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Suspended fibres significantly alter fluid rheology, as exhibited in for example solutions of

DNA, RNA and synthetic biological nanofibres. It is of interest to determine how this

altered rheology affects flow stability. Motivated by the fact thermal gradients may occur

in biomolecular analytic devices, and recent stability results, we examine the problem of

Rayleigh–Bénard convection of the transversely isotropic fluid of Ericksen. A transversely

isotropic fluid treats these suspensions as a continuum with an evolving preferred direction,

through a modified stress tensor incorporating four viscosity-like parameters. We consider

the linear stability of a stationary, passive, transversely isotropic fluid contained between two

parallel boundaries, with the lower boundary at a higher temperature than the upper. To

determine the marginal stability curves the Chebyshev collocation method is applied, and

we consider a range of initially uniform preferred directions, from horizontal to vertical,

and three orders of magnitude in the viscosity-like anisotropic parameters. Determining the

critical wave and Rayleigh numbers, we find that transversely isotropic effects delay the onset

of instability; this effect is felt most strongly through the incorporation of the anisotropic

shear viscosity, although the anisotropic extensional viscosity also contributes. Our analysis

confirms the importance of anisotropic rheology in the setting of convection.

Key words: 76E06; 76A05; 76D99.

1 Introduction

Suspended fibres significantly alter the rheology of the fluid, as exhibited in for example

suspensions of DNA (Marrington et al., 2005), fibrous proteins of the cytoskeleton

(Dafforn et al., 2004; Kruse et al., 2005), synthetic bio-nanofibres (McLachlan et al.,

2013), extracellular matrix (Dyson et al., 2015) and plant cell walls (Dyson & Jensen,

2010). It is of interest to determine how this altered rheology affects flow stability;

motivated by the impact of anisotropic effects on Taylor–Couette instability (Holloway

et al., 2015), and the thermal gradients that may occur in devices which rely on nanofibre

alignment for biomolecular analysis (Nordh et al., 1986), we examine the Rayleigh–Bénard

instability of the transversely isotropic fluid of Ericksen.

We consider the linear stability of a transversely isotropic fluid contained between two

infinitely long horizontal boundaries of different temperatures (as shown in Figure 1), to
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T ∗ = T ∗
1

z∗ = d∗

T ∗ = T ∗
0

z∗ = 0

θ(0)

Figure 1. A schematic diagram of the Rayleigh–Bénard setup. The lower and upper boundaries

are located at z∗ = 0 and z∗ = d∗ at temperatures T ∗
0 and T ∗

1 , respectively. The leading order

preferred direction is given by the angle θ(0).

a small arbitrary perturbation. Three different combinations of boundary types will be

considered, (1) both boundaries are rigid, (2) both are stress free, and (3) the bottom

boundary is rigid and the top is stress free. One application of our theory is to fibre-laden

fluids, however it holds for any fluid which may be described as transversely isotropic.

In this paper, we adopt Ericksen’s transversely isotropic fluid (Ericksen, 1960), which

has been used to describe fibre-reinforced media (Cupples et al., 2017; Dyson et al.,

2015; Green & Friedman, 2008; Holloway et al., 2015; Lee & Ockendon, 2005). Ericksen’s

model consists of mass and momentum conservation equations together with an evolution

equation for the fibre director field. The stress tensor depends on the fibre orientation

and linearly on the rate of strain; it takes the simplest form that satisfies the required

invariances. Recently, Ericksen’s model has been linked to suspensions of active particles

(Holloway et al., 2018), such as self-propelling bacteria, algae and sperm (Saintillan &

Shelley, 2013).

Rayleigh (1916) was the first to form a mathematical model of the Rayleigh–Bénard

system, using equations for the energy and state of an infinite layer of fluid, bounded

by two stationary horizontal boundaries of different constant uniform temperatures. We

work with the Boussinesq approximation that the flow is incompressible with non-constant

density entering only through a buoyancy term.

In his original study, Rayleigh (1916) was able to find a closed-form solution in the

case of both upper and lower boundaries being stress free, i.e. zero tangential stress; this

setup has been simulated in experiments by replacing the bottom boundary with a layer

of much less viscous fluid (leaving the top boundary stress free) (Goldstein & Graham,

1969). To determine the conditions where instability occurs for other combinations of

boundary types, numerical techniques are required (Drazin, 2002).

We briefly discuss the equations and derive the steady state of the transversely isotropic

model (Section 2), and then undertake a linear stability analysis, leading to an eigenvalue

problem which is solved numerically (Sections 3 and 4). The effect of variations in viscosity-

like parameters and the steady state preferred direction on the marginal stability curves

is considered (Section 5), then we conclude with a discussion of the results in Section 6.

2 Governing equations

We adopt a two-dimensional Cartesian coordinate system (x∗, z∗), and velocity vector

u∗ = (u∗, w∗); stars denote dimensional variables and parameters. In formulating our

governing equations, we make use of the Boussinesq approximation (Chandrasekhar,

2013), treating the density as constant in all terms except buoyancy. Mass conservation
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and momentum balance leads to the generalised Navier–Stokes equations

∇∇∇∗ · u∗ = 0, (2.1)

ρ∗0

(
∂u∗

∂t∗
+

(
u∗ · ∇∇∇∗) u∗

)
= −∇∇∇∗

p∗ + ∇∇∇∗ · τ∗ − ρ∗g∗ẑ, (2.2)

where ρ∗0 is the density at temperature T ∗
0 of the lower boundary, ρ∗(x∗, t∗) is the variable

density of the fluid, t∗ is time, p∗ is the pressure, g∗ is acceleration due to gravity, ẑ is the

unit vector in the z∗-direction and τ∗ is the transversely isotropic stress tensor proposed

by Ericksen (1960)

τ∗ = 2μ∗e∗ + μ∗1a a + μ∗2a a a a : e∗ + 2μ∗3
(
a a · e∗ + e∗ · a a

)
. (2.3)

Ericksen’s stress tensor incorporates the single preferred direction a(x∗, t∗), the rate-of-

strain tensor e∗ = (∇∇∇∗u∗ + ∇∇∇∗u∗T )/2, and viscosity-like parameters μ∗, μ∗1 , μ
∗
2 , and μ∗3 .

The parameter μ∗ is the isotropic component of the solvent viscosity, modified by the

volume fraction of the fibres (Dyson & Jensen, 2010; Holloway et al., 2018), μ∗1 implies the

existence of a stress in the fluid even if it is instantaneously at rest, and can be interpreted

as a tension or active behaviour in the fibre direction (Green & Friedman, 2008; Holloway

et al., 2018), whilst the parameters μ∗2 and μ∗3 give the enhancement to the extensional and

shear viscosities in the fibre direction, respectively, termed the anisotropic extensional and

shear viscosities (Dyson & Jensen, 2010; Green & Friedman, 2008; Rogers, 1989). When

the transversely isotropic model is interpreted as a suspension of fibres, the viscosity-like

parameters may be calculated from the viscosity of the solvent fluid and the aspect ratio

of the suspended fibres (Batchelor, 1970; Dyson & Jensen, 2010; Holloway et al., 2018).

We model the evolution of the preferred direction via the kinematic equation proposed

by Green & Friedman (2008)

∂a

∂t∗
+

(
u∗ · ∇∇∇∗) a + a a a : ∇∇∇∗u∗ =

(
a · ∇∇∇∗) u∗, (2.4)

which is a special case of the equation proposed by Ericksen (1960), appropriate for

elongated particles with large aspect ratio. This equation takes into account the passive

advection and reorientation of the fibres by the fluid flow. In the present study, we assume

there is no active behaviour, i.e. μ∗1 = 0 (Holloway et al., 2018), therefore, the stress tensor

is given by

τ∗ = 2μ∗e∗ + μ∗2 a a a a : e∗ + 2μ∗3
(
a a · e∗ + e∗ · a a

)
. (2.5)

Temperature is governed by an advection-diffusion equation,

∂T ∗

∂t∗
+

(
u∗ · ∇∇∇∗)

T ∗ = κ∗∇∗2T ∗, (2.6)

where κ∗ is the coefficient of thermal conductivity (Chandrasekhar, 2013), and the con-

stitutive relation for density is given as

ρ∗ = ρ∗0

(
1 − α∗

(
T ∗ − T ∗

0

))
, (2.7)
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which is a linear function of temperature and independent of pressure (Drazin, 2002).

Here, α∗ is the coefficient of volume expansion, and we have assumed both quantities T ∗

and ρ∗ are independent of the particles.

We will consider two types of bounding surfaces; for both types of surface, we assume

perfect conduction of heat and that the normal component of velocity is zero, i.e.

T ∗ = T ∗
0 and w∗ = 0, at z∗ = 0,

T ∗ = T ∗
1 and w∗ = 0, at z∗ = d∗.

(2.8)

The distinction between the types of bounding surfaces is then made through the final

two boundary conditions. If the surface is rigid we impose no-slip boundary conditions,

if the surface is stress free we impose zero-tangential stress, i.e.

u∗ = 0 on a rigid surface,

τ∗12 = 0 on a stress-free surface.
(2.9)

Results will be presented from three groups of boundary conditions: both surfaces are

rigid, both surfaces are stress free, and the bottom surface is rigid and the top surface

is stress free. The evolution equation for the preferred direction (2.4) contains only a

convective derivative for a and a term algebraic in a. Given that the velocity boundary

conditions imply that there is zero inflow, it is sufficient to specify an initial condition for

a only.

2.1 Non-dimensionalisation

The model is non-dimensionalised by scaling the independent and dependent variables

via:

x∗ = d∗x, t∗ =
d∗2

κ∗
t, u∗ =

κ∗

d∗
u,

T ∗ = T ∗
0 + β∗d∗T , (p∗, τ∗) =

ρ∗0κ
∗2

d∗2
(p, τ ), ρ∗ = ρ∗0ρ, (2.10)

where variables without asterisks denote dimensionless quantities, and β∗ is the vertical

temperature gradient, as chosen in Drazin (2002), i.e. β∗ = (T ∗
0 − T ∗

1 )/d∗. The incom-

pressibility condition (2.1) and the kinematic equation (2.4) remain unchanged by this

scaling

∇∇∇ · u = 0, (2.11)

∂a

∂t
+

(
u · ∇∇∇

)
a + a a a : ∇∇∇u =

(
a · ∇∇∇

)
u. (2.12)

The momentum balance (2.2) becomes

∂u

∂t
+

(
u · ∇∇∇

)
u = −∇∇∇p + ∇∇∇ · τ − RP

B ρẑ, (2.13)
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where we have introduced the following dimensionless parameters

B = α∗β∗d∗, R =
α∗β∗d∗4g∗ρ∗0

κ∗μ∗
, P =

μ∗

ρ∗0κ
∗ . (2.14)

The Rayleigh number R is a dimensionless parameter relating the stabilising effects of

molecular diffusion of momentum to the destabilising effects of buoyancy (Drazin, 2002;

Koschmieder, 1993; Sutton, 1950), and the Prandtl number P relates the diffusion of

momentum to diffusion of thermal energy (Chandrasekhar, 2013). Non-dimensionalising

the stress tensor (2.5) yields

τ =P
(
2 e + μ2 a a a a : e + 2μ3 (a a · e + e · a a)

)
, (2.15)

where the non-dimensional rate-of-strain tensor, e = (∇∇∇u+∇∇∇uT )/2, and non-dimensional

parameters

μ2 =
μ∗2
μ∗

, μ3 =
μ∗3
μ∗

, (2.16)

have been introduced. Here, μ2 and μ3 are the ratios of the extensional viscosity and

shear viscosity in the fibre direction to the transverse shear viscosity, respectively (Green

& Friedman, 2008; Holloway et al., 2015).

The constitutive equation (2.7) for variable density is non-dimensionalised to give

ρ = 1 − BT , (2.17)

and equation (2.6), which governs the temperature distribution, becomes

∂T

∂t
+

(
u · ∇∇∇

)
T = ∇2T . (2.18)

Finally, the boundary conditions (2.8) and (2.9), in dimensionless form, are

T = 0, and w = 0, at z = 0,

T = −1, and w = 0, at z = 1.
(2.19)

The distinction between the type of surface remains unchanged,

u = 0 on a rigid surface,

τ12 = 0 on a stress-free surface.
(2.20)

The model consists of four governing equations (2.11), (2.12), (2.13), (2.18) for u, a, p

and T , respectively, subject to constitutive laws (2.15) and (2.17) with boundary conditions

(2.19) and (2.20).
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2.2 Steady state

Assuming that the parallel boundaries are infinitely long in the x-direction, a steady-state

solution is given by

u(0) = 0, p(0) = p0 −
RP
B

(
z +

B z2

2

)
,

T (0) = −z, ρ(0) = 1 + B z,

θ(0) = constant, a(0) = (cos θ(0), sin θ(0)), (2.21)

where p0 is some arbitrary pressure constant and the preferred fibre direction is described

by the constant angle θ(0) to the x-axis (Figure 1). Convective flow of a suspension that

has been uniformly aligned by a prior shear has previously been reported in the context

of linear dichroism analysis of microtubules (Nordh et al., 1986).

3 Stability

We now examine the linear stability of the steady state described by equation (2.21), for

the three different combinations of boundary types. We derive the first-order equations for

an arbitrary perturbation, which are transformed into a generalised eigenvalue problem

by assuming the solution takes the form of normal modes.

3.1 Linear stability analysis

We consider the stability of the steady-state solution to a perturbation

u(x, z, t) = εu(1)(x, z, t) + O
(
ε2

)
, (3.1)

p(r, z, t) = p(0) + εp(1)(x, z, t) + O
(
ε2

)
, (3.2)

T (x, z, t) = T (0) + εT (1)(x, z, t) + O
(
ε2

)
, (3.3)

θ(x, z, t) = θ(0) + εθ(1)(x, z, t) + O
(
ε2

)
, (3.4)

where 0 < ε � 1. As we have proposed a perturbation to the fibre orientation angle θ(0),

and not the alignment vector a directly, the form of a is given by Cupples et al. (2017)

a =
(
cos θ(0) − εθ(1) sin θ(0), sin θ(0) + εθ(1) cos θ(0)

)
+ O

(
ε2

)
. (3.5)

Here, we have utilised the Taylor expansions for cos θ and sin θ.

Using the ansatz given in equations (3.1)–(3.5), we may state the following governing

equations at first order. The incompressibility condition (2.11) becomes

∇∇∇ · u(1) = 0, (3.6)
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with conservation of momentum (2.13) given by

∂u(1)

∂t
= −∇∇∇p(1) + ∇∇∇ · τ (1) − RP

B ρ(1)ẑ. (3.7)

The first-order constitutive relations for stress (2.15) and fluid density (2.17) are given by

τ (1) = P
(

2e(1) + μ2a(0)a(0)a(0)a(0) : e(1) + 2μ3

(
a(0)a(0) · e(1) + e(1) · a(0)a(0)

))
, (3.8)

ρ(1) = −BT (1), (3.9)

where e(1) = (∇∇∇u(1) + (∇∇∇u(1))T )/2 is the first-order rate-of-strain tensor. Notice that

equations (3.6)–(3.9) are independent of the first-order alignment vector

a(1) =
(
−θ(1) sin θ(0), θ(1) cos θ(0)

)
, (3.10)

which is in turn governed by

∂a(1)

∂t
+ a(0)a(0)a(0) : ∇∇∇u(1) =

(
a(0) · ∇∇∇

)
u(1). (3.11)

Finally, the equation governing temperature at next order is

∂T (1)

∂t
− w(1) = ∇2T (1). (3.12)

The boundary conditions become homogeneous at first order, and are given by

w(1) = u(1) = T (1) = 0 on a rigid surface, (3.13)

w(1) = τ
(1)
12 = T (1) = 0 on a stress-free surface. (3.14)

After eliminating pressure and substituting for stress, the components of the momentum

equation (3.7) are given by

1

P∇2

(
∂u(1)

∂t

)
=

(
1 + μ2

sin2 2θ(0)

4
+ μ3

)
∇4u(1)

+ μ2

⎛
⎝ sin 4θ(0)

2

(
∂4u(1)

∂x∂z3
− ∂4u(1)

∂x3∂z

)
+ cos 4θ(0) ∂4u(1)

∂x2∂z2

⎞
⎠ ,

(3.15)

1

P∇2

(
∂w(1)

∂t

)
=

(
1 + μ2

sin2 2θ(0)

4
+ μ3

)
∇4w(1) + R ∂2T (1)

∂x2

+ μ2

⎛
⎝ sin 4θ(0)

2

(
∂4w(1)

∂x∂z3
− ∂4w(1)

∂x3∂z

)
+ cos 4θ(0) ∂4w(1)

∂x2∂z2

⎞
⎠ .

(3.16)
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Manipulating the components of the kinematic equation (2.12) yields an equation for

the evolution of fibre direction

∂θ(1)

∂t
= cos2 θ(0) ∂w(1)

∂x
− sin2 θ(0) ∂u(1)

∂z
− sin 2θ(0) ∂u(1)

∂x
. (3.17)

Notice equations (3.15)–(3.17) are decoupled, and so, we may solve the stability problem

by considering only equations (3.12) and (3.16) with appropriate boundary conditions on

w(1) and T (1). The x-component of velocity and alignment angle may then be calculated

from the solution for w(1).

We seek normal mode solutions to equations (3.12) and (3.16) of the form

w(1) = w′(z)est+ikx, T (1) = T ′(z)est+ikx, (3.18)

where k is the wave-number and s is the growth rate. Using this ansatz, equations (3.12)

and (3.16) become

[(
1 + μ2

sin2 2θ(0)

4
+ μ3

)(
D2 − k2

)2

+ μ2

(
i
sin 4θ(0)

2

(
kD3 − k3D

)

− cos 4θ(0)k2D2

)]
w′ −Rk2T ′ =

s

P
(
D2 − k2

)
w′, (3.19)

w′ +
[
D2 − k2

]
T ′ = sT ′, (3.20)

where we have adopted the convention D = d/ dz. Equations (3.19) and (3.20) form an

eigenvalue problem, which must be solved subject to the boundary conditions (2.19) and

(2.20) rewritten as

w′ = Dw′ = T ′ = 0 on a rigid surface,

w′ = D2w′ = T ′ = 0 on a stress-free surface,
(3.21)

(see Appendix A).

The growth rate s represents an eigenvalue to equations (3.19) and (3.20), i.e. for a given

dimensionless wave-number k there will be non-trivial solutions (w′, T ′) to equations (3.19)

and (3.20) only for certain values of s. We establish for each wave-number k the maximum

Rayleigh number Rl(k) such that the real part of all eigenvalues s are negative, i.e. the

largest Rayleigh number such that the perturbation is stable and any disturbance decays

to zero. The minimum of Rl(k) is of particular interest, and is termed the critical Rayleigh

number (Rc); it is used to determine the physical conditions under which instability first

occurs (Acheson, 1990; Drazin, 2002; Koschmieder, 1993). If for a given experimental

setup R < Rc, then any perturbation decays exponentially to zero. The corresponding

value of k at Rc is also of interest; it describes the inverse wave-length of the convection

currents and is termed the critical wave-number (kc).
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4 Numerical solution method

In order to determine the marginal stability curves Rl(k), we must solve the eigenvalue

problem (3.19) and (3.20) with boundary conditions given by (3.21). This is achieved using

Chebyshev collocation, a spectral method that is capable of achieving high accuracy for

low computational cost (Trefethen, 2000).

Using the Chebyshev differentiation matrix D (Trefethen, 2000) the linear operators on

w′ and T ′ in equations (3.19) and (3.20) may be approximated. This allows us to form

the generalised matrix eigenvalue problem

A x = sB x, (4.1)

where s is the growth rate and eigenvalue of the problem, A and B are matrices, which

are discrete representations of the linear operators which act on w′ and T ′, and the vector

x contains the coefficients of the Lagrange polynomials, which approximate w′ and T ′

at the Chebyshev points (equivalently the values of w′ and T ′ at the Chebyshev points)

(Trefethen, 2000). The matrices A and B may be constructed in MATLAB for each tuple of

parameters θ(0), μ2 and μ3; however, the matrices are not full rank as boundary conditions

must be applied to close the problem. These constraints are applied using the method

described by Hoepffner (2007); the solution space is reduced to consider only interpolants,

which satisfy the boundary conditions. We may therefore compute the eigenvalue s for

a range of parameters (θ(0), μ2, μ3) and Rayleigh number R using the inbuilt eigenvalue

solver in MATLAB eig; this solver employs the QZ-algorithm for generalized eigenvalue

problems. We then determine the Rayleigh number for which the eigenvalue is zero using

the MATLAB function fzero, i.e. disturbances neither grow nor decay, and fminsearch to

determine the critical wave and Rayleigh numbers.

As the Prandtl number (P) only appears in combination with the growth rate s, we do

not consider variations in P as we are interested in the marginal stability curves where

s = 0, i.e. the boundary between stability and instability.

To accommodate uncertainty in parameter values, we have performed an extensive

parameter search for a wide range of steady state preferred directions (0 � θ(0) � π/2)

and viscosities (0 � μ2, μ3 � 1, 000). Notice that the solution is periodic in the steady state

preferred direction with period π/2.

To validate our numerical procedure, we compared our results with those of Dominguez-

Lerma et al. (1984) and Rayleigh (1916) for the Newtonian case, i.e. μ2 = μ3 = 0; we will

denote the critical Rayleigh number for the Newtonian case RN . When both boundaries

are stress free, our numerical approximation of the Rayleigh number is within 10−12 of

the known analytical result RN = 27π4/4. When both boundaries are rigid our numerical

approximation of the Rayleigh number is within 10−7 of the value of RN found by

Dominguez-Lerma et al. (1984).

5 Results

In Section 5.1, we first determine the marginal stability curves Rl(k); for any value of

k, an experimental set-up satisfying R < Rl(k) is stable for that wavelength, whereas

if R lies above Rl(k) the system is unstable. We calculate these curves for a range of
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non-dimensional parameters representing the steady state preferred direction θ(0), the

anisotropic extensional viscosity μ2 and the anisotropic shear viscosity μ3 for different

combinations of boundary conditions. We determine the critical wave and Rayleigh

numbers for each tuple of non-dimensional parameters (θ(0), μ2 and μ3) by finding the

wave-number at which Rl(k) is minimal. Provided that the Rayleigh number for a given

experiment lies below this critical value, the system will be stable to small perturbations

for all wavelengths and the fluid will be motionless. In Section 5.2, we will make an

empirical approximation to the dependence of the critical wave and Rayleigh numbers on

the problem parameters.

5.1 Critical wave and Rayleigh number

Figure 2 shows the critical wave-number (kc) as a function of the steady state preferred

direction (θ(0)), for selected values of the anisotropic extensional (μ2) and shear (μ3)

viscosities, with both boundaries rigid. The critical wave-number is related to the width

of a convection cell; increases in kc reduce the width of the convection cell. Notice

that Figures 2(a)–(d) are symmetric about θ(0) = π/4, where the maximum of kc is

achieved. In Figure 2(a), we examine the effect of the anisotropic extensional viscosity

with the anisotropic shear viscosity set to zero. The horizontal line corresponds to the

Newtonian/isotropic case, and hence there is no dependence on the fibre direction θ(0).

As μ2 is increased, the limiting form of the critical curve between π/8 � θ(0) � 3π/8

is quickly approached, with changes to μ2 above 100 having only a small effect. In the

ranges 0 � θ(0) � π/8 and 3π/8 � θ(0) � π/2, the changes to the critical wave-number

occur much more slowly with respect to μ2, with a local minimum occurring for values

of μ2 above 250 around θ(0) = 0.1 and θ(0) = 1.5. The impact of changing the anisotropic

extensional viscosity on the wave-number is therefore dependent on the steady state

fibre direction. If the fibres are aligned near horizontal or vertical, the wave-number is

decreased and the width of the convection cell increased; if the fibre direction is at π/4

to the horizontal at steady state, then the wave-number increases, and hence the width of

the convection cell decreases. Observing how the critical curves change between Figures

2(a)–(d) allows us to identify the impact of the anisotropic shear viscosity μ3. As μ3 is

increased it dampens changes to the critical wave-number caused by changes in μ2, nearly

removing the dependence on θ(0) completely in Figure 2(d), where μ3 = 1, 000.

Figure 3 shows the critical Rayleigh number (Rc) as a function of θ(0) for changes in

μ2 and μ3 with both boundaries rigid. Figure 3(a) shows the change in Rc neglecting

anisotropic shear viscosity, i.e. μ3 = 0. The lowest horizontal line corresponds to the

Newtonian case, and has no dependence on θ(0) as expected. For μ2 � 100 this horizontal

line is simply translated to higher values of Rc, with little to no dependence on θ(0). As μ2

is increased further the shape of the critical curves change dramatically. Global minima

occur at θ(0) ≈ 0.3, 1.2, local maxima occur at θ(0) = 0, π/2, and the global maximum at

θ(0) = π/4; the difference between the global minimum and maximum is approximately

6 × 104 for μ2 = 1, 000. Therefore, when the anisotropic extensional viscosity is large and

the anisotropic shear viscosity is negligible the steady state is most unstable for steady

state fibre orientations close to π/16 of horizontal or vertical, however for smaller angles

to the horizontal or vertical the stability sharply increases. The most stable case occurs
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Figure 2. Critical wave-number (kc) for changes in the anisotropic extensional viscosity (μ2), the

anisotropic shear viscosity (μ3), and the preferred direction in the fluid at steady state (θ(0)) with both

boundaries rigid. In each subfigure, the arrows indicate increasing μ2 (μ2 = 0, 10, 100, 250, 500, 1, 000)

for (a) μ3 = 0, (b) μ3 = 10, (c) μ3 = 100 and (d) μ3 = 1, 000.

when the steady state direction is at π/4 to the horizontal. Examining Figures 3(a)–(d)

allows us to identify how the anisotropic shear viscosity affects the stability of the steady

state. We observe that increasing μ3 increases Rc, hence making the steady state more

stable. However, this relationship is not uniform for different values of θ(0), as can be seen

by noting that when μ2 = 1, 000 and μ3 = 0 the most stable value of θ(0) is π/4, but as μ3 is

increased to 1, 000 then θ(0) = π/4 becomes the most unstable value. Therefore, increasing

the anisotropic shear viscosity has the most stabilising effect for values of the steady

state fibre orientation near horizontal and vertical, and a slightly weaker effect when

the steady state direction is π/4. However, increases in the anisotropic shear viscosity

always stabilise the steady state for all choices of anisotropic extensional viscosity and

steady state preferred directions.
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Figure 3. Critical Rayleigh number (Rc) for changes in the anisotropic extensional viscosity (μ2), the

anisotropic shear viscosity (μ3), and the preferred direction in the fluid at steady state (θ(0)) with both

boundaries rigid. In each subfigure, the arrows indicate increasing μ2 (μ2 = 0, 10, 100, 250, 500, 1, 000)

for (a) μ3 = 0, (b) μ3 = 10, (c) μ3 = 100 and (d) μ3 = 1, 000.

Similar results are obtained for critical wave-number when both boundaries are stress

free (Figure 4), but where the critical wave-number of a Newtonian fluid (kN) is smaller.

Figure 5 shows the dependence of Rc on θ(0) for selected values of μ2 and μ3 with both

boundaries stress free. In Figure 5(a), μ3 = 0 and the Newtonian case is represented

by the lowest horizontal line. As μ2 is increased a global maximum occurs at θ(0) = 0

and π/2 and global minimum at θ(0) = π/4, where Rc does not increase from the critical

Rayleigh number for the Newtonian/isotropic case (Rc ≈ RN). Near horizontal or vertical

fibre-orientation, increasing the anisotropic extensional viscosity increases the threshold

at which instability occurs, but when the steady state preferred direction is π/4 there

is little change to the stability threshold as anisotropic extensional viscosity is varied.

Figures 5(a)–(d) show that as μ3 is increased, Rc increases regularly, smoothing out the
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Figure 4. Critical wave-number (kc) for changes in the anisotropic extensional viscosity (μ2),

the anisotropic shear viscosity (μ3), and the preferred direction in the fluid at steady state (θ(0))

with both boundaries stress free. In each subfigure, the arrows indicate increasing μ2 (μ2 =

0, 10, 100, 250, 500, 1, 000) for (a) μ3 = 0, (b) μ3 = 10, (c) μ3 = 100 and (d) μ3 = 1, 000.

points of inflection that occur for small values of μ2. Therefore, increasing μ3 stabilises the

steady state for all values of θ(0) and μ2. Changes in anisotropic shear viscosity affect the

magnitude of the critical Rayleigh number much more than changes to the anisotropic

extensional viscosity.

Figure 6 shows kc as a function of θ(0) for selected values of μ2 and μ3 when the lower

boundary is rigid and the top stress free, and shows a more intricate dependence on the

tuple of parameters (θ(0), μ2, μ3) than when upper and lower boundaries match. In Figure

6(a), the horizontal line corresponds to the Newtonian/isotropic case, and hence has no

dependence upon θ(0), as expected. As μ2 is increased the critical curves become more

complex, in the range 0 � θ(0) � π/8 and 3π/8 � θ(0) � π/2 similar behaviour is observed

to when both boundaries are the same, with the appearance of a local maximum at
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Figure 5. Critical Rayleigh number (Rc) for changes in the anisotropic extensional viscosity

(μ2), the anisotropic shear viscosity (μ3), and the preferred direction in the fluid at steady state

(θ(0)) with both boundaries stress free. In each subfigure, the arrows indicate increasing μ2 (μ2 =

0, 10, 100, 250, 500, 1, 000) for (a) μ3 = 0, (b) μ3 = 10, (c) μ3 = 100 and (d) μ3 = 1, 000.

θ(0) = 0, π/2 and a global minimum for values of θ(0) = 0.1, 1.4. However, for θ(0) between

π/8 and π/4 extra inflection points are introduced compared with the matching boundary

cases, but this variation becomes small for values of μ2 larger than 100. We again identify

from Figures 6(a)–(d) that μ3 dampens the change in the critical wave-number due to μ2,

eventually removing the dependence on θ(0) (Figure 6(d)).

Figure 7 shows the dependence of Rc on θ(0) for selected values of μ2 and μ3, with

the lower boundary rigid and the upper stress free. In Figure 7(a), we examine how μ2

affects Rc when μ3 = 0; the Newtonian/isotropic case is shown by the lowest horizontal

line. As μ2 is increased, Rc increases, however this increase is not uniform with respect

to θ(0). Global maxima occur at θ(0) = 0 and π/2, local maxima at θ(0) ≈ π/8 and

3π/8, local minima at θ(0) ≈ π/16 and 7π/16, and the global minimum at θ(0) = π/4.
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Figure 6. Critical wave-number (kc) for changes in the anisotropic extensional viscosity (μ2), the

anisotropic shear viscosity (μ3), and the preferred direction in the fluid at steady state (θ(0)) with

the bottom boundary rigid and the top boundary stress free. In each subfigure, the arrows indicate

increasing μ2 (μ2 = 0, 10, 100, 250, 500, 1, 000) for (a) μ3 = 0, (b) μ3 = 10, (c) μ3 = 100 and (d)

μ3 = 1, 000.

Therefore, increasing the anisotropic extensional viscosity increases the stability threshold

most when, at steady state, the fibres are either horizontal or vertical, and least when they

are directed at an angle π/4 radians. As μ3 increases, Rc is increased, with the additional

local maxima and minima becoming less pronounced, and disappearing completely once

μ3 � 100, as can be identified by comparing Figures 7(a)–(d). Again, changes in μ3 affect

Rc far more than similar changes to μ2. Therefore, increases in the anisotropic shear

viscosity stabilise the steady state, with the most stabilisation occurring when the fibres

are oriented horizontally or vertically at steady state, at least when θ(0) = π/4.

Comparing Figures 2–7 allows us to examine the effect of the boundary conditions on

the critical wave and critical Rayleigh numbers. Examining Figures 2 and 4, we identify

https://doi.org/10.1017/S0956792518000359 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000359


674 C. R. Holloway et al.

(a)

θ(0)

Rc

μ3 = 0

0 π/4 π/2
0

0.4

0.8

1.2

1.6
×105

θ(0)

Rc

μ3 = 10

0 π/4 π/2
0

0.4

0.8

1.2

1.6
×105

(c) (d)

θ(0)

Rc

μ3 = 100

0 π/4 π/2
1.0

1.4

1.8

2.2

2.6

3.0
×105

θ(0)

Rc

μ3 = 1000

0 π/4 π/2
11.0

11.4

11.8

12.2

12.6

13.0
×105

Figure 7. Critical Rayleigh number (Rc) for changes in the anisotropic extensional viscosity (μ2),

the anisotropic shear viscosity (μ3), and the preferred direction in the fluid at steady state (θ(0))

with the bottom boundary rigid and the top boundary stress free. In each subfigure, the arrows

indicate increasing μ2 (μ2 = 0, 10, 100, 250, 500, 1, 000) for (a) μ3 = 0, (b) μ3 = 10, (c) μ3 = 100 and

(d) μ3 = 1, 000.

that when the top and bottom boundaries are the same, the curves for the critical wave-

number take the same form, but with lower critical wave-numbers for the stress free-

stress free boundaries than the rigid-rigid case. When the boundaries are mixed (Figure 6),

and the anisotropic shear viscosity is negligible, additional inflection points occur between

π/8 � θ(0) � 3π/8. However, variation between the critical curves is small for medium

to large values of the anisotropic extensional viscosity, and all changes are dampened

as the anisotropic shear viscosity is increased, similarly to the matching boundary case.

Therefore, in all cases, the anisotropic extensional viscosity gives rise to variations in

the critical wave-number with respect to the steady state preferred direction, which are

dampened by increases in the anisotropic shear viscosity.
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Comparing Figures 3, 5, 7 allows us to compare how the different boundary conditions

affect the critical Rayleigh number. Similarly to the Newtonian/isotropic case the most

stable pair of boundaries is rigid-rigid, with the most unstable being stress free- stress

free. In all boundary pairs increasing either the anisotropic extensional or shear viscosities

increases the critical Rayleigh number, however changes to the anisotropic shear viscosity

affect the stability threshold much more than equivalent changes to the anisotropic

extensional viscosity.

We notice in Figures 2–7 that the critical wave and Rayleigh numbers are the

same for θ(0) and π/2 − θ(0), i.e. the material has the same stability characteristics when

the steady state preferred direction is horizontal or vertical, the dependence on this angle

being symmetric about π/4. Examining equation (3.19), we see that the real part of the

left-hand side depends on angle via terms that can be expressed as being proportional to

cos 4θ(0), which provides a mathematical explanation for this phenomenon. The physical

consequence of this result is that a suspension of horizontal fibres has the same stability

properties as a suspension of vertical fibres.

5.2 Empirical forms of critical curves

The critical wave and Rayleigh numbers depend on three parameters μ2, μ3, and θ(0).

Examining Figures 2–7, we notice that, for medium to large values of the anisotropic shear

viscosity, the critical curves are continuous with no sharp extrema (i.e. we expect the rate

of change of the critical values with θ(0) to be continuous also). We may therefore attempt

to fit analytic functions to the numerical results, for kc and Rc. Such fitted functions can

be used to determine the critical values for a given set of parameter values without using

costly simulations. The critical wave-number is fit by minimising the maximum absolute

error between the function and the numerical results through the simplex search method

of Lagarias et al. (1998) (fminsearch in MATLAB); the critical Rayleigh number Rc via

the trust region method of nonlinear least squares fitting (fit in MATLAB).

For μ3 > 40, we fit the critical wave-number to the empirical form

kc(μ2, μ3, θ
(0)) ≈

f1

(
exp

(
−f5μ2

)
− 1

)
f2 + μ3

cos(4θ(0)) − f3μ2

f4 + μ3
+ kN, (5.1)

where kN is the critical wave-number for a Newtonian fluid and f1 to f5 are fitting

parameters. The form of this function implies that for μ3 � μ2, and μ3 � 1, the critical

wave-number approximates its Newtonian value. For μ2 = 0 the critical wave-number kc
does not depend on θ(0) or μ3, and takes the same value as in the Newtonian case. Figure 8

shows a comparison between the sampled numerical results and fitted function, where

the fitted parameters are given in Table 1; excellent qualitative and good quantitative

agreement is found.

For μ3 > 40 we fit the critical Rayleigh number to the empirical form

Rc(μ2, μ3, θ
(0)) ≈

(
−g1

μ3 + 1
+ g2

)
μ2 cos(4θ(0)) +

(
−g3

μ
1/2
3 + 1

+ g4

)
μ2 +

(
g5μ3 + g6

)
, (5.2)
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Table 1. The parameter values from curve fitting for the critical wave-number given in

equation (5.1) for the different combinations of boundary conditions

Boundary type f1 f2 f3 f4 f5

Rigid-rigid 175.9 107.3 12.8 × 10−3 50.8 1.7 × 10−3

Rigid-stress free 91.1 67.7 5.3 × 10−3 33.8 3.8 × 10−3

Stress free-stress free 284.4 259.5 3.7 × 10−3 19.5 1.5 × 10−3
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Figure 8. Comparison of fitted curves with the numerical results for the critical wave-number kc.

The fit for (a) (μ3 = 50, θ(0) = 0) and (b) (μ3 = 1, 000, θ(0) = 0), (c) (μ3 = 50, θ(0) = π/4), (d)

(μ3 = 1000, θ(0) = π/4) where black, blue and red correspond to rigid-rigid (RR), rigid-stress free

(RF) and stress free-stress free (FF) boundary pairs and circles represent numerical results. We

choose θ(0) = 0, π/4 so that we consider the maximum and minimum values of cos 4θ(0).
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Table 2. The parameter values from curve fitting for the critical Rayleigh number in

equation (5.2) for the different combinations of boundary conditions

Boundary type g1 g2 g3 g4 g5 g6

Rigid-rigid 448.4 25.2 431.6 221.4 1440.8 1706.4

Rigid-stress free 388.8 57.3 238.5 141.3 796.0 1099.9

Stress free-stress free 247.5 64.1 156.1 84.2 521.1 657.0

where g1 to g6 are fitting parameters. The form of this function implies that Rc is

dependent upon θ(0) for μ2 � μ3, however this dependence is dampened as μ3 is increased.

We also observe from the relative sizes of g4 and g5, in Table 2, that the increase of Rc

with μ3 is much greater than that with μ2. Figure 9 shows a comparison between the

sampled numerical results and fitted function, with the fitted values found in Table 2; a

reasonable quantitative agreement and a good qualitative agreement is found. Note that

g6 plays the role of RN , and numerically is extremely close to its known Newtonian values.

6 Conclusion

In this paper, we extended the work of Rayleigh (1916) to study the linear stability of

a transversely isotropic viscous fluid, contained between two horizontal boundaries of

different temperatures, which are either rigid or stress free. We used the stress tensor

first proposed by Ericksen (1960), with μ1 = 0 (equivalent to a passive fluid (Holloway

et al., 2018)), and a kinematic equation for the fibre-director field to model a transversely

isotropic fluid. Numerically, we presented results for a range of steady state, initially

uniform, preferred fibre directions from horizontal to vertical; this is equivalent to the full

range of directions as the governing equations have a period of π/2.

As found recently for the Taylor–Couette flow of a transversely isotropic fluid (Holloway

et al., 2015), the anisotropic shear viscosity μ3, is much more important in determining the

stability of the flow than the anisotropic extensional viscosity μ2. The influence of this pair

of parameters upon the stability of the flow depends on the uniform steady state preferred

direction θ(0), as well as the boundary conditions. Similarly to a Newtonian fluid, the most

stable pair of boundaries is rigid-rigid, for which the temperature difference between the

two boundaries required to induce instability is the largest; the least stable boundary pair

is stress free-stress free.

The rheological parameters μ2 and μ3 also have an impact on the critical wave-number

kc, which describes the width of the convection cells. We find for steady state preferred

directions near horizontal or vertical, the width of the convection cell increases with the

anisotropic extensional viscosity, when compared to a Newtonian fluid, and decreases

when the preferred direction makes an angle of π/4 with the horizontal. The anisotropic

shear viscosity dampens any changes to the critical wave-number caused by increases

in the anisotropic extensional viscosity. If μ3 � μ2 and μ3 � 1, then there is very little

change to the critical wave-number, and hence convection cell size, with changes to the

anisotropic extensional viscosity or steady state preferred direction.
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Figure 9. Comparison of fitted curves with the numerical results for the critical Rayleigh number

Rc. The fit for (a) (μ3 = 50, θ(0) = 0) and (b) (μ3 = 1, 000, θ(0) = 0) (c) (μ3 = 50, θ(0) = π/4) (d)

(μ3 = 1, 000, θ(0) = π/4), where black, blue and red correspond to rigid-rigid (RR), rigid-stress free

(RF) and stress free-stress free (FF) boundary pairs and circles represent the numerical results. We

choose θ(0) = 0, π/4 so that we consider the maximum and minimum values of cos 4θ(0).

We are able to fit empirical functions that exhibited excellent qualitative and good

quantitative agreement for critical wave-number and good qualitative and reasonable

quantitative agreement for critical Rayleigh number. The relative parameter values em-

phasised the relative importance of anisotropic extensional and shear viscosities. Empirical

functions of this type may be valuable in making predictions regarding fibre-reinforced

flows without the need to resort to expensive computation.

The analysis we have undertaken shows that the stability characteristics of a transversely

isotropic fluid are significantly different from those of a Newtonian fluid. Therefore, when

the fluid exhibits a preferred direction, such as a fibre-laden fluid, these effects should be
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taken into account. More complex models of anisotropic rheology include nematic liquid

crystals (Landau & Lifshitz, 1986), and Brownian suspension mechanics (Batchelor, 1970;

Hinch & Leal, 1972). The transversely isotropic fluid is a rational limit of an aligned

suspension (Holloway et al., 2018) and conclusions drawn from the simpler model are

useful in guiding intuition regarding more complex and general constitutive laws.

Fluids which exhibit transversely isotropic rheology are commonly found in many

industrial and biological applications, therefore it is necessary to gain a better under-

standing of the underlying mechanics governing the behaviour of these materials. As a

classical fluid mechanics problem modified to incorporate anisotropic rheology, we hope

the Rayleigh–Bénard stability analysis undertaken here will motivate research into this

fascinating area.

Acknowledgements

CRH is supported by an Engineering and Physical Sciences Research Council (EPSRC)

doctoral training award (EP/J500367/1) and RJD is grateful for the support of the EPSRC

grant (EP/M00015X/1). The authors thank Gemma Cupples for valuable discussions.

The computations described in this paper were performed using the University of

Birmingham’s BlueBEAR HPC service, which provides a High Performance Computing

service to the University’s research community. See http://www.birmingham.ac.uk/bear

for more details.

References

Acheson, D. J. (1990) Elementary Fluid Dynamics , Oxford University Press, Oxford, UK.

Batchelor, G. K. (1970) The stress system in a suspension of force-free particles. J. Fluid Mech.

41(03), 545–570.

Chandrasekhar, S. (2013) Hydrodynamic and Hydromagnetic Stability , Courier Dover Publications,

Mineola, New York, USA.

Cupples, G., Dyson, R. J. & Smith, D. J. (2017) Viscous propulsion in active transversely isotropic

media. J. Fluid Mech. 812, 501–524.

Dafforn, T. R., Rajendra, J., Halsall, D. J., Serpell, L. C. & Rodger, A. (2004) Protein fiber

linear dichroism for structure determination and kinetics in a low-volume, low-wavelength Couette

flow cell. Biophys. J. 86(1), 404–410.

Dominguez-Lerma, M. A., Ahlers, G. & Cannell, D. S. (1984) Marginal stability curve and linear

growth rate for rotating Couette–Taylor flow and Rayleigh–Bénard convection. Phys. Fluids 27(4),

856–860.

Drazin, P. G. (2002) Introduction to Hydrodynamic Stability , Cambridge University Press, Cam-

bridge, UK.

Dyson, R. J., Green, J. E. F., Whiteley, J. P. & Byrne, H. M. (2015) An investigation of the

influence of extracellular matrix anisotropy and cell–matrix interactions on tissue architecture. J.

Math. Biol. 72, 1775–1809.

Dyson, R. J. & Jensen, O. E. (2010) A fibre-reinforced fluid model of anisotropic plant cell growth.

J. Fluid Mech. 655, 472–503.

Ericksen, J. L. (1960) Transversely isotropic fluids. Colloid. Polym. Sci. 173(2), 117–122.

Goldstein, R. J. & Graham, D. J. (1969) Stability of a horizontal fluid layer with zero shear

boundaries. Phys. Fluids 12(6), 1133–1137.

https://doi.org/10.1017/S0956792518000359 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000359


680 C. R. Holloway et al.

Green, J. E. F. & Friedman, A. (2008) The extensional flow of a thin sheet of incompressible,

transversely isotropic fluid. Eur. J. Appl. Math. 19(3), 225–258.

Hinch, E. J. & Leal, L. G. (1972) The effect of Brownian motion on the rheological properties of

a suspension of non-spherical particles. J. Fluid Mech. 52(04), 683–712.

Hoepffner, J. (2007) Implementation of boundary conditions [online]. Accessed 3 August 2017.

URL: http://www.fukagata.mech.keio.ac.jp/ jerome/web/boundarycondition.pdf

Holloway, C. R., Cupples, G., Smith, D. J., Green, J. E. F., Clarke, R. J. & Dyson, R. J. (2018)

Influences of transversely isotropic rheology and translational diffusion on the stability of active

suspensions. arXiv:1607.00316.

Holloway, C. R., Dyson, R. J. & Smith, D. J. (2015) Linear Taylor–Couette stability of a

transversely isotropic fluid. Proc. R. Soc. Lond. A 471(2178) 20150141.

Koschmieder, E. L. (1993) Bénard Cells and Taylor Vortices , Cambridge University Press, Cam-

bridge, UK.
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Appendix A Stress-free boundary condition

We derive the boundary condition (3.21) for the eigenvalue problem when a stress-free

surface is considered from (3.1). The majority of these are straightforward, so we focus

on showing how D2w′ = 0 is derived from τ
(1)
12 = 0.

The first-order shear stress is given by

τ
(1)
12 = P

⎛
⎝(

1 + μ2 cos3 θ(0) sin θ(0) + μ3

) (
∂u(1)

∂z
+

∂w(1)

∂x

)

+μ2 cos2 θ(0)
(
sin2 θ(0) − cos2 θ(0)

) ∂w(1)

∂z

)
, (A 1)
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from (3.8). Since w(1) = 0 and τ
(1)
12 = 0 on z = 0, 1

∂w(1)

∂x
=

∂τ(1)
12

∂x
= 0, (A 2)

must also hold on z = 0, 1. Thus,

∂τ(1)
12

∂x
= P

⎛
⎝(

1 + μ2 cos3 θ(0) sin θ(0) + μ3

) (
∂2u(1)

∂z∂x

)

+ μ2 cos2 θ(0)
(
sin2 θ(0) − cos2 θ(0)

) ∂2w(1)

∂z∂x

)
, (A 3)

= P

⎛
⎝(

1 + μ2 cos3 θ(0) sin θ(0) + μ3

) (
−∂2w(1)

∂z2

)⎞
⎠ , (A 4)

using ∂u(1)/∂x = −∂w(1)/∂z by (3.6), and hence we find

D2w′ = 0 on z = 0, 1 (A 5)

as required.
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