to understand to what degree the current results hold or are modified in multi-scale flow
environments (e.g. turbulence).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10311.

Acknowledgements. We gratefully acknowledge the work of K. Beyduz, who was supported by a Hilldale
Undergraduate Research Fellowship during the preliminary stages of the investigation, and help from A.
Stephens, J. Zeuske, L. Sunberg and J. Koseff with the wavemaker design and construction. We also thank
M. DiBenedetto for fruitful discussions, and anonymous referees for constructive comments.

Funding. This work was supported by the US National Science Foundation (CBET-2211704). N.P.
acknowledges an Early-Career Research Fellowship from the Gulf Research Program of the National
Academies of Science, Engineering, and Medicine.

Declaration of interests. The authors report no conflict of interest.

Author contributions. N.P. and J.Y.B. designed the study, J.Y.B. conducted the experiments and performed
data analysis, and J.Y.B. and N.P. reached the conclusions and wrote the paper.

Data availability statement. The experimental data and computational codes are available at
https://doi.org/10.5281/zenodo.15548499.

REFERENCES

BAKHODAY-PASKYABI, M. 2015 Particle motions beneath irrotational water waves. Ocean Dyn. 65 (8),
1063–1078.

BALACHANDAR, S. 2024 Fundamentals of Dispersed Multiphase Flows. Cambridge University Press.
BENDAT, J.S. & PIERSOL, A.G. 2011 Random Data: Analysis and Measurement Procedures. John Wiley &

Sons.
BERGOUGNOUX, L., BOUCHET, G., LOPEZ, D. & GUAZZELLI, É. 2014 The motion of solid spherical

particles falling in a cellular flow field at low Stokes number. Phys. Fluids. 26 (9), 093302.
CABRERA-BOOMAN, F., PLIHON, N. & BOURGOIN, M. 2024 Path instabilities and drag in the settling of

single spheres. Intl J. Multiphase Flow 171, 104664.
CLARK, L.K., DIBENEDETTO, M.H., OUELLETTE, N.T. & KOSEFF, J.R. 2020 Settling of inertial

nonspherical particles in wavy flow. Phys. Rev. Fluids 5 (12), 124301.
DIBENEDETTO, M.H., CLARK, L.K. & PUJARA, N. 2022 Enhanced settling and dispersion of inertial

particles in surface waves. J. Fluid Mech. 936, A38.
EAMES, I. 2008 Settling of particles beneath water waves. J. Phys. Oceanogr. 38 (12), 2846–2853.
ERN, P., RISSO, F., FABRE, D. & MAGNAUDET, J. 2012 Wake-induced oscillatory paths of bodies freely

rising or falling in fluids. Annu. Rev. Fluid Mech. 44 (1), 97–121.
HOROWITZ, M. & WILLIAMSON, C.H.K. 2010 The effect of Reynolds number on the dynamics and wakes

of freely rising and falling spheres. J. Fluid Mech. 651, 251–294.
JENNY, M., DUŠEK, J. & BOUCHET, G. 2004 Instabilities and transition of a sphere falling or ascending freely

in a Newtonian fluid. J. Fluid Mech. 508, 201–239.
MAXEY, M.R. & RILEY, J.J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys.

Fluids. 26 (4), 883–889.
MORDANT, N. & PINTON, J.F. 2000 Velocity measurement of a settling sphere. Eur. Phys. J. B 18 (2),

343–352.
MOULTON, M., SUANDA, S.H., GARWOOD, J.C., KUMAR, N., FEWINGS, M.R. & PRINGLE, J.M. 2022

Exchange of plankton, pollutants, and particles across the nearshore region. Annu. Rev. Mar. Sci. 15 (1),
167–202.

PETER, S. & DE, A.K. 2016 Wake instability modes for forced transverse oscillation of a sphere. Ocean Engng
115, 48–59.

RAAGHAV, S.K.R., POELMA, C. & BREUGEM, W.-P. 2022 Path instabilities of a freely rising or falling
sphere. Intl J. Multiphase Flow 153, 104111.

1014 A33-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
31

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10311
https://doi.org/10.5281/zenodo.15548499
https://doi.org/10.1017/jfm.2025.10311


J.Y. Bang and N. Pujara

SANTAMARIA, F., BOFFETTA, G., MARTINS AFONSO, M., MAZZINO, A., ONORATO, M. & PUGLIESE, D.
2013 Stokes drift for inertial particles transported by water waves. Europhys. Lett. 102 (1), 14003.

SUTHERLAND, B.R., DIBENEDETTO, M.H., KAMINSKI, A. & VAN DEN BREMER, T. 2023 Fluid dynamics
challenges in predicting plastic pollution transport in the ocean: a perspective. Phys. Rev. Fluids 8 (7),
070701.

VELDHUIS, C.H.J. & BIESHEUVEL, A. 2007 An experimental study of the regimes of motion of spheres
falling or ascending freely in a Newtonian fluid. Intl J. Multiphase Flow 33 (10), 1074–1087.

WILLIAMSON, C.H.K. & ROSHKO, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids
Struct. 2 (4), 355–381.

ZHOU, W. & DUŠEK, J. 2015 Chaotic states and order in the chaos of the paths of freely falling and ascending
spheres. Intl J. Multiphase Flow 75, 205–223.

1014 A33-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
31

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10311

	1. Introduction
	2. Theoretical background
	2.1. Surface waves
	2.2. Dimensionless parameters
	2.3. Particle motion under the MRG framework

	3. Laboratory experiments
	3.1. Waves and wave-induced flow
	3.2. Particle settling
	3.2.1. The N1, N2, N3, N4 and T1 particles in wave case W1
	3.2.2. The N2 particles in wave cases W1, W2 and W3


	4. Analysis of particle motion
	4.1. The N1 particle
	4.1.1. Approach to the kinematic model
	4.1.2. Enhanced settling and dispersion

	4.2. Path instabilities

	5. Conclusions
	References

