
Euro. Jnl of Applied Mathematics (2022), vol. 33, pp. 328–368 c© The Author(s), 2021. Published by 328
Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
doi:10.1017/S0956792521000036

Understanding rapid charge and discharge in
nano-structured lithium iron phosphate cathodes

M . C A S T L E1, G . R I C H A R D S O N2,3 and J . M . F O S T E R1,3

1School and Mathematics and Physics, University of Portsmouth, Lion Terrace, PO1 3HF, UK
email: michael.castle@port.ac.uk

2Mathematical Sciences, University of Southampton, University Rd., Southampton SO17 1BJ, UK
email: g.richardson@soton.ac.uk

3The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot OX11 0RA, UK
email: jamie.michael.foster@gmail.com

(Received 27 February 2020; revised 19 January 2021; accepted 25 January 2021;
first published online 1 March 2021)

A Doyle–Fuller–Newman (DFN) model for the charge and discharge of nano-structured lithium iron
phosphate (LFP) cathodes is formulated on the basis that lithium transport within the nanoscale LFP
electrode particles is much faster than cell discharge, and is therefore not rate limiting. We present
some numerical solutions to the model and show that for relevant parameter values, and a variety of
C-rates, it is possible for sharp discharge fronts to form and intrude into the electrode from its outer
edge(s). These discharge fronts separate regions of fully utilised LFP electrode particles from those
that are not. Motivated by this observation an asymptotic solution to the model is sought. The results
of the asymptotic analysis of the DFN model lead to a reduced order model, which we term the reac-
tion front model (or RFM). Favourable agreement is shown between solutions to the RFM and the
full DFN model in appropriate parameter regimes. The RFM is significantly cheaper to solve than the
DFN model, and therefore has the potential to be used in scenarios where computational costs are pro-
hibitive, e.g. in optimisation and parameter estimation problems or in engineering control systems.
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1 Introduction

Lithium iron phosphate (LFP) has been developed as a cathode material for lithium-ion batteries
[36]. Despite having a slightly lower energy density than nickel–manganese–cobalt oxide (which
is the most widely used cathode material today), its high power density (i.e. the ability to extract
energy quickly), low cost and safety make LFP an environmentally friendly alternative to the
cobalt-based electrodes. LFP is used in a range of commercial applications, including electri-
cal vehicles, backup home generators, consumer electronics and marine technologies, and Tesla
plans to deploy LFP-based cathodes in their forthcoming home storage batteries [4, 52]. Initially,
the use of LFP in lithium-ion batteries was hampered by its low electrical conductivity, which

https://doi.org/10.1017/S0956792521000036 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956792521000036
mailto:michael.castle@port.ac.uk
mailto:g.richardson@soton.ac.uk
mailto:jamie.michael.foster@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956792521000036&domain=pdf
https://doi.org/10.1017/S0956792521000036


Rapid (dis)charge in LFP cathodes 329

hindered the flow of electronic current into the cathode. However, the electronic conductivity of
the network between LFP electrode particles has been improved by adding carbon black [13, 21,
22] and the conductivity of the LFP particles is increased by doping (e.g. Wang et al. [54]). LFP
is a phase-separating material, as evidenced by its very flat open-circuit voltage (OCV) curve
(the potential is almost independent of degree of discharge until the particle is fully discharged
[36]). Thus, unlike electrode materials with non-flat OCVs, electrode particles within the elec-
trode frequently discharge at different rates, which depend sensitively on the solid-state electric
potential within the electrode and electrolyte. The insertion/extraction of lithium within the elec-
trode can, therefore, be highly non-uniform during operation. There is, thus, scope for significant
improvements to be made to LFP cathodes by carefully tuning the electrical properties of the
electrolyte and the electrode conduction network, a fact that has been noted previously by Johns
et al. [23] who demonstrate that changes to the electrolyte properties in a LFP cathode can result
in increases in maximum discharge rate of around two orders of magnitude. Volumetric energy
density and rate capability can also be improved by using a blend of differently sized electrode
particles [25, 29, 47]. Liu et al. [29] showed that by using a nano-micro-structured LFP electrode,
it is possible to achieve higher compaction density, lower resistance, superior rate capability and
higher volumetric energy density whilst still maintaining excellent cycling stability [29].

Diffusion of lithium within LFP particles is highly anisotropic occurring preferentially along
channels in the b-direction of the crystal [31]. In nanoscale crystals, this diffusion is observed to
occur extremely rapidly. Kang and Cedar [26], for example, have shown that, with the application
of a glassy lithium phosphate surface coating to enable lithium transport around the surface
of the particle, 50 nm particles can be discharged in around 20 s. However, lithium diffusion
within larger (micro-)particles is known to be much slower and more isotropic. This has been
explained by blockage of the preferred b-direction channels by defects and grain boundaries;
this forces lithium transport along tortuous paths with components in the high-resistance a- and
c-directions [31]. For high-power applications, LFP nanoparticles are hence to be preferred and,
where they are used in batteries, diffusion within the LFP particles is so fast that its effects can be
neglected in modelling battery charge and discharge. The limiting factors in the performance of
such cathodes are lithium-ion transport and electrical conduction within the electrolyte and solid-
state electrical conduction between electrode particles. This observation motivates our modelling
approach to the problem.

The standard framework for modelling charge transport in lithium-ion batteries has been set
out in a series of works by Doyle, Fuller and Newman (i.e. in [12, 18]); henceforth referred to
as the DFN modelling framework. This comprises one-dimensional (through the thickness of the
electrode) descriptions of (i) electrical conduction between electrode particles via a porous net-
work of polymer binder and conducting additive and (ii) lithium-ion transport in the electrolyte.
These couple to a diffusion model for lithium transport within representative electrode particles
(at each location through the electrode width) via Butler–Volmer (BV) conditions for charge
transfer (via lithium (de-)intercalation reactions) between the electrode and the electrolyte, on
the surfaces of the electrode particles. This framework is adopted here, but with the simplifying
assumption that lithium transport within the electrode particles is extremely rapid relative to the
timescale of (dis)charge of the device. The upshot is that the diffusion equations for transport
in the electrode particles can be replaced with ODEs. DFN models, which were originally pos-
tulated on an ad hoc basis, have now been derived as the limit of microscopic (particle sized)
description of the battery using systematic asymptotic homogenisation techniques [7, 44].
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Previous modelling studies of LFP half-cells using the DFN framework include work by
Srinivasan and Newman [49] and Dargaville and Farrell [9, 10]. Both [49] and [10] adopt a
‘shrinking core’ model to describe lithium transport and phase change within the electrode par-
ticles. In both these works, comparison was made to experimental discharge curves measured
from a half-cell cathode with micron-sized LFP electrode particles in [49]. Whilst agreement
to the experimental data in the former [49] is unexceptional, it is greatly improved by allowing
for two sizes of electrode particle. In the latter [10] agreement to the experiment is reasonable,
but the theory requires an extra layer of modelling to account for electrode particle clustering.
The ‘shrinking core’ model for LFP has now largely been discredited [8] as a result of a bet-
ter understanding of the lithium transport processes within this material [31]; [8] notes that the
agreement obtained between the data presented in [49] and ‘shrinking core’ based models can
be explained by the large electrical resistance within the electrode limiting the discharge, rather
than by lithium transport within the electrode particles. More recent work by Dargaville and
Farrell [9] uses a phase-field description of lithium transport within the electrode particles and,
perhaps surprisingly, finds poor agreement with the experimental data of Zheng et al. [56]. Here,
we avoid having to confront questions about the details of how lithium transport occurs within
LFP by restricting our interest to nanoparticles.

The work of Bai et al. suggests that, during high-rate discharge, phase-separation dynamics
can be neglected; these effects are dynamically suppressed during high-current operation due
to the fact that the surface over-potential can easily exceed the solid-solution voltage barrier in
smaller particles, and thus removes the thermodynamic driving force for phase separation once
the current becomes comparable to the exchange current. On this basis, they conclude that it is
only for large particles and low currents that phase separation plays a major role.

Bazant and co-workers have been proponents of the use of the Cahn–Hilliard equation in
describing (de)lithiation dynamics of phase-separating materials [3]. They introduced free energy
models for LFP (two phases with coherent nucleation) and graphite (three phases, neglecting
nucleation) to predict experimental data [17]. Particularly relevant to the work here is that they
have shown that discharge fronts can exist in LFP electrodes. Moreover, there is a propensity for
sharper reaction fronts in electrodes where there is little variation in the electrode particle size.
This is attributed to how the numbers of grain boundaries are likely to vary with particle size
and so smaller particles (with fewer grain boundaries) are likely to react faster than larger ones
causing a more diffuse reaction front.

Johns et al. [23] have performed experiments on nano-structured LFP half-cells in order to
highlight the importance of the electrolyte in discharge performance. In particular, they show that
by increasing the diffusivity of the electrolyte, they were able to discharge at much faster rates.
They also compare their results to a sharp discharge front (SDF) model in which an interface
propagates into the half-cell from the separator; behind this front, the electrode material is fully
discharged (i.e. fully lithiated) and in front of it is fully charged (i.e. fully de-lithiated). Whilst
such a model could be criticised for being overly crude its premise is, to a large extent, borne out
by the results of the DFN-type model presented in this work which also predicts discharge fronts.

Here, we investigate the (dis)charge of a nano-structured electrode, such as that considered by
Owen et al. [23], using a DFN model at moderate to aggressive rates. We show that whilst the
SDF model presented by Owen et al. encapsulates some of the key features of the (dis)charge,
physical properties such as the ionic conductivity and diffusivity of the electrolyte, which were
assumed to be constant in their SDF model, significantly affect cell discharge. Here, we apply
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formal asymptotic methods to the full DFN model in order to systematically derive a reduced
order model for the charge/discharge of a nano-structured LFP half-cell cathode. This reduced
order model is capable of predicting the ionic and electronic potentials throughout discharge
and gives a precise method for predicting the termination of cell (dis)charge. As we will show,
the physics retained by our systematic derivation, which is not present in the simplistic SDF
model presented by Johns et al. [23], is crucial in explaining some features of LFP electrode
behaviour. In this context, we note that other reduced order models for lithium-ion battery charge
and discharge, appropriate for other battery chemistries, have been derived directly from the DFN
model, see, for example, [32, 45].

The remainder of this work is structured as follows. In Section 2, we describe the DFN model
for a LFP half-cell with the simplification that transport within the electrode particles is rapid,
provide a suitable non-dimensionalisation of the model and discuss typical values for these result-
ing dimensionless parameters. In the subsequent Section 3, we present some numerical solutions
to the model for relevant values of the parameters. We show that it is possible for the solution
to exhibit sharp discharge fronts, which separate utilised regions of the electrode from regions
that are still undergoing reaction. In Section 4, we systematically derive an asymptotic reduction
to the model in a distinguished limit in which the dimensionless reaction rate constant is large
so that in significant portions of the electrode, the electrolyte and electrode particles are almost
in equilibrium with one another. In Section 5, we provide the Reaction Front Model and give
physical interpretations of the reduced model. In Section 6, we validate the reduction by com-
paring it to numerical simulations of the full DFN model. Finally in Section 7, we present our
conclusions.

2 Problem formulation

We consider a one-dimensional porous LFP-based half-cell cathode, in x∗ ∈ (0, L), sandwiched
between a current collector located on x∗ = L and a porous separator in x∗ ∈ (−Ls, 0). In
x∗ < −Ls is a Li metal counter electrode. This model geometry is illustrated in Figure 1. The
electrochemical behaviour of this device is described by the DFN model [12, 18, 44].

Macroscopic transport. The ionic transport and current flow through the electrolyte, in both the
porous electrode and binder, is described in x∗ ∈ (−Ls, L) by the PDEs

εl
∂c∗

∂t∗
+ ∂F∗

∂x∗ = 0, F∗ = −B∗(x∗)D∗(c∗)
∂c∗

∂x∗ − (1 − t+)
j∗

F
, (2.1)

∂j∗

∂x∗ = FbcG∗, j∗ = −B∗(x∗)κ∗(c∗)

(
∂φ∗

∂x∗ − 2RgT

F

1 − t+

c∗
∂c∗

∂x∗

)
, (2.2)

Here, t∗ denotes time, εl is the local volume fraction of electrolyte, c∗ is the molar ion concentra-
tion in the electrolyte, F∗ is the effective flux of the negative counterions across the electrolyte,
D∗ is the ionic diffusivity of electrolyte, B∗ is the permeability factor, t+ is the transference num-
ber, j∗ is the ionic current density in the electrolyte, F is Faraday’s constant, bc is the BET surface
area (the surface area of electrode particles per unit volume of cathode), G∗ is the Butler–Volmer
(BV) reaction rate per unit area (i.e. the flux of Li-ions per unit area through the surface of the
electrode particles), κ∗ is the ionic conductivity, φ∗ is the electric potential in the electrolyte,
Rg is the (molar/universal/ideal) gas constant and T is absolute temperature. The dependencies
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FIGURE 1. Diagram showing dynamics of a LFP half-cell.
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FIGURE 2. Panel (a) shows the equilibrium potential for LFP. Panels (b) and (c) show the ionic conductivity
and diffusivity of lithium in the electrolyte, respectively.

https://doi.org/10.1017/S0956792521000036 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000036


Rapid (dis)charge in LFP cathodes 333

of D∗ and κ∗ on c∗ are shown in Figure 2. Here, we formulate (2.1) in terms of the negatively
charged counterion flux, rather than the Li+ ion flux, because these ions are not (de)intercalated
into the electrode particles and are thus globally conserved throughout the electrolyte. It follows
that (2.1) has strictly conservative form and is thus more easily solved numerically. This is con-
trast to the conservation equation for Li+ ions, which contains source/sink terms accounting for
the (de)intercalation process. The current flow through the solid matrix (comprised of electrode
particles, binder and conductive additives), situated in x∗ ∈ (0, L), satisfies

∂j∗c
∂x∗ = −FbcG∗, j∗c = −σc

∂φ∗
c

∂x∗ , (2.3)

where σc is the electronic conductivity and φ∗
c and j∗c are the electric potential and the electronic

current density in the solid matrix, respectively. The charge transport equations in the electrolyte
(2.1)–(2.3) satisfy the following boundary conditions on x = −Ls, the separator edge in contact
with the metallic lithium electrode,

j∗|x∗=−Ls = I∗(t∗)

A
, F∗|x∗=−Ls = 0, φ∗|x∗=−Ls = 0, (2.4)

where I∗(t∗) is the current in the external circuit and A is the cross-sectional area of the half-
cell. These conditions demand that current enters the half-cell through the separator as ionic
current, that there is no flux of the negative counterions on the metallic lithium electrode, and
that potential is measured with respect to the metallic lithium electrode. On the current collector,
(2.1)–(2.3) satisfy the conditions

j∗c |x∗=L = I∗(t∗)

A
, F∗|x∗=L = 0, j∗|x∗=L = 0, (2.5)

requiring that current flows from the half-cell into the current collector as electronic current and
that there is no current flow or ion flux into the current collector.

Equations on the microstructure. In order that the (de)intercalation reaction rates can be eval-
uated, the surface concentration on the electrode particles must be determined. It is assumed
that the C-rate (i.e. the current drawn from the cell measured in units of the current needed
to discharge the cell completely in 1 h) is large enough that mosaic effects found in phase-
separating electrode materials such as LFP can be neglected [28]. This necessitates solving
microscopic transport problems within representative electrode particles through the thickness
of the electrode. Since we assume the electrode is formed from nano-particulate LFP the lithium
concentration is, to a good approximation, spatially uniform within each particle. This can be jus-
tified by noting that the timescale for transport in the solid τc = R2/Dc, where R is the electrode
particle radius and Dc is the typical diffusivity of lithium in LFP, is very short. Taking R = 300
nm [11, 33, 56] and Dc = 9 × 10−14 m s−2 [24], we find that τc = 1 s, and so provided we do
not approach rates of 3600C it is reasonable to say that τc � τ , where τ is the timescale for cell
discharge, and hence the electrode particles are quasi-steady on the timescale of cell discharge.
Thus, the transport problem inside the (spherical) LFP nanoparticles is approximated by

dc∗
c

dt∗
= −3G∗

R
. (2.6)

In the forthcoming sections, we show that solutions to the model can exhibit behaviour in which
the lithium intercalation occurs primarily within narrow reaction regions that propagate through
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the electrode. In such scenarios, the characteristic timescale for (de)lithiation of a particle is
reduced to τW/L where W is the width of the region in which the reaction is concentrated.
Hence, the caveat on the validity approximation (2.6) of the transport problem inside the LFP
electrode particles (τc � τ ) should be amended to be given by τc � τW/L. As we shall see later,
in (2.21) and (4.24), a typical range of values for the ratio W/L is between 10−2 and 1, and as
such the approximation (2.6) is often justified provided we do not approach rates of between 36C
and 3600C (depending on the device architecture).

The Butler–Volmer reaction rate. The flux G∗ of Li-ions across the surface of an electrode
particle, into the electrolyte, is modelled by the Butler–Volmer (BV) reaction rate [5],

G∗ =

⎧⎪⎪⎨
⎪⎪⎩

0, −Ls < x∗ < 0

k0c∗1/2c∗1/2
c (ĉc − c∗

c )1/2

(
exp

(
Fη∗

2RgT

)
− exp

(
− Fη∗

2RgT

))
, 0 ≤ x∗ < L

(2.7)

where c∗
c is the maximum lithium-ion concentration of the active material, k0 is a reaction

constant and η∗, the over-potential, is defined by

η∗ = φ∗
c − φ∗ − U∗

c (c∗
c ). (2.8)

Here U∗
c (c∗

c ), the equilibrium potential of the cathode electrode material (cf Figure 2), is an
experimentally measured function of the intercalated Li-ion concentration c∗

c on the surface of
the particle.

The half-cell potential. The voltage drop across the device, V ∗(t∗) is comprised of two parts: the
potential difference between the electrode at the current collector and separator; and the Ohmic
drop across the current collector interface caused by contact resistance, Rc. On recalling the
boundary condition (2.4c) an expression for the half-cell voltage is given by

V ∗(t∗) = φ∗
c

∣∣
x∗=L

− RcI∗(t). (2.9)

Geometry of the electrode. The electrode is assumed to be locally periodic and comprised of
identically sized spherical electrode particles so that n, the particle number density, and εp, the
electrode particle volume fraction, are given by

n = bc

4πR2
, εp = 4

3
πR3n. (2.10)

It follows that bc, the BET surface area, is related to the volume fraction and radius of particles via

bc = 3εp

R
. (2.11)

Initial conditions. The problem is closed by specifying initial conditions on the lithium con-
centrations in the electrolyte and in the electrode particles. Here, we specify initial conditions
corresponding to an electrode that has been allowed to reach equilibrium, so that the lithium
concentrations in the electrolyte and the electrode particles are spatially uniform, and write

c∗∣∣
t∗=0

= ĉ, c∗
c

∣∣
t∗=0

= αĉc. (2.12)
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Here, α specifies the initial state of charge of the half-cell (α = 0 corresponds to fully charged
and α = 1 to fully discharged electrode particles).

State of charge. The state of charge of the cell is taken to be the total average concentration of
lithium in the electrode particles normalised with respect to the theoretical capacity. The state of
charge is denoted by, 〈cc〉, and is given by

〈cc〉 =
∫ x∗=L

x∗=0

c∗
c

ĉc
dx∗, (2.13)

and as such, it follows from (2.12), that 〈cc〉|t∗=0 = α.

C-rate. The C-rate is a dimensionless measure of the (dis)charge rate. For a cathode undergoing
galvanostatic (dis)charge, we define the C-rate as the current draw/supply divided by the theo-
retical capacity of the cathode. However, it is worth pointing out that some authors choose to
normalise with respect to an experimentally measured capacity rather than the theoretical one.
Nonetheless a common definition, and the one we shall adopt is

C-rate = 3600I∗

LAεpFĉc
. (2.14)

Thus, provided the full capacity is accessible, a C-rate of 1 will bring the cathode from fully
charged to discharged in 1 h.

2.1 Non-dimensionalisation

In order to conduct an asymptotic analysis of the problem, the model (2.1)–(2.13) is first non-
dimensionalised. Time is rescaled with the typical time taken to fully (dis)charge the cathode at
a current of size Î , namely

τ = LAεpFĉc

Î
, (2.15)

and the macroscopic spatial dimension, x∗, is scaled with the electrode width L. Electrolyte
diffusivity, conductivity and concentration are scaled with their typical values, B̂, D̂, κ̂ and ĉ,
respectively. Lithium concentration in the electrode particles is scaled with its maximum con-
centration ĉc. The various currents and current densities are all scaled based on the size of the
current being supplied to/drawn from the external circuit. The scaling for the ionic flux is based
on the typical size of its diffusive component which, for concentrations of size ĉ, length scales
of size L and effective diffusivities of size B̂D̂/εl is B̂D̂ĉ/εlL2. The BV reaction rates are scaled
based on the average flux required through particle surfaces needed to sustain a current of size Î .
The typical size of the variations in the different potentials across the electrode are on the order
of the thermal voltage; in the cases of the electrolyte and cathode potentials this is by design, and
results from the relatively high conductivities of electrolytes and binders used in battery appli-
cations. The over-potential, U∗

c , is very close to being constant (Ûc ≈ 3.4 V) throughout most of
the material’s range of charge states, cf Figure 2. We, therefore, scale the over-potential by first
subtracting off this constant contribution and allow for variations on the size of thermal voltage.
In summary, the rescalings read
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t∗ = τ t x∗ = Lx c∗ = ĉc c∗
c = ĉccc, (2.16)

j∗ = Î

A
j j∗c = Î

A
jc φ∗ = RgT

F
φ φ∗

c = Ûc + RgT

F
φc, (2.17)

η∗ = RgT

F
η U∗

c = Ûc + RgT

F
Uc V ∗ = RgT

F
V G∗ = Î

ALFbc
G, (2.18)

I∗ = Î I F∗ = B̂D̂ĉ

L
F D∗ = D̂D B∗ = B̂B, (2.19)

κ∗ = κ̂κ . (2.20)

The non-dimensionalisation gives rise to the following dimensionless quantities that characterise
the system:

N = L2εl

τ B̂D̂
, � = ÎL

ĉD̂B̂AF
, ϒ = k0ĉ1/2ĉcFALbc

Î
, L= Ls

L
, (2.21)

 = σcRgTA

FLÎ
, R= RcFÎ

RgT
, P = B̂κ̂RgTA

FLÎ
. (2.22)

Here, N is the timescale for liquid diffusion over the timescale for cell discharge, � is the ratio of
the typical sizes of the drift flux to the diffusive flux, ϒ is the typical current density at the surface
of an electrode particle over the ratio of the exchange current density, L is the length of the
separator over the length of the cathode,  is the electronic conductivity over the characteristic
conductivity of the electrode particles, R is the voltage dropped at the current collector over the
potential difference between fully charged and fully discharged electrode particles and P is the
ionic conductivity over the characteristic conductivity of the electrode particles.

2.2 The dimensionless problem

The system of equations obtained by applying the rescalings (2.16)–(2.20) to the variables
(2.1)–(2.13) is

N ∂c

∂t
+ ∂F

∂x
= 0, F = −B(x)D(c)

∂c

∂x
− �(1 − t+)j, (2.23)

∂j

∂x
= G, j = −PB(x)κ(c)

(
∂φ

∂x
− 2

1 − t+

c

∂c

∂x

)
, (2.24)

∂jc
∂x

= −G, jc = −
∂φc

∂x
,

dcc

dt
= −G, (2.25)

G = ϒc1/2c1/2
c (1 − cc)1/2

(
exp

(η

2

)
− exp

(−η

2

))
, η = φc − φ, (2.26)

subject to boundary conditions

j|x=−L = I(t), F |x=−L = 0, φ|x=−L = 0, (2.27)

F |x=1 = 0, j|x=1 = 0, jc|x=1 = I(t), (2.28)
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and initial conditions

c|t=0 = 1, cc|t=0 = α. (2.29)

The dimensionless cell voltage is given by

V = φc|x=1 −RI(t). (2.30)

For an LFP half-cell, Uc, the dimensionless variation in the over-potential is so small that it
can be set to zero without engendering any significant errors, provided that we do not demand
accuracy at states of charge where the over-potential varies rapidly and very significantly (i.e.
states at which the particles approach full lithiation). In the equations above, we have therefore
set Uc = 0 and it will not appear in the subsequent analysis.

Features of the model. It will turn out to be helpful to note some generic features exhibited by
the model equations. The total current density (made up of both an ionic and electronic compo-
nent) is uniform throughout the electrode. On summing equations (2.24a) and (2.25a), integrating
and applying boundary conditions (2.28b,c) we arrive at

j + jc = I(t). (2.31)

Furthermore, integrating equation (2.25a) with respect to x and again applying boundary
conditions (2.27a) and (2.28c) leads to ∫ 1

0
G dx = −I(t), (2.32)

indicating that the total reaction through the electrode is in balance with the current supplied by
or driven from the external circuit.

2.3 Dimensionless parameter estimates

We will consider two device parameterisations; one for modern electrodes and one for older
electrodes representative of the devices that were being produced in the early 2000s. As alluded
to in the Section 1, a key feature in the development of LFP cathodes has been the increase in
the conductivity of the solid matrix by the addition of dopants and conductive additives. We,
therefore, parameterise our two devices in the same way except that the solid conductivity is
taken to be significantly larger in the modern parameter set. It is by contrasting these two cases
that we are able to elucidate why this development has been so impactful in manufacturing better
electrodes and it allows us to suggest some avenues for further improvements.

A list of parameter estimates obtained from the literature is supplied in Table 1. Note that B̂, D̂
and κ̂ are the typical values of the diffusivity and ionic conductivity respectively, cf (B2)–(B4)
and Figure 2. Specifically, we choose B̂ = 0.3150, D̂ = 5.253 × 10−10 m2 s−1 and κ̂ = 1.088 S
m−1. Based on this data the dimensionless parameters for the older electrodes being operated at
a C-rate of 1C, the non-dimensional parameters are

For 1C: N = 0.0028, � = 0.0602, ϒ = 113.8420, (2.33)

L= 0.4167,  = 0.1335, R= 0.0223, P = 9.1498. (2.34)
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Table 1. Typical parameter values for a LFP half-cell

Parameter, symbol (unit) Value Reference

Electrolyte parameters
Electrode thickness, L (μm) 60 [11, 15, 23, 33, 49, 56]
Separator thickness, Ls (μm 25 [40, 49, 50, 55, 57]
Volume fraction of electrode particles, εp 0.437 [33]
Volume fraction/porosity of electrolyte, εl 0.463 [33, 38]
Initial salt concentration, ĉ (mol m−3) 1000 [48]
Transference number, t+ 0.38 [51, 53]
Electrode parameters
Reaction rate constant, k0 (mol−0.5m3.5 s−1) 1 × 10−10 [24]
Particle radius, R (nm) 300 [11, 33, 56]
Matrix conductivity of modern electrodes, σc (S m−1) 3.49 [14]
Matrix conductivity of older electrodes, σc (S m−1) 0.005 [34, 48]
Maximum concentration in the solid, ĉc (mol m−3) 22,806 [24]
Initial state of charge, α 0.035 [40]
Other parameters
Faraday constant, F (C mol−1) 96,487 [49]
Universal gas constant, Rg (J mol−1 K−1) 8.3144 [16]
Temperature, T (K) 298 [16]
Cross-sectional area of electrode, A (m2) 1 × 10−4 [33, 46, 48]
Contact resistance, Rc (�) 3.58 × 10−3 [10]

Adopting the modern parameter set we find that a cell (dis)charging at a C-rate of 1, the parameter
values are

For 1C: N = 0.0028, � = 0.0602, ϒ = 113.8420, (2.35)

L= 0.4167,  = 93.1975, R= 0.0223, P = 9.1498. (2.36)

For a more aggressive rate of 10C they are

For 10C: N = 0.0280, � = 0.6022, ϒ = 11.3842, (2.37)

L= 0.4167,  = 9.3198, R= 0.2234, P = 0.9150. (2.38)

Finally, for a very aggressive rate of 100C they are

For 100C: N = 0.2798, � = 6.0222, ϒ = 1.1384, (2.39)

L= 0.4167,  = 0.9320, R= 2.2344, P = 0.0915. (2.40)

We note that the only difference between the modern device and the older device at 1C is the
value of , the dimensionless solid conductivity, cf (2.34) and (2.36). The value of the current
demand at 1C, e.g. can be found by solving (2.15) for Î having specified τ = 3600 s, which gives
Î = 0.1603 A. Current demands for other C-rates can be found similarly.

3 Numerical solution of the DFN model

In order to motivate and verify the asymptotic analysis of §4, we present some representative
numerical solutions of cathode discharge. A variety of numerical methods can be employed
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FIGURE 3. Discharge of an older electrode at 1C. Figure showing the comparison between numerical sim-
ulations of the full DFN model (coloured) and the solution predicted by the asymptotic RFM (black). Plots
for c∗, j∗, φ∗, φ∗

c and c∗
c are taken at times t ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, where plots fade from

blue to red as time increases, as well as the voltage profile V ∗. The parameter values are those shown in
(2.34). Since we are considering galvanostatic discharge, the value of 〈cc〉 on the horizontal axis of the
bottom-right figure is interchangeable with t.

to obtain approximate solutions to the model, but here we use the method of lines and the
MATLAB integrator ode15s to obtain numerical solutions. The approach is chosen because it
is relatively simple to implement, cheap to use in terms of computing requirements and gives
us the requisite accuracy. First, the derivatives in the macroscopic spatial dimension, x, are
approximated using finite element method, this results in a large system of differential algebraic
equations (DAEs). The differential parts of this system arise from the parabolic PDEs whereas
the algebraic equations arise from the elliptic PDEs. The system of DAEs can then be integrated
forward in time using the ode15s integrator in MATLAB. The method is loosely based on the
approach described in [43] and is currently under development as a piece of software code named
DandeLiion [27]. We refer the interested reader to those publications for an in-depth description
of the method.

In Figures 3–6, we present four representative solutions, one for each of the parameter sets
given in Section 2.3, and subjecting the cathode to galvanostatic discharge from a state of charge
with α = 0.035 until discharge terminates either because the voltage drops below 2.5 V, or the
electrolyte becomes depleted. In all four cases, we observe that the reaction is initially concen-
trated around the edges of the electrode (where the particles lithiate rapidly). Once the particles
at these extremities are close to being fully lithiated, the reaction progresses into the bulk of the
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FIGURE 4. Figure showing the comparison between numerical simulations of the full DFN model
(coloured) and the solution predicted by the asymptotic RFM (black). Plots for c∗, j∗, φ∗, φ∗

c and c∗
c are taken

at times t ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, where plots fade from blue to red as time increases, as
well as the voltage profile V ∗. The parameters values are those shown in (2.36) and Table 1 for a C-rate of
1C using the modern electrode value for the matrix conductivity.

electrode. We see that, for the older electrode in Figure 3, the region in which the reaction occurs
remains narrow and it propagates from the current collect towards the separator. By contrast, for
the modern electrode, cf Figures 4–6, the reaction fronts are considerably more diffuse, though
the width of the layers does decrease with increasing C-rate. At the highest discharge rate, the
large current leads to electrolyte depletion near the current collector and terminates discharge
before the cell can be fully utilised. We note also that in the modern electrodes, the reaction
front propagates in the opposite direction, beginning at the separator and proceeding towards the
current collector. The presence of the narrow reaction front, which is most clearly visible for
the parameterisation relevant to older electrodes, is what motivates the asymptotic analysis in
the subsequent section.

4 Asymptotic analysis in the limit ϒ → ∞
The computations shown in the previous section suggest that an asymptotic regime pertains to
the set of parameter values relevant for older electrode designs. We will now show that this
regime is in fact a distinguished limit characterised by the large value of ϒ . For large values of
ϒ , the generic solution structure has a wide region of slowly reacting electrode particles in the
bulk separated from regions of fully lithiated particles by narrow rapidly reacting regions, which

https://doi.org/10.1017/S0956792521000036 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000036


Rapid (dis)charge in LFP cathodes 341

-2 0 2 4 6
10-5

600

800

1000

1200

1400

-2 0 2 4 6
10-5

-0.06

-0.04

-0.02

0

0 5
10-5

3.36

3.38

3.4

3.42

-2 0 2 4 6
10-5

0

50

100

150

200

0 5
10-5

0

0.5

1

1.5

2

2.5 104

0 0.5 1
2.5

3

3.5

FIGURE 5. Figure showing the comparison between numerical simulations of the full DFN model
(coloured) and the solution predicted by the asymptotic RFM (black). Plots for c∗, j∗, φ∗, φ∗

c and c∗
c are taken

at times t ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, where plots fade from blue to red as time increases, as
well as the voltage profile V ∗. The parameters values are those shown in (2.38) and Table 1 for a C-rate of
10C using the modern electrode value for the matrix conductivity.

intrude from the edges of the electrode into its interior as discharge proceeds. We note that only
one of the reaction fronts (that propagating inwards from the current collector) is clearly visible in
the computation shown in Figure 3. As will shortly become clear, this is because older electrode
designs also feature an extreme contrast in the conductivity of electrolyte compared to the solid
matrix (giving rise to P > ) and this suppresses the motion of the reaction that would otherwise
propagate from the separator. In the modern electrodes, the opposite is true, i.e.  >P , and this
leads to suppression of the reaction front moving from the current collector towards the separator.
This generic behaviour with two moving reaction fronts can be seen in the computations that we
will use to verify the asymptotic analysis, cf Figures 9–10.

Formally, we shall consider the limit in which ϒ → ∞ and all other parameters will be taken
to be O(1). The solution is described by five asymptotic regions, which we will distinguish using
Roman numeral superscripts as follows: the central slowly reacting region (denoted region (III)),
the two reacted regions near the separator and current collector (termed regions (I) and region
(V ), respectively) and the narrow moving reaction fronts positioned at x = s1(t) and x = s2(t)
(denoted regions (II) and (IV )), respectively. A sketch of this structure in shown in Figure 7.
Readers interested in the result of the asymptotic analysis are pointed to Section 5 where the
upshot of the analysis, namely the reduced order model (or reaction front model, RFM), is
summarised.
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FIGURE 6. Figure showing the comparison between numerical simulations of the full DFN model
(coloured) and the solution predicted by the asymptotic RFM (black). Plots for c∗, j∗, φ∗, φ∗

c and c∗
c are

taken at times t ∈ {0.1, 0.2, 0.3, 0.4}, where plots fade from blue to red as time increases, as well as the
voltage profile V ∗. The parameters values are those shown in (2.40) and Table 1 for a C-rate of 100C using
the modern electrode value for the matrix conductivity.

FIGURE 7. Left: Sketch of the electrode showing the structure of the solution and the locations of the
predominant reactions. Right: The same electrode annotated with the notation for the different asymptotic
regions and locations of the reaction fronts.

4.1 Outer regions

The outer regions, namely region (I) where −L< x < s1(t), region (III) where s1(t) < x < s2(t)
and region (V ) where s2(t) < x < 1, are analysed on the length scale of the electrode.

Region (I): reacted region adjacent to separator. In region (I), where −L< x < s1(t), the
particles are almost fully lithiated and consequently, it is unable to sustain a significant reaction
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or convert a significant portion of the ionic current (which enters the electrode via the adjacent
separator) into electronic form. It follows, from (2.31), that the electronic current in this region
is small and thus the potential gradient in the solid must also be significantly smaller than that
across the electrolyte in this region. The asymptotic solution in this region is found by expanding
as follows:

c(I) = c(I)
0 (x, t) + · · · F (I) =F (I)

0 (x, t) + · · · (4.1)

j(I) = I(t) + · · · j(I)
c = o(1) (4.2)

φ(I) = φ
(I)
0 (x, t) + · · · φ(I)

c = φ
(I)
c,0(t) + · · · (4.3)

c(I)
c = 1 + · · · G(I) = o(1). (4.4)

Here, we use the superscript (I) to indicate variables within this region. Equations (2.24a),
(2.25) and (2.26) are automatically satisfied at leading order by the expansions (4.1)–(4.4). The
three remaining leading order variables c(I)

0 , F (I)
0 and φ

(I)
0 satisfy equations that are obtained by

balancing the leading order terms in (2.23) and (2.24b); these read:

N ∂c(I)
0

∂t
+ ∂F (I)

0

∂x
= 0, F (I)

0 = −B(x)D
(

c(I)
0

) ∂c(I)
0

∂x
− �(1 − t+)I(t), (4.5)

I(t) = −PB(x)κ
(

c(I)
0

) (∂φ
(I)
0

∂x
− 2

1 − t+

c(I)
0

∂c(I)
0

∂x

)
. (4.6)

and satisfy the boundary conditions

F (I)
0 |x=−L = 0, φ

(I)
0 |x=−L = 0, (4.7)

on the separator (obtained from (2.27b,c) and at leading order).

Region (V ): reacted region adjacent to current collector. In the other reacted region, lying in
s2(t) < x < 1, the asymptotic expansion proceeds analogously as it does in region (I) (for similar
reasons) with the notable exception that the current flows almost entirely in the solid electrode
matrix (rather than the electrolyte); it reads:

c(V ) = c(V )
0 (x, t) + · · · F (V ) =F (V )

0 (x, t) + · · · (4.8)

j(V ) = o(1) j(V )
c = I(t) + · · · (4.9)

φ(V ) = φ
(V )
0 (x, t) + · · · φ(V )

c = φ
(V )
c,0 (x, t) + · · · (4.10)

c(V )
c = 1 + · · · G(V ) = o(1) (4.11)

Equations (2.24a), (2.25a), (2.25c)–(2.26) are automatically satisfied at leading order by the
expansions (4.8)–(4.11). The remaining leading order variables, c(V )

0 , F (V )
0 , φ

(V )
0 and φ

(V )
c,0 satisfy

the leading balances in equations (2.23), (2.24b), (2.25b) which read;

N ∂c(V )
0

∂t
+ ∂F (V )

0

∂x
= 0, F (V )

0 = −B(x)D
(

c(V )
0

) ∂c(V )
0

∂x
, (4.12)

0 = −PB(x)κ
(

c(V )
0

) (∂φ
(V )
0

∂x
− 2

1 − t+

c(V )
0

∂c(V )
0

∂x

)
, −I(t) = 

∂φ
(V )
c,0

∂x
, (4.13)
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along with the boundary condition

F (V )
0 |x=1 = 0, (4.14)

on the current collector (obtained from (2.28a) at leading order).

Region (III): central slowly reacting region. In the central slowly reacting region, lying in
s1(t) < x < s2(t), there are significant current flows in both the electrolyte and the solid and sig-
nificant charge transfer is occurring, i.e. there is an O(1) amount of reaction in this region. Since
the electrode particles here still have space to accommodate more Li+, the only way in which
(2.26) is consistent with O(1) reaction rates is if the potentials in the electrolyte and solid are
almost equal. The asymptotic solution can be found by expanding as follows:

c(III) = c(III)
0 (x, t) + · · · F (III) =F (III)

0 (x, t) + · · · (4.15)

j(III) = j(III)
0 (x, t) + · · · j(III)

c = I(t) − j(III)
0 (x, t) + · · · (4.16)

φ(III) = φ
(III)
0 (x, t) + · · · φ(III)

c = φ
(III)
0 (x, t) + · · · (4.17)

c(III)
c = c(III)

c,0 (x, t) + · · · G(III) = G(III)
0 (x) + · · · . (4.18)

On substituting this expansion into (2.23)–(2.26), we find that the leading order variables c(III)
0 ,

F (III)
0 , j(III)

0 , φ
(III)
0 , c(III)

c,0 and G(III)
0 satisfy the following equations:

N ∂c(III)
0

∂t
+ ∂F (III)

0

∂x
= 0, F (III)

0 = −B(x)D
(

c(III)
0

) ∂c(III)
0

∂x
− �(1 − t+)j(III)

0 , (4.19)

j(III)
0 = −PB(x)κ

(
c(III)

0

) (∂φ
(III)
0

∂x
− 2

1 − t+

c(III)
0

∂c(III)
0

∂x

)
, 

∂φ
(III)
0

∂x
= j(III)

0 − I(t), (4.20)

∂c(III)
c,0

∂t
= −G(III)

0 ,
∂j(III)

0

∂x
= G(III)

0 , (4.21)

By eliminating the leading order potential gradient between equations (4.20a) and (4.20b) we
can solve for the ionic current in terms of the leading order electrolyte concentration, yielding

j(III)
0 =

PB(x)κ
(

c(III)
0

)
 +PB(x)κ

(
c(III)

0

)
(

I(t) + 2
1 − t+

c(III)
0

∂c(III)
0

∂x

)
. (4.22)

We can then solve for the lithium content in the solid in terms of the ionic current from by elim-
inating G(III)

0 equation (4.21), integrating with respect to time t and applying the initial condition
(2.29b), giving:

c(III)
c,0 = α −

∫ t

0

∂j(III)
0

∂x
dt′. (4.23)
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4.2 The narrow reaction regions

We now investigate the narrow reaction regions, namely regions (II) where x − s1(t) = O(ϒ−1)
and (IV ) where x − s2(t) = O(ϒ−1), separating the three outer regions discussed above.

Region (II): left-hand reaction region. The left-hand reaction region, located about x = s1(t),
has width O(ϒ−1), and is therefore studied under a change of coordinates given by

x − s1(t) = ϒ−1y, (4.24)

and so the local equations become

N
(

−ϒ ṡ1(t)
∂c(II)

∂y
+ ∂c(II)

∂t

)
+ ϒ

∂F (II)

∂y
= 0, F (II) = −ϒB(x)D

(
c(II)

) ∂c(II)

∂y
− �

(
1 − t+

)
j(II),

(4.25)

ϒ
∂j(II)

∂y
= G(II), j(II) = −ϒPB(x)κ

(
c(II)

) (∂φ(II)

∂y
− 2

1 − t+

c(II)

∂c(II)

∂y

)
, (4.26)

ϒ
∂j(II)

c

∂y
= −G(II), j(II)

c = −ϒ
∂φ(II)

c

∂y
, −ϒ ṡ1(t)

∂c(II)
c

∂y
+ ∂c(II)

c

∂t
= −G(II), (4.27)

G(II) = ϒ

√
c(II)c(II)

c

(
1 − c(II)

c

) (
e

η
2 − e− η

2

)
, η = φ(II)

c − φ(II). (4.28)

The asymptotic solution can then be found by expanding as follows:

c(II) = c(II)
0 (t) + · · · , F (II) =F (II)

0 (t) + · · · ,

j(II) = j(II)
0 (y, t) + · · · , φ(II) = φ

(II)
0 (t) + · · · ,

j(II)
c = I(t) − j(II)

0 (y, t) + · · · , φ(II)
c = φ

(II)
c,0 (t) + · · ·

c(II)
c = c(II)

c,0 (y, t) + · · · , G(II) = ϒG(II)
−1 (y, t) + · · · ,

(4.29)

which, by design, satisfy equations (4.25)–(4.26) and (4.27b). On substituting these expansions
into (4.27c)–(4.28), we find that the leading order variables j(II)

0 and c(II)
c,0 satisfy the following

equations:

−ṡ1(t)
∂c(II)

c,0

∂y
= 2

√
c(II)

0 (t)c(II)
c,0

(
1 − c(II)

c,0

)
sinh

(
φ

(II)
c,0 − φ

(II)
0

2

)
, ṡ1(t)

∂c(II)
c,0

∂y
= −∂j(II)

0

∂y
. (4.30)

Matching across the left-hand reaction region. Upon matching the leading order lithium con-
centrations and fluxes (in the electrolyte) across the regions adjacent to the left-hand reaction
front situated about x = s1(t), we find that

c(I)
0 |x↗s1(t) = c(II)

0 (t) = c(III)
0 |x↘s1(t), (4.31)

F (I)
0 |x↗s1(t) =F (II)

0 (t) =F (III)
0 |x↘s1(t). (4.32)
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The equations for the concentration and flux of lithium in the electrolyte however cannot be
closed at this stage; this will be done in Section 4.3 after matching across the right-hand reaction
front around x = s2(t). Performing a similar operation for the leading order electrolyte potentials
we obtain the following matching conditions:

φ
(I)
0 |x↗s1(t) = φ

(II)
0 (t) = φ

(III)
0 |x↘s1(t). (4.33)

On matching the leading order electronic potentials we find

φ
(I)
c,0(t) = φ

(II)
c,0 (t) = φ

(III)
c,0 |x↘s1(t). (4.34)

Matching the leading order lithium content inside the electrode particles across all three regions
leads to the conditions

c(II)
c,0 |y→−∞ = 1, c(II)

c,0 |y→∞ = c(III)
c,0 |x↘s1(t), (4.35)

Finally, the matching conditions on the leading order ionic current densities j are

j(II)
0 |y→−∞ = I(t), j(II)

0 |y→∞ = j(III)
0 |x↘s1(t). (4.36)

An ODE which can be solved to determine the position of the reaction layer, x = s1(t), is found
by integrating (4.30b) and imposing the conditions (4.35)–(4.36), giving

ṡ1(t) = j(II)
0 |y→∞ − j(II)

0 |y→−∞
c(II)

c,0 |y→∞ − c(II)
c,0 |y→−∞

= I(t) − j(III)
0 |x↘s1(t)

1 − c(III)
c,0 |x↘s1(t)

(4.37)

with the initial condition s1(t)|t=0 = 0, which corresponds to the fact that this reaction region
begins at the separator.

Region (IV ): right-hand reaction region. The right-hand reaction layer located about x = s2(t)
also has width O(ϒ−1), and is therefore studied under a change of coordinates given by

x − s2(t) = ϒ−1z, (4.38)

and so the local equations become

N
(
−ϒ ṡ2(t)

∂c(IV )

∂z
+ ∂c(IV )

∂t

)
+ ϒ

∂F (IV )

∂z
= 0, F (IV ) = −ϒB(x)D

(
c(IV )

)∂c(IV )

∂z
− �

(
1 − t+

)
j(IV ),

(4.39)

ϒ
∂j(IV )

∂z
= G, j(IV ) = −ϒPB(x)κ

(
c(IV )

) (∂φ(IV )

∂z
− 2

1 − t+

c(IV )

∂c(IV )

∂z

)
, (4.40)

ϒ
∂j(IV )

c

∂z
= −G(IV ), j(IV )

c = −ϒ
∂φ(IV )

c

∂z
, −ϒ ṡ2(t)

∂c(IV )
c

∂z
+ ∂c(IV )

c

∂t
= −G(IV ), (4.41)

G(IV ) = ϒ

√
c(IV )c(IV )

c

(
1 − c(IV )

c

) (
e

η
2 − e− η

2

)
, η = φ(IV )

c − φ(IV ). (4.42)

https://doi.org/10.1017/S0956792521000036 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792521000036


Rapid (dis)charge in LFP cathodes 347

The asymptotic solution can then be found by expanding as follows:

c(IV ) = c(IV )
0 (t) + · · · , F (IV ) =F (IV )

0 (t) + · · · ,

j(IV ) = j(IV )
0 (z, t) + · · · , φ(IV ) = φ

(IV )
0 (t) + · · · ,

j(IV )
c = I(t) − j(IV )

0 (z, t) + · · · , φ(IV )
c = φ

(IV )
c,0 (t) + · · · ,

c(VI)
c = c(IV )

c,0 (z, t) + · · · , G(VI) = ϒG(IV )
−1 (z, t) + · · · ,

(4.43)

which, by design, satisfy equations (4.39)–(4.40) and (4.41b). On substituting these expansions
into (4.41c)–(4.42), we find that the leading order variables j(IV )

0 and c(IV )
c,0 satisfy the following

equations:

−ṡ2(t)
∂c(IV )

c,0

∂z
= 2

√
c(IV )

0 (t)c(IV )
c,0

(
1 − c(IV )

c,0

)
sinh

(
φ

(IV )
c,0 − φ

(IV )
0

2

)
, ṡ2(t)

∂c(IV )
c,0

∂z
= −∂j(IV )

0

∂z
.

(4.44)

Matching across the right-hand reaction region. Upon matching the leading order lithium
concentrations and fluxes (in the electrolyte) across the regions adjacent to the right-hand reaction
front situated about x = s2(t), we find that

c(III)
0 |x↗s2(t) = c(IV )

0 (t) = c(V )
0 |x↘s2(t), (4.45)

F (III)
0 |x↗s2(t) =F (IV )

0 (t) =F (V )
0 |x↘s2(t). (4.46)

Performing a similar operation for the leading order electric potentials, we obtain the following
matching conditions:

φ
(III)
c,0 |x↗s2(t) = φ

(IV )
c,0 (t) = φ

(V )
c,0 |x↘s2(t). (4.47)

On matching the leading order electrolyte potentials, we find

φ
(III)
0 |x↗s2(t) = φ

(IV )
0 (t) = φ

(V )
0 |x↘s2(t). (4.48)

Matching the leading order lithium content inside the electrode particles across all three regions
leads to the conditions

c(III)
c,0 |x↗s2(t) = c(IV )

c,0 |z→−∞, c(IV )
c,0 |z→∞ = 1. (4.49)

Finally, the matching conditions on the leading order ionic current densities j are

j(III)
0 |x↗s2(t) = j(IV )

0 |z→−∞, j(IV )
0 |z→∞ = 0. (4.50)

The position of the first reaction layer s2(t) is found by integrating equation (4.44b) and applying
conditions (4.49)–(4.50), giving

ṡ2(t) = j(VI)
0 |w→∞ − j(VI)

0 |w→−∞
c(VI)

c,0 |w→∞ − c(VI)
c,0 |w→−∞

= − j(III)
0 |x↗s2(t)

1 − c(III)
c,0 |x↗s2(t)

, (4.51)

with the initial condition s2(t)|t=0 = 1, which corresponds to the fact that this reaction region
begins at the current collector.
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4.3 Matching between the outer regions

A closed problem involving only the outer regions can now be formed. The matching conditions
(4.31)–(4.32), (4.45)–(4.46) are

c(I)
0 |x↗s1(t) = c(III)

0 |x↘s1(t), c(III)
0 |x↗s2(t) = c(V )

0 |x↘s2(t), (4.52)

F (I)
0 |x↗s1(t) =F (III)

0 |x↘s1(t), F (III)
0 |x↗s2(t) =F (V )

0 |x↘s2(t), (4.53)

which translate to imposing continuity of concentration and flux of the anions in the electrolyte
across the narrow reaction fronts. An expression for the ionic current densities in terms of the
ionic concentration in the outer regions is obtained by collating equations (4.2a), (4.9a) and
(4.22), which read

j(I)
0 = I(t), j(III)

0 =
PB(x)κ

(
c(III)

0

)
 +PB(x)κ

(
c(III)

0

)
(

I(t) + 2
1 − t+

c(III)
0

∂c(III)
0

∂x

)
, j(V )

0 = 0. (4.54)

5 The reaction front model

The main results of the asymptotic analysis can be summarised in the form of a simplified reduced
order model, termed the reaction front model (RFM), that provides a good approximation of the
DFN model in the distinguished limit ϒ → ∞. This is presented below. The leading order ion
transport equations in the outer regions (4.5), (4.12) and (4.19) read

N ∂c

∂t
+ ∂F

∂x
= 0, F = −B(x)D(c)

∂c

∂x
− �(1 − t+)j, in −L< x < 1, (5.1)

and since c and F are continuous across the boundary layer regions separating regions (I), (III)
and (V ), as seen in (4.52) and (4.53), they may be solved across the entirety of the domain
−L< x < 1 together with the appropriate boundary conditions on the metallic lithium electrode
and the current collector (4.7),

F |x=−L = 0, F |x=1 = 0. (5.2)

The leading order current density j(x, t), obtained in the preceding asymptotic analysis in (4.54),
may be represented by the following piecewise continuous function:

j(x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

I(t) x < s1(t),

PB(x)κ(c)

 +PB(x)κ(c)

(
I(t) + 2

1 − t+

c

∂c

∂x

)
s1(t) ≤ x ≤ s2(t),

0 s2(t) < x,

(5.3)

The leading order lithium concentration in the LFP particles obtained from (4.4), (4.11) and
(4.21), supplemented with the initial condition (2.29b), can be summarised as
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∂cc

∂x
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 x < s1(t),

− ∂j

∂x
s1(t) ≤ x ≤ s2(t),

0 s2(t) < x,

cc|t=0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 x < s1(t),

α s1(t) ≤ x ≤ s2(t),

1 s2(t) < x.

(5.4)

The positions of the two reaction regions s1(t) and s2(t) are found from the solutions to the
following ODEs, which are a result of (4.37) and (4.51):

ṡ1(t) =
I(t) − j|x=s+1 (t)

1 − cc|x=s+1 (t)

, ṡ2(t) = −
j|x=s−2 (t)

1 − cc|x=s−2 (t)

, (5.5)

subject to the initial conditions s1(0) = 0 and s2(0) = 1, and where the superscript plus (minus)
notation is used to indicate that the evaluation should be carried out to the right (left) of the
discontinuity in j or cc. In §6, we verify the RFM against numerical solutions to the DFN model.

5.1 Interpretation of the reaction front model

The large value of the dimensionless parameter ϒ is responsible for the sharp discharge fronts.
However it is important to highlight that, whilst the derivation here is general and accounts for
situations where two reaction fronts exist, in typical cathodes, only a single discharge front is
likely to be observed. If the electrolyte is significantly less conductive than the solid, as is the
case in LFP-based cathodes where carbon black can be added to boost the conductivity of the
solid phase, only a single discharge front would exist. The intuitive explanation for this is that
charge prefers to travel along the path of least resistance. In cathodes with a highly conductive
solid, the resistance to ionic motion in the electrolyte is much less than the electronic resistance in
the solid and so charge transfer reaction would occur initially at the separator [43]. This persists
until the LFP near the separator has been utilised and the reaction front then begins to propagate
towards the current collector, consuming the LFP as it moves. In the scenario where the solid is
less conductive than the electrolyte, the reaction front initiates at the current collector and subse-
quently moves towards the separator. Hence, the ratio of conductivities /P = σc/B̂κ̂ controls
the direction of motion of the discharge front(s), and a single front moves from the separator
towards the current collector if  �P , a single front moves from the current collector towards
the separator if  �P , and both fronts exist when /P = O(1). This idea can be encapsulated
as a transmission line, see Figure 8, where we represents the electrolyte and solid with resistors.

5.2 Simplification for large C-rates

We can further simplify the model presented in Section 5 in cases where the current demand is
large. We can see from (2.21) that this corresponds to the values of both  and P becoming
small. We see that when  is small the expression for the current (5.3) collapses as follows:

For  �P , j =
{

I(t), x < s2(t),

0, x > s2(t),
(5.6)
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FIGURE 8. Sketches of a transmission line interpretation of the RFM, where the red and blue resistors
represent charge transport pathways in the electrolyte and solid components of the cathode respectively.
The vertical black score denotes the position of the reaction front and the arrow indicates its direction of
propagation whilst the vertical grey scores indicate the LFP particles. Grey scores with a cross indicate used
LFP (unavailable for charge transfer) whilst those without are yet to be used.

and correspondingly there is only one reaction front which propagates from the current collector.
If, instead, P is small, then (5.3) simplifies in the following way:

For P � , j =
⎧⎨
⎩

I(t), x < s1(t),

0, x > s1(t),
(5.7)

and the one remaining reaction front intrudes from the separator. It is these simplifications that
are relevant to explaining the results discussed in Section 3. Finally, we note a simplification that
can be exploited if  and P are comparably small, i.e. , to  � 1, P � 1 but /P = O(1). Here,
(5.3) can be written as

For  � 1, P � 1, /P = O(1) (5.8)

j(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I(t) x < s1(t),

PB(x)κ(c)I(t)

 +PB(x)κ(c)
s1(t) ≤ x ≤ s2(t),

0 s2(t) < x.

(5.9)

In this case, two reaction fronts still exist simultaneously. It turns out that the RFM obtained by
supplementing (5.1)–(5.2) and (5.4)–(5.5) with either (5.6), (5.7) or (5.8), does not necessarily
rely on first taking the limit ϒ → ∞. In fact, they can be recovered by performing the analysis
for small , small P , or simultaneously small  and P whilst all other dimensionless parameters
are assumed to be of O(1). This asymptotic analysis is presented in §A.

The case of constant conductivity. In cases where the ionic concentration does not vary much
in the bulk region, (III), it follows that both the ionic conductivity and current density are almost
constant as well. In this case, there is little intercalation in the bulk and (5.5) becomes:

ṡ1(t) = 

 +PB(x)

I(t)

1 − α
, ṡ2(t) = − PB(x)

 +PB(x)

I(t)

1 − α
. (5.10)
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FIGURE 9. Figure showing the comparison between numerical simulations of the full DFN model
(coloured) and the solution predicted by the asymptotic RFM (black). Plots for c, j, φ, φc and cc are taken
at times t ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, as well as the voltage profile V . For these plots we take
all non-dimensional parameters to be unity with exception that ϒ = 100.

6 Comparison between numerical and asymptotic solutions to the model

We validate the accuracy of the RFM by comparing it with numerical solutions of the full DFN
model. The numerical solutions to the DFN model are furnished using the numerical approach
outlined in Section 3. For this purpose, we use parameter values that are not necessarily real-
istic, but rather select them so that the asymptotic structure is clearly visible. We validate the
full RFM, given by (5.1)–(5.5), by setting all dimensionless parameters equal to unity except
for ϒ which is taken to be 100. The results are shown in Figure 9 where we observe that the
reduced model is able to accurately reproduce the solution profiles, locations of the discharge
fronts and the cell voltage. A similar validation is carried out for the further simplified RFM,
given by (5.1)–(5.2), (5.4)–(5.5) and (5.8), by setting all dimensionless parameters equal to unity
except P and  which we take to be 0.01. In Figure 10, we observe that the simplified model
accurately reproduces the solution to the full DFN model. We note the DFN model predicts a
surprising feature that the cell voltage exhibits a short-lived initial increase. We have conducted
other numerical experiments that reveal that this initial voltage rise is related to our choice of
initial condition that particles are at a very low initial SOC, i.e. 3.5% lithiation see Table 1. At
short times, the reaction front is yet to be established and the surface over-potential, η, required
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FIGURE 10. Figure showing the comparison between numerical simulations of the full DFN model
(coloured) and the solution predicted by the asymptotic RFM (black). Plots for c, j, φ, φc and cc are taken
at times t ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, as well as the voltage profile V . For these plots we take
all non-dimensional parameters to be unity with exception that  =P = 0.01.

to drive the initial intercalation is relatively high because the prefactor of the Butler–Volmer rate,
ϒc1/2c1/2

c (1 − cc)1/2, i.e. the exchange current density, is small because cc is small, see (2.26).
This gives rise to the initially diminished overall cell voltage. After a short time, cc near the near
the edges of the electrode (where the reaction fronts are to be formed) has increased, and so too
has the exchange current density, meaning that a decreased surface over-potential is required
to drive intercalation and therefore the cell voltage recovers by increasing. This feature is not
present in the RFM because our asymptotics is valid for O(1) times after the reaction fronts are
fully formed. Returning for a moment to the results in Figures 4–6 and comparing the quality
of the agreement with those in Figures 9 and 10, we see that even though the RFM does not
reproduce the solution profiles for the electrolyte and solid-state lithium concentrations perfectly
in realistic cases, it is still able to give a good prediction on the cell voltage. Since this quantity is
often the one with the greatest practical importance, the range of operating regimes over which
the RFMs can used to predict discharge curves is quite broad. This is made evident through
Figure 11, where we plot discharge curves predicted by solutions to both the DFN model and
RFM using the values for the modern electrodes are found for C-rates of 1C, 10C, 20C, 50C and
100C. We note that the discrepancy between the DFN and RFM increases with C-rate, and this
can be attributed to the decreasing value of ϒ as the current increases.
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FIGURE 11. Figure showing the comparison between numerical simulations of the full DFN model (red)
and the solution predicted by the asymptotic RFM (black) for modern electrode parameters summarised in
Table 1 for C-rates of 1, 10, 20, 50 and 100.

7 Conclusions

We have derived a simplification to the Doyle–Fuller–Newman (DFN) model for the (dis)charge
of nano-structured lithium iron phosphate (LFP) cathodes in which it is assumed that the particles
are so small that transport inside the electrode particles can be taken to be infinitely fast on the
timescales of interest (i.e. that of cell (dis)charge). Numerical solutions to the DFN model in
realistic parameter regimes revealed the presence of localised regions of (de)intercalation which
propagate from the edges of the electrode into its interior. These reaction fronts form in LFP
electrodes much more readily than they can in other common cathode materials (e.g. NMC)
because it has a largely flat equilibrium over-potential curve which allows neighbouring electrode
particles to be at different states of lithiation without there being a significant potential difference
between them. These observations motivated us to carry out an asymptotic analysis of the model,
and in doing so we were able to derive a simplified model, which we term the reaction front
model (RFM). We have shown that the RFM compares favourably to the full DFN model in
the parameter regimes outlined above. The RFM can be solved at reduced computational cost
and contains only the most important parameters, and so we offer it as an alternative model to
the DFN where the cost of simulation needs to be minimised, i.e. in optimisation problems, in
parameter estimation studies or for use on the light computational hardware available onboard
electric vehicles. Arguably more importantly, the simplicity of the RFM provides insight into the
internal dynamics of these devices and can be used to suggests ways in which their design might
be improved.

Our analysis demonstrates that tuning the cell parameters affects the speed, direction and
sharpness of reaction fronts which are known to exist in electrodes comprised of LFP and
other phase change materials (e.g. graphite) [19, 23]. This control opens a promising avenue
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for improving device design by tuning the conductivities of the electrodes. As just one specific
example of where this strategy might be advantageous, consider a cell whose discharge is initially
sustainable, but that terminates prematurely due to electrolyte depletion near current collector.
Here, the rate performance can be improved by (counter-intuitively) decreasing the conductivity
of the electrode. This will encourage a discharge front to intrude from the current collector dur-
ing the early stages of discharge, i.e. when the electrolyte near the current collector remains rich
in Li-ions, thereby allowing this previously inaccessible region to be utilised and to contribute
towards usable capacity.

It should also be noted that the derivation of the RFM is applicable for all materials with
flat discharge curves and, whilst LFP is currently the most widespread example of this, future
development in material science may produce other commercially viable electrode materials
with flat OCVs. Moreover, there is an increasing incentive to find alternatives to NMC, which is
currently the most common cathode material in commercial devices because the supply of cobalt
is forecast to be unsustainable [35], and Tesla’s recent move to use LFP in the their home storage
batteries gives reason to believe that a shift towards LFP might already be underway. The RFM
can also be adapted to incorporate the dynamics of transport in the solid. This extension may be
required to accurately model larger LFP pellet sizes, or if the C-rate is so large that transport in
even nano-sized LFP particles is rate-limiting.
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Appendices

A Asymptotic analysis

The computations shown in Section 6, namely Figure 10, suggest that an asymptotic solution
relevant to high C-rates is available based on small values of P and . The solution is charac-
terised by a wide region of slowly reacting electrode particles in the bulk separated from regions
of fully lithiated particles by narrow rapidly reacting regions, which intrude from the edges of
the electrode into its interior as discharge proceeds. Formally, we shall consider the limit in
which both P → 0 and  → 0, whilst we take all other parameters to be O(1). The dynamics of
both limits, taken singularly and simultaneously, can be examined by letting /P = P̂ . Under
this transformation of parameters, we eliminate P from the non-dimensional DFN model and
reduce the model by taking  → 0 and P̂ = O(1). The solution is described by seven asymptotic
regions, which we will distinguish using Roman numeral superscripts as follows: the central
slowly reacting region (denoted region (IV )), the two reacted regions near the separator and cur-
rent collector (termed regions (I) and (VII), respectively), two narrow moving reaction-initiation
fronts (regions (III) and (V )) and two narrow moving reaction fronts (regions (II) and (VI)).

A.1 Outer regions

The outer regions, namely region (I) where −L< x < s1(t), region (IV ) where s1(t) < x < s2(t)
and region (VII) where s2(t) < x < 1, are analysed on the length scale of the electrode.

Region (I): reacted region adjacent to separator. In region (I), where −L< x < s1(t), the
particles are almost fully lithiated and consequently it is unable to sustain a significant reaction
or convert a significant portion of the ionic current (which enters the electrode via the adjacent
separator) into electronic form. It follows, from (2.31), that the electronic current in this region
is small, and thus the potential gradient across the electrode particles must also be significantly
smaller than that across the electrolyte in this region. The asymptotic solution in this region is
found by expanding as follows:

c(I) = c(I)
0 (x, t) + · · · F (I) =F (I)

0 (x, t) + · · · (A1)

j(I) = I(t) + · · · j(I)
c = 0 + · · · (A2)

φ(I) = −1φ
(I)
−1(x, t) + · · · φ(I)

c = −1φ
(I)
c,−1(t) + · · · (A3)

c(I)
c = 1 + · · · G(I) = 0 + · · · . (A4)
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Here, we use the superscript (I) to indicate variables within this region. Equations (2.24a),
(2.25) and (2.26) are automatically satisfied at leading order by the expansions (A1)–(A4). The
three remaining leading order variables c(I)

0 , F (I)
0 and φ

(I)
−1 satisfy equations that are obtained by

balancing the leading order terms in (2.23) and (2.24b); these read:

N ∂c(I)
0

∂t
+ ∂F (I)

0

∂x
= 0, F (I)

0 = −B(x)D
(

c(I)
0

) ∂c(I)
0

∂x
− �(1 − t+)I(t), (A5)

I(t) = −
B(x)κ

(
c(I)

0

)
P̂

∂φ
(I)
−1

∂x
. (A6)

and satisfy the boundary condition

F (I)
0 |x=−L = 0, φ

(I)
−1|x=−L = 0, (A7)

on the separator (obtained from (2.27b) at leading order).

Region (VII) reacted region adjacent to current collector. In the other reacted region, lying
in s2(t) < x < 1, the asymptotic expansion proceeds exactly as it does in region (I) (for similar
reasons) with the notable exception that the current flows almost entirely in the solid electrode
matrix (rather than the electrolyte); it reads:

c(VII) = c(VII)
0 (x, t) + · · · F (VII) =F (VII)

0 (x, t) + · · · (A8)

j(VII) = 0 + · · · j(VII)
c = I(t) + · · · (A9)

φ(VII) = −1φ
(VII)
−1 (t) + · · · φ(VII)

c = −1φ
(VII)
−1 (x, t) + · · · (A10)

c(VII)
c = 1 + · · · G(VII) = 0 + · · · (A11)

Equations (2.24), (2.25a), (2.25c) and (2.26) are automatically satisfied at leading order by the
expansions (A8)–(A11). The remaining leading order variables c(II)

0 , F (II)
0 and φ

(II)
c,−1 satisfy the

leading balances in equations (2.23) and (2.25b) which read:

N ∂c(VII)
0

∂t
+ ∂F (VII)

0

∂x
= 0, F (VII)

0 = −B(x)D
(

c(VII)
0

) ∂c(VII)
0

∂x
, (A12)

− I(t) = ∂φ
(VII)
c,−1

∂x
. (A13)

and satisfy the boundary condition

F (VII)
0 |x=1 = 0, (A14)

on the current collector (obtained from (2.28a) at leading order)

Region (IV ): central slowly reacting region. In the central slowly reacting region, lying in
s1(t) < x < s2(t), there are significant current flows in both the electrolyte and the solid and sig-
nificant charge transfer is occurring, i.e. there is an O(1) amount of reaction in this region. Since
the electrode particles here still have space to accommodate more Li+, the only way in which
(2.26) is consistent with O(1) reaction rates is if the potentials in the electrolyte and solid are
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almost equal. The asymptotic solution can be found by expanding as follows

c(IV ) = c(IV )
0 (x, t) + · · · F =F (IV )

0 (x, t) + · · · (A15)

j(IV ) = j(IV )
0 (x, t) + · · · j(IV )

c = I(t) − j(IV )
0 (x, t) + · · · (A16)

φ(IV ) = −1φ
(IV )
−1 (x, t) + · · · φ(IV )

c = −1φ
(IV )
−1 (x, t) + · · · (A17)

c(IV )
c = c(IV )

c,0 (x, t) + · · · G(IV ) = G(IV )
0 (x) + · · · (A18)

On substituting this expansion into (2.23)–(2.26), we find that the leading order variables c(IV )
0 ,

F (IV )
0 , j(IV )

0 , φ
(IV )
−1 and G(IV )

0 satisfy the following equations:

N ∂c(IV )
0

∂t
+ ∂F (IV )

0

∂x
= 0, F (IV )

0 = −B(x)D
(

c(IV )
0

) ∂c(IV )
0

∂x
− �

(
1 − t+

)
j(IV )
0 , (A19)

j(IV )
0 = −

B(x)κ
(

c(IV )
0

)
P̂

∂φ
(IV )
−1

∂x
,

∂φ
(IV )
−1

∂x
= j(IV )

0 − I(t), (A20)

dc(IV )
c,0

dt
= −G(IV )

0 ,
∂j(IV )

0

∂x
= G(IV )

0 , (A21)

By eliminating the leading order potential gradient between equations (A20a) and (A20b), we
can solve for the ionic current in terms of the leading order electrolyte concentrations, yielding

j(IV )
0 = I(t)

B(x)κ
(

c(IV )
0

)
B(x)κ

(
c(IV )

0

)
+ P̂

. (A22)

We can then solve for the lithium content in the solid in terms of the ionic current from equation
(A21) by eliminating G(IV )

0 , integrating with respect to time t and supplying the initial condition
(2.12b), giving:

c(IV )
c,0 = α −

∫ t

0

∂j(IV )
0

∂x
dt′. (A23)

A.2 Regions around left-hand reaction front on x = s1(t)

We now investigate the narrow reaction regions separating the three outer regions discussed
above. In addition to the spatial length scale of the outer regions discussion in Section A.1, there
are two further length scales to consider. The analysis of regions (III) and (V ) is performed under
the scale of O(1/2), whilst that of regions (II) and (VI) is chosen to be O().

Region (III): left-hand reaction initiation region. The left-hand reaction initiation region,
located about x = s1(t), has width O(1/2), and is therefore studied under a change of coordinates
given by

x − s1(t) = 1/2z, (A24)
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and so the local equations become

−ṡ1(t)N ∂c(III)

∂z
+ 1/2N ∂c(III)

∂t
+ ∂F (III)

∂z
= 0, (A25)

F (III) = −−1/2B(x)D
(
c(III)

) ∂c(III)

∂z
− �

(
1 − t+

)
j(III), (A26)

∂j(III)

∂z
= 1/2G(III), (A27)

j(III) = −1/2 B(x)κ
(
c(III)

)
P̂

(
∂φ(III)

∂z
− 2

1 − t+

c(III)

∂c(III)

∂z

)
, (A28)

∂j(III)
c

∂z
= −1/2G(III), (A29)

j(III)
c = −1/2 ∂φ(III)

c

∂z
, (A30)

−−1/2ṡ1(t)
∂c(III)

c

∂z
+ ∂c(III)

c

∂t
= −G(III), (A31)

G = ϒ

√
c(III)c(III)

c

(
1 − c(III)

c

) (
e

η
2 − e− η

2

)
, (A32)

η = φ(III)
c − φ(III). (A33)

The asymptotic solution can then be found by expanding as follows:

c(III) = c(III)
0 (t) + · · · , F (III) =F (III)

0 (t) + · · · , (A34)

j(III) = j(III)
0 (t) + · · · , φ(III) = −1φ

(III)
−1 (t) + φ

(III)
0 (z, t) + · · · , (A35)

j(III)
c = I(t) − j(III)

0 (t) + · · · , φ(III)
c = −1φ

(III)
−1 (t) + φ

(III)
c,0 (z, t) + · · · , (A36)

c(III)
c = c(III)

c,0 (t) + · · · , G(III) = G(III)
0 (z, t) + · · · , (A37)

which, by design, satisfy equations (A25)–(A33). The O(1) variables for the ionic and electronic
potentials φ

(III)
0 and φ

(III)
c,0 are to be solved. A closed equation for these variables can be found by

substituting equations (A28) and (A30) into equations (A27) and (A29), respectively, adding the
two and substituting the expansions into the resulting equation, we have

∂2

∂z2

(
φ

(III)
c,0 − φ

(III)
0

)
= K̂(t) sinh

(
φ

(III)
c,0 − φ

(III)
0

2
,

)
(A38)

where

K̂(t) = 2ϒ
B(x)κ

(
c(III)

0 (t)
)

+ P̂
B(x)κ

(
c(III)

0 (t)
) (

c(III)
0 (t)

)1/2 (
c(III)

c,0 (t)
)1/2 (

1 − c(III)
c,0 (t)

)1/2
. (A39)
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Equation (A38) can be solved analytically, giving

φ
(III)
c,0 − φ

(III)
0 = φ̂(t) ± 4 log

⎛
⎝coth

⎛
⎝
√

K̂(t)

4
(z − z0(t), )

⎞
⎠
⎞
⎠ (A40)

where z0(t) and φ̂(t) are constants of integration, which will be determined by matching to the
adjacent regions. Performing this matching will require the limiting behaviour of this solution,
which are

φ
(III)
c,0 − φ

(III)
0 → φ̂(t) as z → ∞, (A41)

φ
(III)
c,0 − φ

(III)
0 ∼ 4 log

⎛
⎝
√

K̂

4
(z0 − z)

⎞
⎠ as z ↗ z0. (A42)

Region (II): left-hand main reaction region. The left-hand reaction region, located about
x = s1(t), has width O(), and is therefore studied under a change of coordinates given by

z0 − z = 1/2y, (A43)

and so the local equations become

N
(

−−1ṡ1(t)
∂c(II)

∂y
+ ∂c(II)

∂t

)
+ −1 ∂F (II)

∂y
= 0, (A44)

F (II) = −−1B(x)D
(
c(II)

) ∂c(II)

∂y
− �

(
1 − t+

)
j(II), (A45)

−1 ∂j(II)

∂y
= G(II), (A46)

j(II) = −B(x)κ
(
c(II)

)
P̂

(
∂φ(II)

∂y
− 2

1 − t+

c(II)

∂c(II)

∂y

)
, (A47)

−1 ∂j(II)
c

∂y
= −G(II), (A48)

j(II)
c = −∂φ(II)

c

∂y
, (A49)

−−1ṡ1(t)
∂c(II)

c

∂y
+ ∂c(II)

c

∂t
= −G(II), (A50)

G = ϒ

√
c(II)c(II)

c

(
1 − c(II)

c

) (
e

η
2 − e− η

2

)
, (A51)

η = φ(II)
c − φ(II). (A52)
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The asymptotic solution can then be found by expanding as follows:

c(II) = c(II)
0 (t) + · · · , F (II) =F (II)

0 (t) + · · · , (A53)

j(II) = j(II)
0 (y, t) + · · · , φ(II) = −1φ

(II)
−1 (t) + 2 log() + φ

(II)
0 (y, t) + · · · , (A54)

j(II)
c = I(t) − j(II)

0 (y, t) + · · · , φ(II)
c = −1φ

(II)
−1 (t) + φ

(II)
c,0 (y, t) + · · · (A55)

c(II)
c = c(II)

c,0 (y, t) + · · · , G(II) = −1G(II)
−1 (y, t) + · · · , (A56)

which, by design, satisfy equations (A44)–(A45). Upon substituting equation (A47) into (A46)
and substituting equation (A48) into (A47) we find that, by substitution of the expansions (A53)–
(A56), the first-order variables c(II)

c,0 and j(II)
0 , as well as the secon- order variables φ

(II)
0 and φ

(II)
c,0 ,

satisfy the following equations:

∂2

∂y2

(
φ

(II)
c,0 − φ

(II)
0

)
= B(x)κ(c(II)

0 (t)) + P̂
B(x)κ(c(II)

0 (t))
G(II)

−1 , (A57)

−ṡ1(t)
∂c(II)

c,0

∂y
= G(II)

−1 ,
∂j(II)

0

∂y
= −ṡ1(t)

∂c(II)
c,0

∂y
, (A58)

G(II)
−1 = ϒ

(
c(II)

0 (t)
)1/2 (

c(II)
c,0

)1/2 (
1 − c(II)

c,0

)1/2
exp

(
φ

(II)
c,0 − φ

(II)
0

2

)
. (A59)

This pair of equations for φ
(II)
c,0 − φ

(II)
0 and c(II)

c,0 are to be solved subject to matching conditions
from the neighbouring regions, namely (I) and (III).

φ
(II)
c,0 − φ

(II)
0 ∼ 4 log

⎛
⎝−

√
K̂

4
y

⎞
⎠ as y → ∞ (A60)

∂

∂w

(
φ

(II)
c,0 − φ

(II)
0

)
∼ I(t)

c(II)
c,0 ∼ 1

⎫⎬
⎭ as y → −∞ (A61)

The limiting behaviour (A42) can be rewritten in the spatial variable of region (II), see (A43), as

2 log  + O(1) ∼ φ
(III)
c,0 − φ

(III)
0 (A62)

and for matching this requires (A60a). Matching the concentration in the solid leads to the
condition (A60c) whilst the current requires

j(II)
0 − j(II)

c,0 → I(t) as y → −∞. (A63)

Matching regions (I)–(IV ) across left reaction front near x = s1(t). Upon matching the lead-
ing order lithium concentrations and fluxes (in the electrolyte) across the regions adjacent to the
left-hand reaction front situated about x = s1(t), we find that

c(I)
0 |x↗s1(t) = c(II)

0 (t) = c(III)
0 (t) = c(IV )

0 |x↘s1(t), (A64)

F (I)
0 |x↗s1(t) =F (II)

0 (t) =F (III)
0 (t) =F (IV )

0 |x↘s1(t). (A65)
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The equations for the concentration and flux of lithium in the electrolyte however cannot be
closed at this stage; this will be done in Section A.4 after matching across the right-hand reac-
tion front around x = s2(t) in Section A.3. Performing a similar operation for the leading order
electrolyte potentials, we obtain the following matching conditions:

φ
(I)
−1|x↗s1(t) = φ

(II)
−1 (t) = φ

(III)
−1 (t) = φ

(IV )
−1 |x↘s1(t). (A66)

On matching the leading order electronic potentials across regions (I) and (II) we find

φ
(I)
c,−1(t) = φ

(II)
c,−1(t). (A67)

The O(1) terms for the difference between the ionic and electronic potentials must be matched
between regions (III) and (IV ). This leads to the requirement that

φ̂(t) = φ
(IV )
c,0 |x↘s1(t) − φ

(IV )
0 |x↘s1(t). (A68)

Matching the leading order lithium content inside the electrode particles across all four regions
leads to the conditions

c(II)
c,0 |y→−∞ = 1, c(II)

c,0 |y→∞ = c(III)
c,0 (t) = c(IV )

c,0 |x↘s1(t), (A69)

Finally, the matching conditions on the leading order ionic current densities j are

j(II)
0 |y→−∞ = I(t), j(II)

0 |y→∞ = j(III)
0 (t) = j(IV )

0 |x↘s1(t). (A70)

The position of the first reaction layer s1(t) is found by integrating equation (A57.b) and applying
conditions (A69)–(A70), giving

ṡ1(t) = j(II)
0 |y→∞ − j(II)

0 |y→−∞
c(II)

c,0 |y→∞ − c(II)
c,0 |y→−∞

= I(t) − j(III)
0 (t)

1 − c(III)
c,0 (t)

(A71)

with the initial condition s1(t)|t=0 = 0.

A.3 Regions around right-hand reaction front on x = s2(t)

Much as in Section A.2 the two inner regions (V ) and (VI), located around the reaction front at
x = s2(t), are analysed on separate length scales. The analysis of region (V ) occurs on the O(1/2)
length scale whilst that of regions (VI) is occurs on the O() length scale.

Regions (V ): right-hand reaction initiation region. The right-hand reaction initiation region,
located about x = s2(t), has width O(1/2), and is therefore studied under a change of coordinates
given by

x − s2(t) = 1/2v, (A72)

and so the local equations become

−−1/2ṡ2(t)N ∂c(V )

∂v
+N ∂c(V )

∂t
+ −1/2 ∂F (V )

∂v
= 0, (A73)

F (V ) = −−1/2B(x)D
(
c(V )

) ∂c(V )

∂v
− �

(
1 − t+

)
j(V ), (A74)
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−1/2 ∂j

∂v
= G(V ), (A75)

j(V ) = −1/2 B(x)κ
(
c(V )

)
P̂

(
∂φ(V )

∂z
− 2

1 − t+

c(V )

∂c(V )

∂v

)
, (A76)

−1/2 ∂j(V )
c

∂v
= −G(V ), (A77)

j(V )
c = −1/2 ∂φ(V )

c

∂v
, (A78)

−−1/2ṡ2(t)
∂c(V )

c

∂v
+ ∂c(V )

c

∂t
= −G(V ), (A79)

G(V ) = ϒ

√
c(V )c(V )

c

(
1 − c(V )

c

) (
e

η
2 − e− η

2

)
, (A80)

η = φ(V )
c − φ(V ). (A81)

The asymptotic solution can then be found by expanding as follows:

c(V ) = c(V )
0 (t) + · · · , F (V ) =F (V )

0 (t) + · · · ,

j(V ) = j(V )
0 (t) + · · · , φ(V ) = −1φ

(V )
−1 (t) + φ

(V )
0 (x, t) + · · · ,

j(V )
c = I(t) − j(V )

0 (t) + · · · , φ(V )
c = −1φ

(V )
−1 (t) + φ

(V )
c,0 (x, t) + · · · ,

c(V )
c = c(V )

c,0 (t) + · · · G(V ) = G(V )
0 (x, t) + · · · ,

(A82)

which, by design, satisfy equations (A73)–(A81). The O(1) variables for the ionic and electronic
potentials φ

(V )
0 and φ

(V )
c,0 are to be solved. A closed equation for these variables can be found by

substituting equations (A76) and (A78) into equations (A75) and (A77), respectively, adding the
two together and substituting the expansions into the resulting equation giving:

∂2

∂v2

(
φ

(V )
c,0 − φ

(V )
0

)
= K̄(t) sinh

(
φ

(V )
c,0 − φ

(V )
0

2

)
, (A83)

where

K̄(t) = 2ϒ
B(x)κ

(
c(V )

0 (t)
)

+ P̂
B(x)κ

(
c(V )

0 (t)
) (

c(V )
0 (t)

)1/2 (
c(V )

c,0 (t)
)1/2 (

1 − c(V )
c,0 (t)

)1/2
. (A84)

An analytical solution to equation (A83)

φ
(V )
c,0 − φ

(V )
0 = φ̄(t) ± 4 log

⎛
⎝coth

⎛
⎝
√

K̄(t)

4
(v0(t) − v)

⎞
⎠
⎞
⎠ , (A85)

where v0(t) and φ̄(t) are constants of integration, which will be determined by matching to the
adjacent regions. Performing this matching will require the limiting behaviours of this solution,
which are
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φ
(V )
c,0 − φ

(V )
0 → φ̄(t) as v → −∞, (A86)

φ
(V )
c,0 − φ

(V )
0 ∼ 4 log

⎛
⎝
√

K̄(t)

4
(v0 − v)

⎞
⎠ as v ↗ v0. (A87)

Region (VI): right-hand main reaction region. The right-hand reaction region, located about
x = s2(t), has width O() and is therefore studied under a change of coordinates given by

v0 − v = w, (A88)

and so the local equations become

N
(

−−1ṡ2(t)
∂c(VI)

∂w
+ ∂c(VI)

∂t

)
+ −1 ∂F (VI)

∂w
= 0, (A89)

F (VI) = −−1B(x)D(c(VI))
∂c(VI)

∂w
− �

(
1 − t+

)
j(VI), (A90)

−1 ∂j(VI)

∂w
= G(VI), (A91)

j(VI) = −B(x)κ
(
c(VI)

)
P̂

(
∂φ(VI)

∂w
− 2

1 − t+

c(VI)

∂c(VI)

∂w

)
, (A92)

−1 ∂j(VI)
c

∂w
= −G(VI), (A93)

j(VI)
c = −∂φ(VI)

c

∂w
, (A94)

−−1ṡ2(t)
∂c(VI)

c

∂w
+ ∂c(VI)

c

∂t
= −G(VI), (A95)

G(VI) = ϒ

√
c(VI)c(VI)

c

(
1 − c(VI)

c

) (
e

η
2 − e− η

2

)
, (A96)

η = φ(VI)
c − φ(VI). (A97)

The asymptotic solution can then be found by expanding as follows:

c(VI) = c(VI)
0 (t) + · · · , F (VI) =F (VI)

0 (t) + · · · ,

j(VI) = j(VI)
0 (x, t) + · · · , φ(VI) = −1φ

(VI)
−1 (t) + φ

(VI)
0 (x, t) + · · · ,

j(VI)
c = I(t) − j(VI)

0 (x, t) + · · · , φ(VI)
c = −1φ

(VI)
−1 (t) − 2 log() + φ

(VI)
c,0 (x, t) + · · · ,

c(VI)
c = c(VI)

c,0 (x, t) + · · · , G(VI) = −1G(VI)
−1 (x, t) + · · ·

(A98)
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which, by design, satisfy equations (A89)–(A90). Upon substituting equation (A92) into (A91)
and substituting equation (A94) into (A93) we find that, by substitution of the expansions, the
first-order variables c(VI)

c,0 and j(VI)
0 , as well as the second-order variables φ

(VI)
0 and φ

(VI)
c,0 , satisfy

the following equations:

∂2

∂w2

(
φ

(VI)
c,0 − φ

(VI)
0

)
= B(x)κ(c(VI)(t)) + P̂

B(x)κ(c(VI)(t))
G(VI)

−1 , (A99)

−ṡ2(t)
∂c(VI)

c,0

∂w
= G(VI)

−1 ,
∂j(VI)

0

∂w
= −ṡ2(t)

∂c(VI)
c,0

∂w
, (A100)

G(VI)
−1 = ϒ

(
c(VI)

0

)1/2 (
c(VI)

c,0

)1/2 (
1 − c(VI)

c,0

)1/2
exp

(
φ

(VI)
c,0 − φ

(VI)
0

2

)
. (A101)

The pair of equations for φ
(VI)
c,0 − φ

(VI)
0 and c(VI)

c,0 are to be solved subject to matching conditions
from the neighbouring regions, namely (V ) and (VII).

φ
(VI)
c,0 − φ

(VI)
0 ∼ 4 log

(
−
√

K̄(t)
4 w

)
,

∂
∂w

(
φ

(VI)
c,0 − φ

(VI)
0

)
∼ I(t),

c(VI)
c,0 ∼ c(IV )

c,0 ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

as w → −∞ (A102)

The limiting behaviour (A87) can be rewritten in the spatial variables of region (VI), see
(A88), as

2 log  + O(1) ∼ φ
(VI)
c,0 − φ

(VI)
0 (A103)

and for matching this requires (A102a). Matching the concentration in the solid leads to the
condition (A102c) whilst the current requires

j(VI)
0 − j(VI)

c,0 → −I(t) as w → −∞ (A104)

giving (A102b).

Matching regions (IV )–(VII) across right reaction front near x = s2(t). Upon matching the
leading order lithium concentrations and fluxes (in the electrolyte) across the regions adjacent to
the right-hand reaction front situated about x = s2(t), we find that

c(IV )
0 |x↗s2(t) = c(V )

0 (t) = c(VI)
0 (t) = c(VII)

0 |x↘s2(t), (A105)

F (IV )
0 |x↗s2(t) =F (V )

0 (t) =F (VI)
0 (t) =F (VII)

0 |x↘s2(t). (A106)

Performing a similar operation for the leading order electric potentials, we obtain the following
matching conditions:

φ
(IV )
c,−1|x↗s2(t)(t) = φ

(V )
c,−1(t) = φ

(VI)
−1 (t) = φ

(VII)
−1 |x↘s2(t). (A107)

On matching the leading order electrolyte potentials across regions (VI) and (VII), we find

φ
(VI)
−1 (t) = φ

(VII)
−1 (t). (A108)
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The O(1) terms for the difference between the ionic and electronic potentials must be matched
between regions (V ) and (VI). This leads to the requirement that

φ̄(t) = φ
(IV )
c,0 |x↗s2(t) − φ

(IV )
0 |x↗s2(t). (A109)

Matching the leading order lithium content inside the electrode particles across all four regions
leads to the conditions

c(IV )
c,0 |x↗s2(t) = c(V )

c,0 (t) = c(VI)
c,0 |w→−∞, c(VI)

c,0 |w→∞ = 1. (A110)

Finally, the matching conditions on the leading order ionic current densities j are

j(IV )
0 |x↗s2(t) = j(V )

0 (t) = j(VI)
0 |w→−∞, j(VI)

0 |w→∞ = 0. (A111)

The position of the first reaction layer s2(t) is found by integrating and rearranging equation
(A99.b) and applying conditions (A110)–(A111), yielding

ṡ2(t) = j(VI)
0 |w→∞ − j(VI)

0 |w→−∞
c(VI)

c,0 |w→∞ − c(VI)
c,0 |w→−∞

= − j(III)
0 (t)

1 − c(III)
c,0 (t)

, (A112)

with the initial condition s2(t)|t=0 = 1.

A.4 Matching the outer regions together

Following Sections A.2 and A.3, a closed problem involving only the outer regions, namely (I),
(IV ) and (VII), can be formed. Taking equations (A64)–(A65) and (A105)–(A106), we have that

c(I)
0 |x↗s1(t) = c(IV )

0 |x↘s1(t), c(IV )
0 |x↗s2(t) = c(VII)

0 |x↘s2(t), (A113)

F (I)
0 |x↗s1(t) =F (IV )

0 |x↘s1(t), F (IV )
0 |x↗s2(t) =F (VII)

0 |x↘s2(t), (A114)

which translate to imposing continuity of concentration and flux of the anions in the electrolyte
across the narrow reaction fronts. The current densities can be determined as known functions
of the anion concentration c at leading order in the outer regions. This is achieved by taking
equations (A2a), (A9a) and (A22), giving

j(I) = I(t), j(IV ) = I(t)
B(x)κ

(
c(IV )

0

)
B(x)κ

(
c(IV )

0

)
+ P̂

, j(VII) = 0. (A115)

B Analytical expressions for the electrode and electrolyte properties

The equilibrium potential for LFP shown in Figure 2 panel (c) is given by [49].

U∗
c (c∗

c ) = 3.114559 + 4.438792 arctan

(
−71.7352

c∗
c

ĉc
+ 70.85337

)

− 4.240252 arctan

(
−68.5605

c∗
c

ĉc
+ 67.730082

)
V. (B1)
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The cell is filled with 1M LiPF 6 in 1:1 EC:DMC electrolyte. For the ionic diffusivity and
conductivity of anions in the electrolyte, we use [53]

D∗(c∗) = 5.253 × 10−10 exp(−3.071 × 10−4c∗) m2 s−1, (B2)

κ∗(c∗) = 10−4c∗ (5.2069096 − 0.002143638c∗ + 2.34402 × 10−7c∗2
)

S m−1, (B3)

and for the ionic permeability we use a Bruggeman approximation for the electrolyte inside the
cathode and a specify a value for that in the separator [6, 15]

B∗(x∗) =
⎧⎨
⎩

0.55 x∗ < 0

ε1.5
l x∗ ≥ 0,

(B4)

where εl is the local volume fraction of electrolyte.
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