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A spectral method using associated Legendre functions with algebraic mapping is
developed for a linear stability analysis of wake vortices. These functions serve as Galerkin
basis functions, capturing correct analyticity and boundary conditions for vortices in an
unbounded domain. The incompressible Euler or Navier–Stokes equations linearised on a
swirling flow are transformed into a standard matrix eigenvalue problem of toroidal and
poloidal streamfunctions, solving perturbation velocity eigenmodes with their complex
growth rate as eigenvalues. This reduces the problem size for computation and distributes
collocation points adjustably clustered around the vortex core. Based on this method,
strong swirling q vortices with linear perturbation wavenumbers of order unity are
examined. Without viscosity, neutrally stable eigenmodes associated with the continuous
eigenvalue spectrum having critical-layer singularities are successfully resolved. The
inviscid critical-layer eigenmodes numerically tend to appear in pairs, implying their
singular degeneracy. With viscosity, the spectra pertaining to physical regularisation
of critical layers stretch out toward an area, referring to potential eigenmodes with
wavepackets found by Mao & Sherwin (J. Fluid Mech., vol. 681, 2011, pp. 1–23).
However, the potential eigenmodes exhibit no spatial similarity to the inviscid critical-layer
eigenmodes, doubting that they truly represent the viscous remnants of the inviscid
critical-layer eigenmodes. Instead, two distinct continuous curves in the numerical spectra
are identified for the first time, named the viscous critical-layer spectrum, where the
similarity is noticeable. Moreover, the viscous critical-layer eigenmodes are resolved in
conformity with the Re−1/3 scaling law. The onset of the two curves is believed to be
caused by viscosity breaking the singular degeneracy.
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1. Introduction

1.1. Background
After the introduction of heavy commercial aircraft in the late 1960s, wake vortex
motion has been a major subject of flow research, which has been reviewed in several
studies (Widnall 1975; Spalart 1998; Breitsamter 2011). The focus has often been on
the destabilisation of wake vortices to alleviate wake hazards (see Hallock & Holzäpfel
2018). The demise of wake vortices typically starts with vortex distortion, which causes
either long-wavelength instability, well known as the Crow instability (Crow 1970; Crow
& Bate 1976), or short-wavelength instability, known as the elliptical instability (Moore &
Saffman 1975; Tsai & Widnall 1976). Both mechanisms are affected by vortex perturbation
induced by the strain from the other vortex. The internal deformation of vortex cores, often
interpreted as a combination of linear perturbation modes, plays a key role in the unstable
vortex evolution process (Leweke, Le Dizès & Williamson 2016).

Since Lord Kelvin (1880) studied the linear perturbation modes of an isolated vortex
using the Rankine vortex, analyses have been extended to other models that better
describe a realistic vortex and account for viscosity with continual vorticity in space. The
Lamb–Oseen vortex model can be considered as an exact solution to the Navier–Stokes
equations, while assuming no axial current in vortex motion. Batchelor (1964), however,
claimed the necessity of significant axial currents near and inside the vortex core for wake
vortices and deduced vortex solutions with axial flows that are asymptotically accurate
in the far field. The intermediate region between the vortex roll-up and the far field
may be better described by the model proposed by Moore & Saffman (1973), where
Feys & Maslowe (2014) performed a linear stability study. However, the Batchelor model
has frequently been taken as a base flow for linear instability studies (Mayer & Powell
1992; Fabre & Jacquin 2004; Le Dizés & Lacaze 2005; Heaton 2007; Qiu et al. 2021),
with the support of experimental observations (Leibovich 1978; Maxworthy, Hopfinger
& Redekopp 1985). As for the Lamb–Oseen vortex, an exhaustive study on its linear
perturbation was performed by Fabre, Sipp & Jacquin (2006). Bölle et al. (2021) conducted
comprehensive linear analyses of all these vortex models and concluded that linear vortex
dynamics is insensitive to changes in the base flow for singular modes.

In the numerical literature a study by Lessen, Singh & Paillet (1974) used a shooting
method to find eigensolutions of swirling flows, where the eigenmode represents the spatial
profile of the linear perturbation, and the eigenvalue corresponds to its complex growth
rate in time. Mayer & Powell (1992), on the other hand, utilised a spectral collocation
method with Chebyshev polynomials to generate a global matrix eigenvalue problem in
the generalized form (Ax = λBx). Although a shooting method may be accurate and less
likely to yield spurious modes due to numerical discretisation (Boyd 2001, pp. 139–142), a
spectral collocation method should be preferred, especially when there is no initial guess,
and the overall comprehension of the whole eigenmodes and eigenvalues is required.
Heaton (2007, pp. 335–339) compared these two numerical methods while investigating
the asymptotic behaviour of inviscid unstable modes due to the presence of a core axial
flow. Several recent studies (Fabre et al. 2006; Mao & Sherwin 2011) reported the use of
spectral collocation methods to obtain a bulk of the eigensolutions at once to investigate
and classify their common properties.

Given no viscosity (ν ≡ 0), there are regular eigenmodes (Kelvin modes) in association
with discretely distributed eigenvalues, and non-regular eigenmodes with critical-layer
singularities (critical-layer eigenmodes), which occur at radial locations where the
perturbation phase velocity is equal to the advection of the base flow (Ash &
Khorrami 1995; Drazin & Reid 2004), or equivalently, where the coefficients of the
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Numerical linear stability analysis of wake vortices

highest derivatives of the governing equations go to zero (Marcus et al. 2015). The
critical-layer eigenmodes arise from the non-normality of the governing equations
(i.e. non-commutativity with the Hermitian adjoint) and are associated with continuously
distributed eigenvalues in the complex plane, which are known to be significant in transient
growth (Mao & Sherwin 2011, 2012; Bölle et al. 2021). Throughout this paper, we refer
to the region where critical-layer eigenvalues exist as a non-normal region. Note that this
is in line with the quantitative definition of non-normality using the resolvent formalism
by Bölle et al. (2021), who referred to non-normality as the region where the resolvent
norm of the operator representing the governing equations does not meet its lower bound.
The inviscid critical-layer eigenvalues are distributed on the imaginary axis, exhibiting
their neutral stability pertaining to the time symmetry in the problem (see Gallay & Smets
2020).

However, adding even a small amount of viscosity (ν → 0+) breaks this symmetry
and leads to the viscous damping of eigenmodes in time (Khorrami 1991). Spatially,
non-zero viscosity regularises the critical-layer singularities but simultaneously triggers
new singularities at radial infinity as a result of the total spatial order increase of the
governing equations (see Fabre et al. 2006, p. 268). The impact of viscosity on the
formation of viscous eigenmodes is an active research area, especially in the non-normal
region. As viscosity is close to zero, the discrete spectrum becomes less prevalent in the
complex plane while the non-normal region expands (see Bölle et al. 2021, p. 11).

1.2. Research goals
Our primary goal is to develop an efficient numerical method for linear stability analysis
of a wake vortex using eigenmode–eigenvalue theory (or spectral theory). We carefully
investigate the mathematical foundation of the method to ensure accurate and correct
resolving of eigenmodes and eigenvalues. We then apply our numerical method to linear
stability analysis of the Lamb–Oseen or Batchelor vortex model to classify eigenmodes
in terms of physical relevance, which is an additional goal for the rest of this paper.
Our work demonstrates the numerical efficiency of our method, which is essential as we
plan to extend the application of the method to handle hundreds of eigenmodes for the
examination of triad-resonant interactions among the eigenmodes in a follow-up paper,
and encompasses the linear stability analyses under either inviscid or viscous conditions.

Our numerical work is based on a spectral collocation method. It follows the typical
global eigenvalue problem-solving procedure like that of Boyd (2001, pp. 127–133) and
Fabre et al. (2006, p. 241). However, our method is distinguished because of its use of
algebraically mapped associated Legendre functions as Galerkin basis functions, which
were introduced by Matsushima & Marcus (1997) and utilised in several vortex stability
studies (Bristol et al. 2004; Feys & Maslowe 2016). These functions are defined as

Pm
Ln
(r) ≡ Pm

n (ζ(r, L)) = Pm
n

(
r2 − L2

r2 + L2

)
(L > 0), (1.1)

where Pm
n is the associated Legendre function with order m and degree n (see Press

et al. 2007, pp. 292–295), ζ is a variable in the interval −1 ≤ ζ < 1 to which the radial
coordinate r is mapped by the map parameter L. Note that {Pm

Ln
(r) | n = |m|, |m| + 1, . . .}

is a complete Galerkin basis set, and a regular function approximated by their truncated
sum converges exponentially with respect to the truncated degree nmax.

Radial domain truncation is not required in our numerical method as it is designed
for an unbounded radial domain. Other methods that require a radially bounded domain
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typically use a large truncation point to mimic unboundedness and impose arbitrary
boundary conditions (Khorrami 1991; Mayer & Powell 1992; Mao & Sherwin 2011;
Bölle et al. 2021). Moreover, our use of Galerkin basis functions eliminates the need
for such explicit boundary conditions, reducing numerical error and eliminating further
treatments for boundary conditions (see Zebib 1987; McFadden, Murray & Boisvert 1990;
Hagan & Priede 2013). The distribution of numerical eigenvalues (numerical spectra)
is necessarily discrete due to numerical discretisation, even if the analytic spectra are
partially continuous. To deal with this seeming paradox, we investigate how the numerical
spectra change with respect to the numerical parameters, including the map parameter L,
the number of radial basis elements M and the number of radial collocation points N. To
complement the numerical spectra’s inability to portray analytically continuous regions,
we also briefly consider pseudospectral analysis (see Trefethen & Embree 2005).

We are particularly focused on eigenmodes with a critical layer that has received
little attention in previous numerical studies due to the difficulty of resolving them.
Under the inviscid condition, the critical layers are mathematical point singularities. The
critical-layer eigenmodes are associated with a continuous spectrum on the imaginary
axis in the non-normal region. However, numerical discretisation often produces incorrect
eigenvalues that appear as symmetric pairs around the imaginary axis (see Mayer & Powell
1992). We show that our spectral collocation method can correct these results by properly
adjusting the numerical parameters to reveal the inviscid critical-layer spectrum. With
non-zero viscosity, there are spectra in the complex plane that emerge in the non-normal
regions that are neither discrete points nor curves, but are areas (see Mao & Sherwin 2011).
These spectra have yet to be fully explained and may contain an unforeseen continuous
spectrum. We demonstrate that our method is capable of resolving the eigenmodes
associated with this unexplored spectrum, which results from the regularisation of critical
layers, from the other eigenmodes in the non-normal region.

1.3. Preliminary remarks
To classify our numerically computed eigenmodes and eigenvalues, we frequently use the
following terms in the rest of the paper. Note that some of our definitions may deviate from
those used by other authors.

(i) By ‘physical’, we mean that a ‘spatially resolved’ eigenmode (as defined below)
is a non-singular solution to the linearised governing equations in an unbounded
domain when computed with non-zero viscosity. An eigenmode computed with
zero viscosity (i.e. with ν ≡ 0) is not the target of consideration but may have
physical significance if the eigenmode and eigenvalue correspond clearly to a
‘physical’ eigenmode and eigenvalue computed with small but finite viscosity
(i.e. in the limit of ν → 0+). This condition is important because we are ultimately
concerned with eigenmodes that can exist in the real world, such as those that would
destabilise an aircraft wake vortex. Viscous eigenmodes are generally non-singular
because viscosity can regularise them; numerically computed inviscid eigenmodes
that would otherwise be singular are regularised by numerical discretisation. Our
numerical method aims to resolve small-scale radial structures (e.g. the viscous
remnants of inviscid critical-layer singularities) purely resulting from physical (not
numerical) regularisation, and we are interested in identifying such ‘physical’
eigenmodes.

(ii) By ‘non-physical’, we mean that a ‘spatially resolved’ eigenmode does not meet
the conditions described above for being considered ‘physical’. Any numerically
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computed eigenmode must first be ‘spatially resolved’ to be considered ‘physical’.
In addition, the eigenmode must satisfy the following requirements. First, if
the eigenmode is numerically computed in a truncated computational domain
with a finite but large radius r∞, there must be no bound at r = r∞ to ensure
unboundedness. Second, the eigenmode’s velocity and vorticity must approach zero
at radial infinity, as we are interested in eigenmodes that develop in finite time
from a wake vortex with vorticity localised in radius and not extending to infinity.
Accordingly, eigenmodes that other authors have classified as part of the free stream
family (Mao & Sherwin 2011) are not in the scope of this paper.

(iii) By ‘spatially resolved’, we mean that the numerically computed eigenmode contains
at least two collocation points in its smallest spatial structure (i.e. the radial width
of the smallest wiggle). Additionally, the computed eigenvalue must either agree
with its known value or converge to a fixed point. For an eigenvalue that belongs to
the discrete spectrum, its eigenvalue must approach a fixed point as the number of
radial basis elements M increases, and its corresponding eigenmode must converge
to a fixed functional form. However, when dealing with an eigenvalue that belongs
to the analytically continuous spectrum (where the spectrum lies along a curve,
e.g. critical-layer spectrum; or where the spectrum fills an area in the complex plane,
e.g. potential spectrum), there is ambiguity in numerically identifying a fixed point.
This is because a finite matrix has only discrete eigenmodes. As M increases, the
number of computed eigenmodes typically increases, and it is unclear whether a
specific eigenvalue/eigenmode computed with M basis elements will correspond to
any eigenvalue/eigenmode computed with M + 1 basis elements. This is because the
eigenvalues and eigenvectors of a matrix can be sensitive to the distances between
the locations of the collocation points (which depend on M) and the radial structures
of the eigenmodes. For discrete spectra, this sensitivity generally does not prevent
us from tracking the evolution of a specific eigenvalue/eigenmode as M increases,
but for continuous spectra, it does because eigenvalues are infinitesimally close to
their neighbours. Therefore, in such cases, we determine whether the eigenvalue can
be found within the expected range based on analytic results or reliable literature. In
particular, for an inviscid eigenmode with a critical-layer singularity, its numerical
solution will often suffer from the slow decay of spectral coefficients or the Gibbs
phenomenon, especially around the singularity. Nonetheless, since our interest
lies in identifying ‘physical’ eigenmodes, we do not present a numerical method
that exactly handles singularities. Our objective in analysing inviscid critical-layer
eigenmodes is only to resolve their spatial characteristics outside the singularity
neighbourhood by using a sufficiently large value of M.

(iv) By ‘spurious’, we mean that a numerically computed eigenmode is not ‘spatially
resolved’, regardless of the value of M used in the computation. This definition
of ‘spurious’ originates from its historical usage (cf. Mayer & Powell 1992). We
can confirm that an eigenmode is ‘non-spurious’ by increasing M until it becomes
evident that the eigenmode is ‘spatially resolved’. However, in practice, we cannot
prove that an eigenmode is ‘spurious’. It is always possible that, after increasing
M to a large value and observing no evidence that the solution is approaching a
fixed point, we abandon the increase in M due to computational budget constraints,
and the solution would have converged with a further increase in M. Therefore, if
we discuss whether some viscous eigenmode families are ‘spurious’, the discussion
will be suggestive rather than definitive.
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The remainder of the paper is structured as follows. In § 2 the governing equations for
wake vortex motion are formulated and linearised . In § 3 the spectral collocation method
using mapped Legendre functions is presented. In § 4 the Lamb–Oseen and Batchelor
vortex eigenmode spectra and pseudospectra are described. In § 5 the eigenmodes and
eigenvalues of the inviscid problems are compared with the analytic results. In § 6 the
eigenmodes and eigenvalues in consideration of viscosity are presented, including a
new family of eigenmodes in the continuous spectra that evolved from the family of
critical-layer eigenmodes associated with the inviscid continuous spectrum. In § 7 our
findings are summarised.

2. Problem formulation

2.1. Governing equations
In this paper we investigate the linear perturbation eigenmodes and eigenvalues of
a swirling flow in an unbounded domain R3. We express the velocity and pressure
eigenmodes in cylindrical coordinates (r, φ, z), as

u′ = ũ(r; m, κ) ei(mφ+κz)+σ t, p′ = p̃(r; m, κ) ei(mφ+κz)+σ t, (2.1a,b)

where m and κ represent the azimuthal and axial wavenumbers of the eigenmode,
respectively, and σ denotes the complex growth (or decay) rate of the eigenmode. Here,
m ∈ Z since the fields must be periodic in φ with a period of 2π, while κ ∈ R \ 0 since
there are no restrictions on the axial wavelength 2π/κ . The real part of σ represents
the growth/decay rate, while the imaginary part represents its wave frequency in time.
Although Khorrami, Malik & Ash (1989) formulated a more general problem, we employ
a more specialised form of the steady, equilibrium, swirling flow Ū , i.e.

Ū(r) = Ūφ(r)êφ + Ūz(r)êz, (2.2)

which is only r dependent and has no radial velocity component Ūr. The unperturbed base
flow profile we consider for a wake vortex model is Batchelor’s similarity solution adapted
by Lessen et al. (1974) with

Ūφ
U0

= 1 − e−r2/R2
0

r/R0
,

Ūz

U0
= 1

q
e−r2/R2

0, (2.3a,b)

where R0 and U0 are the length and velocity scales defined in Lessen et al. (1974, p. 755),
and q /= 0 is a dimensionless swirl parameter. This flow is often called the q vortex, which
is steady, axisymmetric and analytically tractable as the far-field asymptotic solution under
the viscous light-loading condition (see Saffman 1993, pp. 257–260). When the axial flow
component vanishes, i.e. 1/q → 0, this flow is equivalent to the Lamb–Oseen vortex. A
schematic of the geometry is shown in figure 1. The unperturbed vortex is oriented along
the z direction with a circulation over the entire plane Γ ≡ 2πR0U0. Here R0 is referred
to as the characteristic radius of the vortex. As for the vortex profile, we consider the
azimuthal velocity Ūφ , which is maximised at r = 1.122R0 (Lessen et al. 1974).
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x

y

z

R0

r

Γ

φ

Figure 1. Vortex with circulation Γ of length scale R0 and coordinate systems.

To establish governing equations, we assume the fluid has constant density ρ and
constant kinematic viscosity ν. The total velocity u ≡ ur êr + uφ êφ + uzêz obeys

∇ · u = 0, (2.4)

∂u
∂t

= − (u · ∇)u − 1
ρ

∇p + ν∇2u = −∇ϕ + u × ω + ν∇2u, (2.5)

where the total pressure is p, the vorticity is ω ≡ ∇ × u and the total specific energy is ϕ ≡
u2/2 + p/ρ, where u2 ≡ u · u. We non-dimensionalise the equations using R0 as the unit
of length and R0/U0 as the unit of time. After non-dimensionalising and linearising (2.4)
and (2.5) about the unperturbed flow (indicated with overbars ∗̄), we obtain the following
equation for the perturbations (indicated with primes ∗′):

∇ · u′ = 0, (2.6)

∂u′

∂t
= −∇ϕ′ + Ū(r)× ω′ − ω̄(r)× u′ + 1

Re
∇2u′. (2.7)

Here the Reynolds number, denoted Re, is defined to be U0R0/ν. Note that the
non-dimensionalised q vortex is

Ū(r) =
(

1 − e−r2

r

)
êφ +

(
1
q

e−r2
)

êz. (2.8)

The established governing equations are essentially the incompressible, linearised
Navier–Stokes equations, which, in combination with the q vortex, were also used in recent
vortex stability analyses, such as Qiu et al. (2021). By putting (2.1a,b) to (2.6) and (2.7),
we obtain the equations that govern the perturbations

∇mκ · ũ = 0, (2.9)

σ ũ = −∇mκ ϕ̃ + Ū × ω̃ − ω̄ × ũ + 1
Re

∇2
mκ ũ, (2.10)

where σ is a function of m and κ (i.e. it obeys the dispersion relationship), ω̃ ≡ ∇mκ × ũ
and ϕ̃ ≡ Ū · ũ + p̃. In the equations above, the subscript (∗)mκ attached to the operators
means that they act on modes of fixed azimuthal and axial wavenumbers m and κ .
Therefore, the differential operators ∂/∂φ and ∂/∂z inside these operators are replaced
with the simple multiplication operators im and iκ , respectively (see Appendix A).
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2.2. Boundary and analyticity conditions
We require both the velocity and pressure fields to be analytic at r = 0 and to decay rapidly
to 0 as r → ∞. The conversion of these conditions to numerical boundary conditions can
be found in previous works such as Batchelor & Gill (1962), Mayer & Powell (1992) and
Ash & Khorrami (1995). In this section we briefly discuss these conditions and how they
will be treated in our method, where functions are treated as a truncated sum of the mapped
Legendre functions.

The analyticity at the origin is equivalent to the pole condition that correctly removes
the coordinate singularity (see Canuto et al. 1988; Matsushima & Marcus 1995; Lopez,
Marques & Shen 2002). The pole condition for a scalar function f (r, φ, z) to be analytic
at r = 0 is that it asymptotically behaves as a polynomial in r, with the degree dependent
on the azimuthal wavenumber m (see Matsushima & Marcus 1997, p. 323), that is,

f (r, φ, z) =
∞∑

m=−∞
eimφr|m|

( ∞∑
n=0

Cn(z; m)r2n

)
as r → 0, (2.11)

for some set of functions, analytic in z,Cn(z; m). Although the pole condition for velocity
fields in polar or cylindrical coordinates is rather complicated because of the velocity
coupling of r and φ at the origin (see Matsushima & Marcus 1997, pp. 328–330), we use
toroidal and poloidal streamfunctions, given in (2.12), instead of the primitive velocity
components so that the analyticity can be determined by making these streamfunctions
obey the requirements of scalars (see Appendix B).

On the other hand, the rapid decay condition as r → ∞ is relevant to the feasibility
of linear perturbations. Since a perturbation lasting even at radial infinity would require
infinite kinetic energy, decay should be necessary to consider it physical (see our definition
in § 1.3). The simplest description is ũ, p̃ → 0 as r → ∞ (Batchelor & Gill 1962). Several
numerical methods that require the domain truncation at large r mimic this condition
by imposing the homogeneous Dirichlet boundary condition for ũ and p̃ at the outer
boundary of the radially truncated domain r = r∞. In other words, ũr = ũφ = ũz =
p̃ = 0 at r = r∞ (see Khorrami et al. 1989; Khorrami 1991). However, this approach
involves two problems. First, it cannot preclude non-physical eigenmode solutions that
do not decay properly but incidentally end up being zero at r = r∞ (i.e. wall-bounded
modes). Such non-physical solutions may also appear with non-zero viscosity, triggering
non-normalisable singularities at radial infinity, where more information can be found
in Fabre et al. (2006, p. 268) or Mao & Sherwin (2011, pp. 17–21). Second, it does
not explicitly take into account how rapidly the perturbation decays. Considering the
velocity field, it must decay faster than algebraic decay rates of O(r−1) for kinetic energy
to be finite as r → ∞ (cf. Bölle et al. 2021). Mathematically, the restriction is even
more strict, requiring exponential or super-exponential decay rates (Ash & Khorrami
1995). Our method is free from domain truncation and explicitly forces solutions to
decay harmonically, i.e. O(r−|m| eimφ) as r → ∞, due to the decaying nature of the basis
functions.

By utilising the current method, it can be ensured that any scalar functions, represented
by the sum of mapped Legendre functions that serve as Galerkin basis functions, comply
with the aforementioned conditions. This is precisely how each basis function behaves
as the radial distance approaches zero and approaches infinity. Therefore, an advantage
of employing the mapped associated Legendre functions is that there is no need for
additional treatment for numerical boundary conditions. For further information regarding
the properties of the mapped Legendre functions, please refer to § 3.
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2.3. Poloidal–toroidal decomposition
The governing equations (2.9) and (2.10), along with the correct boundary conditions
and given values of m and κ , formally constitute a set of four equations that make up
a generalized eigenvalue problem in terms of p̃ (or ϕ̃) and the three components of
ũ ≡ ũr êr + ũφ êφ + ũzêz, which are often referred to as primitive variables, with σ as
the eigenvalue. The formal expression of the eigenvalue problem can be found in Bölle
et al. (2021, p. 7). Some previous studies have taken additional steps to eliminate p̃ from
the momentum equations or even reduce the problem in terms of, for example, only ũφ
and ũz, resulting in the generalized eigenvalue problem form Ax = λBx (Mayer & Powell
1992; Heaton & Peake 2007; Mao & Sherwin 2011). However, such variable reduction
inevitably increases the spatial order of the system and, consequently, requires a higher
resolution for computation, which undermines the advantage of having a smaller number
of state variables (Mayer & Powell 1992). To avoid this issue, we use a poloidal–toroidal
decomposition of the velocity field to formulate the matrix eigenvalue problem while
preserving the spatial order of the governing equations. Moreover, the use of the poloidal
and toroidal streamfunctions is advantageous because the formulation results in the
standard eigenvalue problem of the form Ax = λx.

To begin with, we apply the poloidal–toroidal decomposition to the governing equations
of wake vortices that are linearised about the q vortex. The basic formulation was
performed by Matsushima & Marcus (1997, p. 339), and we provide more details of its
mathematical foundation in this section. Although the poloidal–toroidal decomposition of
solenoidal vector fields is mainly discussed in spherical geometry (Chandrasekhar 1981,
pp. 622–626), it can be employed in the cylindrical coordinate system while preserving
some essential properties of the decomposition (Ivers 1989). When we select the unit
vector in the z direction êz as a reference vector, a solenoidal vector field V (r, φ, z) =
Vr(r, φ, z)êr + Vφ(r, φ, z)êφ + Vz(r, φ, z)êz can be expressed as

V = ∇ × {ψ(r, φ, z)êz} + ∇ × [∇ × {χ(r, φ, z)êz}], (2.12)

where ψ and χ are the toroidal and poloidal streamfunctions of V . Such a decomposition
is feasible if V has zero spatial mean components in the radial and azimuthal directions
over an infinite disk for all z (cf. Jones 2008). This zero-mean condition is satisfied in our
study because our velocity fields are spatially periodic perturbations of the base flow. Ivers
(1989) concluded that the toroidal and poloidal fields are orthogonal over an infinite slab
a < z < b if ψ and χ decay sufficiently rapidly as r → ∞. The decay condition of ψ and
χ requires V to decay sufficiently rapidly to zero for large r.

In what follows, we find more rigorous statement for the decay condition of V as r → ∞
where ψ and χ are well defined. The z component of (2.12) is

1
r
∂

∂r

(
r
∂χ

∂r

)
+ 1

r2
∂2χ

∂φ2 = −Vz. (2.13)

Taking the curl of (2.12), we obtain

∇ × V = ∇ × {(−∇2χ)êz} + ∇ × {∇ × (ψ êz)}, (2.14)

with its z component equal to

1
r
∂

∂r

(
r
∂ψ

∂r

)
+ 1

r2
∂2ψ

∂φ2 = −(∇ × V )z. (2.15)

Solving (2.13) and (2.15), which are the two-dimensional Poisson equations, can yield the
solution to ψ and χ . By ignoring the gauge freedom with respect to z, we can determine
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the solution using two-dimensional convolution as

ψ = −(∇ × V )z ∗Φ, (2.16)

χ = −Vz ∗Φ, (2.17)

where Φ is Green’s function for the entire plane R2 equivalent to

Φ(r, φ) = 1
2π

ln r. (2.18)

In order for the convolutions in (2.16) and (2.17) to be meaningful everywhere, there exist
p1 > 0, p2 > 0 and p3 > 0 such that

Vr ∼ O(r−1−p1),

Vφ ∼ O(r−1−p2), as r → ∞,

Vz ∼ O(r−2−p3),

⎫⎬
⎭ (2.19)

given that V decays algebraically. Otherwise, V may decay exponentially or
super-exponentially. If V is referred to as a velocity field, it has finite total kinetic energy
over the entire space since all components decay faster than O(r−1) as r → ∞. The
finite kinetic energy condition is physically reasonable, especially when dealing with
velocity fields representing small perturbations (cf. Bölle et al. 2021). On the other hand,
Matsushima & Marcus (1997) considered the case where ψ and χ could be unbounded
by including additional logarithmic terms in ψ and χ , providing a more comprehensive
extension of the poloidal–toroidal decomposition to more general vector fields, including
the mean axial components. However, in the present study, we choose V as a linear
perturbation of no bulk movement and, therefore, the logarithmic terms do not need to
be considered.

Suppressing the gauge freedom by adding restrictions that are independent of z to ψ and
χ , e.g.

lim
r→∞ψ(r, φ, z) = lim

r→∞χ(r, φ, z) = 0, (2.20)

we can define the following linear and invertible operator P : U → P as

P(V ) ≡
(
ψ(r, φ, z)
χ(r, φ, z)

)
, (2.21)

where U is the set of sufficiently rapidly decaying solenoidal vector fields from R3 to R3

(C3) that satisfy (2.19) and P is the set of functions from R3 to R2 (C2) that satisfy (2.20).
Using Helmholtz’s theorem, we may extensively define P on more generalized vector
fields that are not solenoidal but their solenoidal portion can be decomposed toroidally
and poloidally. If we expand the domain of P, however, it should be kept in mind that the
operator is no longer injective because for any V ∈ U ,P(V ) = P(V + ∇v), where v is an
arbitrary scalar potential for a non-zero irrotational vector field. On the other hand, it is
noted that P(∇2V ) = ∇2P(V ) ≡ (∇2ψ,∇2χ) for V ∈ U because

∇2[∇ × {ψ(r, φ, z)êz} + ∇ × [∇ × {χ(r, φ, z)êz}]]
= ∇ × {∇2ψ(r, φ, z)êz} + ∇ × [∇ × {∇2χ(r, φ, z)êz}]. (2.22)

Applying the operator P to both sides of (2.7), we obtain

∂P(u′)
∂t

= P(Ū(r)× ω′)− P(ω̄(r)× u′)+ 1
Re

∇2
P(u′), (2.23)
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Numerical linear stability analysis of wake vortices

because P(∇ϕ) = P(0 + ∇ϕ) = P(0) = 0. Assuming u′ to be solenoidal, u′ automatically
satisfies the continuity equation and can be determined from P(u′) by taking the inverse
of it using (2.12).

Since we are interested in the perturbation velocity field as in (2.1a,b), we define two
r-dependent scalar functions ψ̃(r; m, κ) and χ̃ (r; m, κ) such that

P(ũ(r; m, κ) ei(mφ+κz)+σ t) =
(
ψ̃(r; m, κ) ei(mφ+κz)+σ t

χ̃ (r; m, κ) ei(mφ+κz)+σ t

)
. (2.24)

The fact that the poloidal and toroidal components in (2.24) preserve the exponential part
can be verified by substituting the perturbation velocity field formula into V in (2.13) and
(2.15). For convenience, we simplify the expression in (2.24) to

Pmκ(ũ(r; m, κ)) ≡
(
ψ̃(r; m, κ)
χ̃(r; m, κ)

)
. (2.25)

Finally, putting (2.1a,b) into (2.23) leads to the standard eigenvalue problem form in
terms of Pmκ(ũ(r; m, κ)),

σ [Pmκ(ũ(r; m, κ))] = Lνmκ [Pmκ(ũ(r; m, κ))], (2.26)

where the linear operator Lνmκ is defined as

Lνmκ [Pmκ(ũ)] ≡ Pmκ(Ū(r)× ω̃)− Pmκ(ω̄(r)× ũ)+ 1
Re

∇2
mκPmκ(ũ). (2.27)

Excluding the viscous diffusion term, we additionally define the inviscid operator L0
mκ as

L0
mκ [Pmκ(ũ)] ≡ Pmκ(Ū(r)× ω̃)− Pmκ(ω̄(r)× ũ) (2.28)

for the inviscid linear analysis solving

σ [Pmκ(ũ(r; m, κ))] = L0
mκ [Pmκ(ũ(r; m, κ))]. (2.29)

3. Numerical method

3.1. Mapped Legendre functions
Associated Legendre functions with algebraic mapping are used as basis functions to
expand an arbitrary function over 0 ≤ r < ∞, ultimately discretising the eigenvalue
problems to be solved numerically. The expansion was first introduced by Matsushima
& Marcus (1997) and applied to three-dimensional vortex instability studies by Bristol
et al. (2004) and Feys & Maslowe (2016). The algebraically mapped associated Legendre
functions Pm

Ln
(r), or simply mapped Legendre functions, are equivalent to the mapping of

the associate Legendre functions Pm
n (ζ )with order m and degree n defined on −1 ≤ ζ < 1,

where

ζ ≡ r2 − L2

r2 + L2 ⇐⇒ r = L

√
1 + ζ

1 − ζ
. (3.1)

An additional parameter L > 0 is the map parameter, which can be arbitrarily set. However,
when it is used for a spectral collocation method, a change in L affects the spatial
resolution of discretisation and the value should be carefully chosen to achieve fast
convergence or eliminate spurious results. Matsushima & Marcus (1997) showed that
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Pm
Ln
(r) ∼ O(r|m|) as r → 0 and Pm

Ln
(r) ∼ O(r−|m|) as r → ∞, which leads to the fact that

any polar function Pm
Ln
(r) eimφ behaves analytically at the origin (see Eisen, Heinrichs

& Witsch 1991, pp. 243–244) and decays harmonically to zero at radial infinity. These
asymptotic properties are suitable to apply the correct boundary conditions for the present
problem.

Next, we prove that a set of some mapped Legendre functions can constitute a complete
orthogonal basis of spectral space. Since the associate Legendre functions Pm

n (ζ ) are the
solutions to the associate Legendre equation

d
dζ

[(
1 − ζ 2

) dPm
n

dζ

]
+
[

n(n + 1)− m2

1 − ζ 2

]
Pm

n (ζ ) = 0, (3.2)

the mapped Legendre functions satisfy the following second-order differential equation:

d
dr

[
r

dPm
Ln

dr

]
− m2

r
Pm

Ln
(r)+ 4n(n + 1)L2r

(L2 + r2)2
Pm

Ln
(r) = 0. (3.3)

As (3.3) is the Sturm–Liouville equation with the weight function

w(r) ≡ 4L2r
(L2 + r2)2

, (3.4)

the mapped Legendre functions Pm
L|m|(r),Pm

L|m|+1
(r),Pm

L|m|+2
(r), . . . form an orthogonal

basis of the Hilbert space L2(R+,w(r) dr). Thus, for two integers n and k larger than
or equal to |m|,

〈Pm
Ln
,Pm

Lk
〉 =

∫ ∞

0
Pm

Ln
(r)Pm

Lk
(r)w(r) dr

=
∫ 1

−1
Pm

n (ζ )P
m
k (ζ ) dζ = 2(n + |m|)!

(2n + 1)(n − |m|)!δnk, (3.5)

where δnk denotes the Kronecker delta with respect to n and k.
Considering a polar function fm(r) eimφ , where fm ∈ L2(R+,w(r) dr), it can be expanded

by the mapped Legendre functions as

fm(r) eimφ =
∞∑

n=|m|
f m
n Pm

Ln
(r) eimφ, (3.6)

and the coefficient f m
n can be calculated based on the orthogonality of the basis functions,

f m
n = 〈 fm,Pm

Ln
〉

〈Pm
Ln
,Pm

Ln
〉 = (2n + 1)(n − |m|)!

2(n + |m|)!
∫ ∞

0
fm(r)Pm

Ln
(r)w(r) dr

= (2n + 1)(n − |m|)!
2(n + |m|)!

∫ 1

−1
fm

(
L

√
1 + ζ

1 − ζ

)
Pm

n (ζ ) dζ. (3.7)

When we expand an analytic function on 0 ≤ r < ∞ that vanishes at infinity, the
expansion in (3.6) is especially suitable because they are able to serve as Galerkin basis
functions. Even if we use the truncated series of (3.6), analyticity at the origin and
vanishing behaviour at infinity remain valid.
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Numerical linear stability analysis of wake vortices

3.2. Mapped Legendre spectral collocation method
In order to discretise the problem, we use a spectral collocation method using the mapped
Legendre functions as basis functions. Given the azimuthal and axial wavenumbers m
and κ , we take a truncated basis set of first M elements {Pm

L|m|, . . . ,Pm
L|m|+M−1

} and expand

fm(r) ei(mφ+κz) as

fm(r) ei(mφ+κz) =
|m|+M−1∑

n=|m|
f m
n Pm

Ln
(r) ei(mφ+κz), (3.8)

so that the function is represented by M discretised coefficients ( f m
|m|, . . . , f m

|m|+M−1). The
coefficients are numerically obtained by applying the Gauss–Legendre quadrature rule to
(3.7). Let ζj and �j be the jth root of the Legendre polynomial PN of degree N in (−1, 1)
with its quadrature weight defined as

�j = 2(1 − ζ 2
j )

−1

[
dPN

dζ

∣∣∣∣
ζ=ζj

]−2

, j = 1, . . . ,N, (3.9)

and with radial collocation points rj determined from (3.1) as

rj ≡ L

√
1 + ζj

1 − ζj
, j = 1, . . . ,N, (3.10)

which means that half of the collocation points are distributed in the inner high-resolution
region 0 ≤ r < L whereas the other half are posed in the outer low-resolution region r ≥
L (Matsushima & Marcus 1997). In order to describe spatial resolution, we define the
characteristic resolution parameter Δ as

Δ(N, L) ≡ 2L
N
, (3.11)

which represents the mean spacing between the collocation points in 0 ≤ r < L.
A quadrature algorithm presented by Press et al. (2007, pp. 179–194) is implemented

and all abscissas and weights are computed with an absolute precision error less than
10−15. The quadrature converts the integration formula to the weighted sum of the function
values evaluated at the collocation points and, consequently, the integral of (3.7) finally
becomes the discretised formula

f m
n � (2n + 1)(n − |m|)!

2(n + |m|)!
N∑

j=1

�jfm(rj)Pm
n (ζj). (3.12)

It is convenient in practice to conceal the factorial coefficient term by defining the
normalised mapped Legendre functions and coefficients as follows:

P̂m
Ln
(r) ≡ Pm

Ln
(r)

√
(2n + 1)(n − |m|)!

2(n + |m|)! , f̂ m
n ≡ f m

n

√
2(n + |m|)!

(2n + 1)(n − |m|)! . (3.13a,b)

Using these normalised terms, (3.12) can be expressed as

f̂ m
n �

N∑
j=1

�ifm(rj)P̂m
n (ζj), (3.14)
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and, moreover, (3.8) at r = rj maintains the identical form

fm(rj) ei(mφ+κz) =
|m|+M−1∑

n=|m|
f̂ m
n P̂m

Ln
(rj) ei(mφ+κz). (3.15)

As a preliminary step of the mapped Legendre spectral collocation method, we need to
compute (1) the Gauss–Legendre abscissas ζi, (2) weights�i, (3) radial collocation points
ri, and (4) normalised mapped Legendre functions evaluated at the collocation points
P̂m

Ln
(ri). The normalisation procedure may require temporary multiple-precision arithmetic

to handle large function values and factorials if one uses N larger than about 170. There
have been several multi-precision arithmetic libraries available recently and we consider
using the FM multiple-precision package (Smith 2003). All essential computations ahead,
however, can be performed under typical double-precision arithmetic.

It is noted that the number of abscissas (or collocation points) N must be equal to or
larger than the number of basis elements M for the sake of a proper transform between
physical space ( fm(r1), . . . , fm(rN)) and spectral space ( f̂ m

|m|, . . . , f̂ m
|m|+M−1). On the other

hand, due to the even and odd parity of the associate Legendre functions, taking even N
and M can reduce the work by half in the transform procedure (Matsushima & Marcus
1997). Consequently, we set both N and M to be even and N = M + 2 in further analyses
unless otherwise specified.

Finally, we discuss how to apply the mapped Legendre spectral collocation method to
the present problem. Recalling (2.25) where Pmκ(ũ) = (ψ̃, χ̃), we write

ψ̃(r; m, κ) ei(mφ+κz) =
|m|+M−1∑

n=|m|
ψ̃mκ

n P̂m
Ln
(r) ei(mφ+κz), (3.16)

χ̃ (r; m, κ) ei(mφ+κz) =
|m|+M−1∑

n=|m|
χ̃mκ

n P̂m
Ln
(r) ei(mφ+κz). (3.17)

We point out that when ψ̃ is expressed in the partial sums above, it obeys the boundary
conditions of an analytic scalar at the origin, i.e. as r → 0,

ψ̃(r; m, κ) → r|m|
∞∑

i=0

amκ
i r2i, (3.18)

where amκ
0 , amκ

1 , . . . are constants (see Eisen et al. 1991; Matsushima & Marcus 1995).
Similar analyticity conditions are obeyed by χ̃ (r; m, κ) and, therefore, the perturbation
velocity field ũ(r) ei(mφ+κz) is also analytic at the origin (see Appendix B). Due to
the properties of the mapped Legendre functions, the perturbation vorticity also decays
as r → ∞ (Matsushima & Marcus 1997). As a consequence, Pmκ(ũ) can be uniquely
represented by 2M spectral coefficients of ψ̃mκ

|m| , . . . , ψ̃
mκ
|m|+M−1 and χ̃mκ

|m| , . . . , χ̃
mκ
|m|+M−1.
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Numerical linear stability analysis of wake vortices

We may discretise the eigenvalue problem for viscous cases in (2.26) as

σ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̃mκ
|m|
...

ψ̃mκ
|m|+M−1
χ̃mκ

|m|
...

χ̃mκ
|m|+M−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Lνmκ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ̃mκ
|m|
...

ψ̃mκ
|m|+M−1
χ̃mκ

|m|
...

χ̃mκ
|m|+M−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (3.19)

where Lνmκ is a 2M × 2M complex matrix representing the linear operator Lνmκ . In a similar
sense, we can define L0

mκ representing L0
mκ for the inviscid analysis and

Lνmκ = L0
mκ + Re−1H. (3.20)

Here H is a matrix representation of the Laplacian ∇2
mκ acting on the spectral coefficients

ψ̃mκ
|m| , . . . , ψ̃

mκ
|m|+M−1 and χ̃mκ

|m| , . . . , χ̃
mκ
|m|+M−1, respectively. For a scalar function expanded

by the mapped Legendre functions a(r) = ∑
n≥|m| am

n Pm
Ln
(r), if we expand its Laplacian as

∇2
mκa(r) = ∑

n≥|m| bm
n Pm

Ln
(r), then the coefficients am

n and bm
n constitute the relationship,

for all n ≥ |m|,

bm
n = −

[
(n − |m| − 1)(n − |m|)(n − 2)(n − 1)

(2n − 3)(2n − 1)L2

]
am

n−2 +
[

2n(n − |m|)(n − 1)
(2n − 1)L2

]
am

n−1

−
[

2n(n + 1)(3n2 + 3n − m2 − 2)
(2n − 1)(2n + 3)L2 + κ2

]
am

n

+
[

2(n + 1)(n + |m| + 1)(n + 2)
(2n + 3)L2

]
am

n+1

−
[
(n + |m| + 1)(n + |m| + 2)(n + 2)(n + 3)

(2n + 3)(2n + 5)L2

]
am

n+2, (3.21)

under the assumption that am
n ≡ 0 if n is less than |m| (Matsushima & Marcus 1997,

p. 344). Here H can be formulated by (3.21).
The formulation of L0

mκ involves the vector products in physical space and is
conducted using a pseudospectral approach based on the Gauss–Legendre quadrature rule.
Reconstructing ũ from Pmκ(ũ) via (2.12), we evaluate the vector products Ū × ω̃ and
ω̄ × ũ at N radial collocation points and apply Pmκ again. As for the detailed algorithm
including the numerical implementation of Pmκ as well as its inverse, refer to (69) and
(70) in Matsushima & Marcus (1997), providing the spectral coefficients of Pmκ(Ū × ω̃)
and Pmκ(ω̄ × ũ). Integration in these equations can be performed numerically by the
Gauss–Legendre quadrature rule, as given in (3.14). Following this procedure, we can
compute the ith column vector of L0

mκ by substituting the ith standard unit vector êi ∈ R2M

for (ψ̃mκ
|m| , . . . , ψ̃

mκ
|m|+M−1, χ̃

mκ
|m| , . . . , χ̃

mκ
|m|+M−1).

A global eigenvalue problem solver with the QR algorithm for non-Hermitian matrices,
based on the LAPACK routine named ZGEEV, is used to solve the discretised eigenvalue
problem. The procedure of constructing a global matrix and finding all eigenvalues has
been established in previous studies, such as Fabre et al. (2006, p. 241). However, as shown
in (3.19), our formulation directly results in the standard eigenvalue problem rather than
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the generalized form. Thus, it is sufficient to construct only one matrix of dimension 2M ×
2M, with a reduction in the number of state variables from 4 to 2.

3.3. Numerical parameters and their effects
The mapped Legendre spectral collocation method comprises of three adjustable
numerical parameters: M,N and L. The first two parameters are commonly used in
most spectral collocation methods, while the last parameter is unique to our method.
This section elaborates on the impact of each parameter on the numerical method’s
performance and provides guidelines on their selection.

3.3.1. Number of spectral basis elements M
As shown in (3.8), M determines the number of basis elements in use and is the most
important parameter for the numerical method’s convergence. The larger the value of
M, the closer the mapped Legendre series is to its ground truth, as the full basis set
assuming M → ∞ is complete. If the function of interest is analytic and decays properly,
the convergence is exponential with increasing M. Even if the function contains any
singularity in the interior, the convergence must occur at infinite M, albeit slowly, as long
as the function belongs to the Hilbert space L2(R+,w(r) dr).

For achieving better accuracy, it is always preferable to select a larger value of M.
However, a too large value of M may cause the resulting matrix eigenvalue problem to
be excessively large, leading to an increase in the time complexity in (2M)3. In practice,
the availability of computing resources should limit the maximum value of M.

3.3.2. Number of radial collocation points N
Here N, the number of the radial collocation points defined as (3.10), depends on
M because N ≥ M needs to be satisfied. Increasing N nominally enhances the spatial
resolution in physical space, thereby reducing numerical errors in the evaluation of vector
products. However, this effect is rather marginal, as most of the major computations and
errors occur in spectral space. Moreover, if an increase in N does not accompany an
increase in M by the same or nearly the same amount, it may have no benefit at all.
One may consider the extreme case where N → ∞ while M is kept constant at unity.
Regardless of how perfect the radial resolution is, none of the functions can be handled
except for a scalar multiple of the first basis element Pm

L|m|(r).
Therefore, it is better to consider N dependent on M, and any change in N should

only be followed by a change in M. This justifies why we use N = M + 2. Similarly,
an improvement in the spatial resolution by N should imply the use of a larger M.
Henceforth, N is usually omitted when we state the numerical parameters, and M implicitly
specifies N as M + 2. In this case, we note that the resolution parameterΔ in (3.11) equals
2L/(M + 2).

3.3.3. Map parameter for Legendre functions L
The map parameter L provides an additional level of computational freedom that
distinguishes the present numerical method from others. We highlight three significant
roles of this parameter, two of which are related to spatial resolution in physical space and
the other to basis change in spectral space.

In physical space, when M (and N) is fixed, a change in L results in two
anti-complementary effects with respect to spatial resolution, as shown in figure 2.
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Δ = 0.1154

Δ = 0.2308
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Figure 2. Changes in distribution of the collocation points with respect to L given N = 52. Some collocation
points at large radii are omitted. The high-resolution region is 0 ≤ r < L, where half of the collocation points
are clustered around the origin. As L increases, the high-resolution region is expanded. However, the mean
spacing Δ grows simultaneously. Parameter L should be chosen carefully to balance these anti-complementary
effects.

When L increases, the high-resolution region 0 ≤ r < L, where half of the collocation
points are clustered, expands, which has a positive effect. However, it negatively impacts
the resolution, especially in the high-resolution region, where Δ increases with L.
Increasing N = M + 2 may compensate for the loss in resolution. However, if M is already
at a practical limit due to the computing budget, expanding the high-resolution region
by increasing L should stop when Δ remains satisfactorily small. The requirement for
satisfaction should be specific to the eigenmodes to be resolved, which will be discussed
in each analysis section later. Similar discussions can be made in the opposite direction
when decreasing L.

In spectral space, changing L entirely replaces the complete basis function set. For
instance, when L = A and L = B, the spectral method can be constructed on either of
two different complete basis sets, i.e. {Pm

A|m|,Pm
A|m|+1

. . .} or {Pm
B|m|,Pm

B|m|+1
, . . .}. Since

orthogonality among the basis functions does not necessarily hold across the basis sets,
an eigenmode found with L = A can differ from that found with L = B. If B differs
from A by an infinitesimal amount, our method makes it possible to find eigenmodes
that continuously vary if they exist. This was thought to be hardly achievable via classic
eigenvalue solvers due to discretisation (cf. Mao & Sherwin 2011, p. 11). Once the
numerical method’s convergence is secured by sufficiently large M and N, we explore
such non-normal eigenmodes that vary continuously by fine tuning L.

3.4. Validation
To confirm the numerical validity of our method, we compared some eigenvalues from
the discrete branch of the spectra with those previously calculated by Mayer & Powell
(1992). They also used a spectral collocation method but with Chebyshev polynomials as
radial basis functions over an artificially truncated radial domain, rather than the mapped
Legendre basis functions over an unbounded radial domain we use. For comparison, we
linearly scaled the eigenvalues reported in Mayer & Powell (1992) to match the q-vortex
model used in our study because the azimuthal velocity component is scaled by q in their
study, whereas we adjust the axial velocity component.

We compared the most unstable eigenvalue calculations for the inviscid case m = 1,
κ = 0.5, q = −0.5 (or, equivalently, m = 1, κ = −0.5, q = 0.5) and the viscous case
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M L σ
†
inviscid σ

†
viscous

Present study 20 8 0.37755989 + 0.112913723i 0.00011969 + 0.01679606i
20 4 0.40527381 + 0.099406043i 0.00018939 + 0.01658207i
20 2 0.40525621 + 0.099437298i 0.00014902 + 0.01656308i
40 8 0.40522876 + 0.099370546i 0.00017892 + 0.01632424i
40 4 0.40525620 + 0.099437300i 0.00018406 + 0.01640824i
40 2 0.40525620 + 0.099437300i 0.00018463 + 0.01640723i
80 8 0.40525620 + 0.099437300i 0.00018478 + 0.01640740i
80 4 0.40525620 + 0.099437300i 0.00018469 + 0.01640717i
80 2 0.40525620 + 0.099437300i 0.00018469 + 0.01640717i

Mayer & Powell (1992) — — 0.40525620 + 0.099437300i 0.00018469 + 0.01640717i

Table 1. Comparison of the eigenvalues associated with the most unstable mode (indicated with a superscript
†) for the inviscid case with m = 1, κ = 0.5, q = −0.5 and for the viscous case with m = 0, κ = 0.5, q =
1,Re = 104. The table illustrates how the values change when we alter the map parameter L and the number of
radial mapped Legendre basis functions M. The last row displays the values obtained by Mayer & Powell (1992),
who employed up to 200 radial Chebyshev basis functions. Their published eigenvalues were appropriately
rescaled to fit the q-vortex model employed in our study. Our numerically computed eigenvalues tend towards
a fixed point as we increase M beyond 40. It should be noted that the size of the matrix eigenvalue problem
system is 2M for our method and 3M for that of Mayer & Powell (1992). Thus, even when using the same M,
our method is expected to require (2/3)3 less work than theirs.

m = 0, κ = 0.5, q = 1,Re = 104 in table 1. We conducted the calculations using three
different numbers of basis elements M (20, 40 and 80) and three different map parameters
L (8, 4 and 2). Our results show that the trend towards convergence is apparent as M
increases and L decreases. As we discuss in terms of the characteristic resolution parameter
Δ defined in (3.11), both parameters influence the numerical resolution. Increasing M
leads to an increase in the number of radial collocation points N, while decreasing L
improves spatial resolution by filling the inner high-resolution region (0 ≤ r < L) with
more collocation points (see figure 2). However, this comes at the expense of reducing
the range of the high-resolution region and effectively shrinking the radial domain by
placing the collocation point with the largest radius at rN = L

√
(1 + ζN)/(1 − ζN), which

can lead to inaccuracies if any significant portion of the solution exists either in the
outer low-resolution region or outside the effective limit. The convergence test of σ †

viscous
with M = 20 in table 1 partially demonstrates this concern. When we compare the
eigenvalues computed with L = 4 and L = 2, the latter shows no clear improvement
in convergence compared with the former, despite having a smaller L. Even small L
causes the eigenvalue’s real part to move further away from the reference value of
Mayer & Powell (1992). Therefore, we must keep in mind that blindly pursuing small
L does not guarantee better convergence, although using large M is always favoured for
numerical convergence.

The high-resolution range of the present method, represented by L, should not match
the domain truncation radius in the method of Mayer & Powell (1992). Adjusting
the high-resolution range through L has no impact on the unbounded nature of the
domain and can be customised essentially. However, altering the domain truncation radius
fundamentally harms the unbounded nature of the domain and must be set to its maximum
computing limit. On the other hand, we achieve the same accuracy as Mayer & Powell
(1992) with roughly three times smaller M, which supports the numerical efficiency of
our method. Presumably, our method is around ten times more computationally efficient in
solving matrix eigenvalue problems that scale as O(M3). We believe this is mainly because
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Figure 3. A comparison of our numerical calculation with that of Mayer & Powell (1992). Shown is the
radial velocity component of the most unstable eigenmode for the validation cases (a) (m, κ, q,Re) =
(1, 0.5,−0.5,∞) and (b) (m, κ, q,Re) = (0, 0.5, 1, 104), where the maximum of Re(ũr) is normalised to unity.
Numerical parameters are M = 80 and L = 2. Note that Mayer & Powell (1992) only plotted the real parts of
the eigenmodes.

their simple algebraic mapping of Chebyshev collocation points (see Ash & Khorrami
1995, p. 357) clusters approximately one-third of the collocation points near the artificial
outer radial boundary, where vortex motion is near zero and not important by assumption.
Such collocation points do not significantly contribute to solving the problem, resulting in
an inefficient use of numerical resources.

Note that the eigenmodes shown here are regular and have no singularities, as depicted
in figure 3. Such regular eigenmodes are expanded by a finite number of radial basis
elements that are already regular, and as shown in table 1, their numerical results
converge exponentially with increasing M. However, singular eigenmodes can only be
expressed exactly when an infinite sum of mapped Legendre functions is taken (see
Gottlieb & Orszag 1977). Nonetheless, as stated in the preliminary remarks, we are
essentially interested in physical eigenmodes, i.e. those without singularities and computed
numerically with a small spectral residual error. The current validation is strong enough to
underpin this objective. Later in this paper (see § 6.1.4), we present some eigenmodes that
have convincing signatures of viscous remnants after regularising the inviscid critical-layer
singularities. These singularities become regularised but are still nearly singular regions
of local rapid oscillations. We can find the value of M at which these eigenmodes are
spatially resolved, even if it typically goes beyond 80. Also note that in this respect, we
only peripherally examine their inviscid counterparts with the critical-layer singularities
using our numerical method (see § 5.1.2).

4. Spectrum

Solving an eigenvalue problem λx = Lx is often equivalent to finding the spectrum of
the linear operator L, denoted σ(L). A number of previous studies that investigated a
linearised version of the Navier–Stokes equations, epitomised by the Orr–Sommerfeld
equation, have already adopted the term ‘spectra’ (Grosch & Salwen 1978; Jacobs &
Durbin 1998) to account for eigenmodes of the linearised equations. In our study we also
employ this concept to characterise eigenmode families found in the linear analysis of the
q vortex. We first state the definition of the spectrum for the reader’s convenience.

DEFINITION 1. Given that a bounded linear operator L operates on a Banach space X
over C, σ (L) consists of all scalars λ ∈ C such that the operator (L − λ) is not bijective
and, thus, (L − λ)−1 is not well defined.
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If a complex scalar λ is an eigenvalue of L, then it belongs to σ(L); however, the inverse
statement is generally not true. This is because, by definition, the spectrum of L includes
not only a type of λ that makes (L − λ) non-injective but also another type of λ by which
(L − λ) is injective but not surjective. The former ensures the presence of a non-trivial
eigenmode in X , which therefore comprises the set of ordinary eigenvalues, while the
latter does not. However, if (L − λ) has a dense range, λ can be an approximate eigenvalue
in the sense that there exists an infinite sequence (ej ∈ X \ {0}) for which

lim
j→∞

‖Lej − λej‖ = 0. (4.1)

In our method, ej and X can be taken as a mapped Legendre series of the first j basis
elements in (3.8) and the Hilbert space, respectively. Even if the sequence limit e∞ does
not belong to X , it can still be regarded as an eigenmode solution in a rigged manner, by
permitting discontinuities, singular derivatives or non-normalisabilities (i.e. rigged Hilbert
space). In the literature related to fluid dynamics, both ordinary and approximate cases are
considered as eigenvalues. They are classified either as discrete in the complex σ plane,
or as continuous in association with the eigenmodes possessing singularities. Despite
their singular behaviour, understanding eigenmodes associated with continuous spectra
may be important because they contribute to a complete basis for expressing an arbitrary
perturbation (Case 1960; Fabre et al. 2006; Roy & Subramanian 2014).

In figure 4 schematic diagrams of the spectra in relation to the q vortices are presented.
These illustrations assume that m is positive. The exact spectra differ depending on the
values of m, κ, q,Re, and the symmetries that are explained next. Some families of the
spectra are not displayed because they are not within the main scope of this study. For
instance, in the inviscid spectra, the unstable discrete spectrum and its symmetric stable
counterpart frequently appear for some m, κ and q. However, they vanish as q becomes
sufficiently large (e.g. |q| > 2.31) (see Heaton 2007). For the Lamb–Oseen vortex where
q → ∞, it was analytically proven that all of the eigenvalues are located on the imaginary
axis, irrespective of m and κ , indicating that all eigenmodes must be neutrally stable (see
Gallay & Smets 2020).

There are three notable space–time symmetries in this eigenvalue problem. First,
because the linearised equations admit real solutions for the velocity/pressure eigenmodes,
regardless of the values of q and the viscosity (including the case ν ≡ 0), if (ũr, ũφ, ũz, p̃)
and σ are an eigenmode and eigenvalue with wavenumbers (m, κ), then (ũ∗

r , ũ∗
φ, ũ∗

z , p̃∗)
is also an eigenmode with eigenvalue σ ∗ and with (−m,−κ). Next, for the inviscid case,
with any value of q, the linearised equations are time reversible, and as a consequence if
(ũr, ũφ, ũz, p̃) and σ are a velocity/pressure eigenmode and eigenvalue with wavenumbers
(m, κ), then (ũ∗

r ,−ũ∗
φ,−ũ∗

z ,−p̃∗) is also an eigenmode with eigenvalue −σ ∗ and with
the same (m, κ). This symmetry makes the spectra symmetric about the imaginary
axis in the left panel of figure 4 but not in the right panel. Third, for the inviscid
case with any value of q, we could combine the two symmetries above and obtain the
fact that if (ũr, ũφ, ũz, p̃) and σ are a velocity/pressure eigenmode and eigenvalue with
wavenumber (m, κ), then (ũr,−ũφ,−ũz,−p̃) is also an eigenmode with eigenvalue −σ
with wavenumbers (−m,−κ).

In particular, for the inviscid case with q → ∞ (i.e. with Ūz = 0), the linearised
equations are also invariant under z → −z. In this case, if (ũr, ũφ, ũz, p̃) and σ

are a velocity/pressure eigenmode and eigenvalue with wavenumbers (m, κ), then
(ũr, ũφ,−ũz, p̃) is also an eigenmode with eigenvalue σ and with wavenumbers (m,−κ).
This symmetry can be combined with either or both of the two earlier listed symmetries
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Figure 4. Schematic diagrams of the spectra of the eigenvalues of a q vortex of (a) L0
mκ for inviscid problems

where ν ≡ 0 (see Mayer & Powell 1992; Heaton 2007; Gallay & Smets 2020) and (b) Lνmκ for viscous problems
with finite Re, including ν → 0+ (see Fabre et al. 2006; Mao & Sherwin 2011). Each schematic exhibits a set
of eigenvalues where m and κ are fixed. The cases illustrated here assume m > 0. These spectra are shown
here because they are representative, but they do not embrace all of the different families of spectra. The labels
attached here are used throughout the main body of the text. Note that figures of the true numerical spectra
computed by us, rather than schematics, follow in §§ 5 and 6, and that the viscous critical-layer spectrum,
consisting of two distinct curves in (b), were discovered via the present numerical analysis and were not
previously identified.

to produce additional, but not independent symmetries; for example, if (ũr, ũφ, ũz, p̃)
and σ are a velocity/pressure eigenmode and eigenvalue with wavenumbers (m, κ), then
(ũ∗

r ,−ũ∗
φ, ũ∗

z ,−p̃∗) is also an eigenmode with eigenvalue −σ ∗ and with (m,−κ).
Based on the two-dimensional Orr–Sommerfeld equation, Lin (1961) argued that the

spectra of eigenmodes of viscous flows are discrete. However, for unbounded viscous
flows, Drazin & Reid (2004, pp. 156–157) stated that this is incorrect, and there is a
continuous spectrum associated with eigenmodes that vary sinusoidally in the far field
instead of vanishing. The presence of continuous spectra associated with the q vortices due
to spatial unboundedness was also discussed by Fabre et al. (2006) and Mao & Sherwin
(2011). One example of the continuous spectrum is the viscous free-stream spectrum,
named by Mao & Sherwin (2011) and denoted σνf here, which is located on the left half
of the real axis in the complex σ plane in figure 4(b). However, the eigenmodes in this
spectrum persist rather than go to zero as r → ∞. As stated in § 1.3, we are only interested
in eigenmodes that we classify as physical. We have defined eigenmodes in which the
velocity and vorticity do not decay harmonically at radial infinity as non-physical. Since
our numerical method was specifically designed not to deal with such non-physical
eigenmodes, we do not discuss them further in this paper and clarify that our method is not
the tool for those who wish to investigate σνf . We remark that Bölle et al. (2021) argued
that the viscous free-stream spectrum is rather an ‘artefact’ of the mathematical model
of an unbounded domain. With the exception of the viscous free-stream eigenmodes, our
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numerical method is capable of computing the families of eigenvalues and eigenmodes
indicated in figure 4.

For the inviscid and viscous discrete spectra, denoted σ 0
d and σνd , respectively, the

unstable eigenmodes of the q vortices with finite q have been extensively studied
(Leibovich & Stewartson 1983; Mayer & Powell 1992), particularly for small q (Lessen
et al. 1974; Heaton 2007). However, it is unclear whether these instabilities would be
significant for aeronautical applications that are known to have large q(≈ 4) (see Fabre
& Jacquin 2004, pp. 258–259). As the discrete spectra and related instabilities, which
have been well studied, are not the main focus of the present study, the unstable branches
in σ 0

d and σνd , which may be detectable for small q and large Re, are omitted in figure 4.
Instead, we pay attention to the eigenmodes associated with the inviscid critical-layer

spectrum, denoted σ 0
c , which has been known to be related to further transient growth of

wake vortices (Heaton & Peake 2007; Mao & Sherwin 2012). For the inviscid q vortex, σ 0
c

is determined as a subset of σ(L0
mκ), which is

σ 0
c =

{
σc ∈ iR

∣∣∣∣∣∃rc ∈ (0,∞)− iσc + m(1 − e−r2
c )

r2
c

+ κ e−r2
c

q
= 0

}
⊂ σ(L0

mκ). (4.2)

When q → ∞, (4.2) reduces to the expression given in Gallay & Smets (2020), which
applies to the Lamb–Oseen vortex case. Considering the fact that σ 0

c is due to an inviscid
singularity (Le Dizès 2004), we deduce the expression in (4.2) through the following
steps. The singularity can be straightforwardly identified by further reducing the governing
equations, as shown in Mayer & Powell (1992, p. 94), originally done by Howard & Gupta
(1962). Breaking the eigenvalue problem form in (2.9) and (2.10) and performing further
reduction, we obtain the following second-order differential equation:

γ 2 d
dr

(
r

κ2r2 + m2
d(rũr)

dr

)
− (γ 2 + aγ + b)ũr = 0. (4.3)

Here

γ ≡ −iσ + mŪφ(r)
r

+ κŪz(r), (4.4)

a ≡ r
d
dr

[
r

κ2r2 + m2

(
dγ
dr

+ 2mŪφ(r)
r2

)]
, (4.5)

b ≡ 2κmŪφ(r)
κ2r2 + m2

(
dŪz

dr
− κ

m
d(rŪφ)

dr

)
. (4.6)

The equation becomes singular when γ = 0, which is feasible when there exist σc ∈ iR
and rc ∈ (0,∞) such that

− iσc + mŪφ(rc)

rc
+ κŪz(rc) = 0, (4.7)

or equivalently,

Re(σc) = 0, Im(σc) = −mŪφ(rc)

rc
− κŪz(rc). (4.8a,b)
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Figure 5. Critical-layer singularity radial location rc versus critical-layer eigenvalue σc with fixed m, κ and q;
see (4.9) and (4.10). The two illustrated cases where (m, κ, q) = (1, 1.0,∞) and (m, κ, q) = (2, 3.0, 4.0) are
investigated in later analyses.

Substituting the q vortex velocity profile into (4.7) shows the relationship between the
imaginary eigenvalue σ 0

c and the radial location rc of the critical layer,

σc = −i

[
m(1 − e−r2

c )

r2
c

+ κ e−r2
c

q

]
, (4.9)

and for the Lamb–Oseen vortex with 1/q ≡ 0,

σc = −i

[
m(1 − e−r2

c )

r2
c

]
. (4.10)

For every eigenmode associated with σc, it must contain at least one singularity at r = rc,
which is what we have been referring to as a critical-layer singularity. As a result, the
continuum of eigenvalues on the imaginary axis forms σ 0

c , as depicted in figure 4(a). For
the q vortices with positive m, κ and q (including q → ∞), which we will consider in later
analyses, the supremum of −iσc is 0 (as rc → ∞) and the infimum of −iσc is −m − κ/q
(as rc → 0). Also in this case, there is a one-to-one correspondence between σc and rc as
m(1 − e−r2

)/r2 + (κ/q) e−r2
is monotonic with respect to r (see figure 5).

On the other hand, viscosity regularises the critical-layer singularities of the eigenmodes
of q vortices. It is of physical importance to identify how viscosity transforms inviscid
spectra, such as σ 0

c , into a subset of the viscous spectra σ(Lνmκ) and to determine which
branches of σ 0

c vanish and what new eigenmodes are created. According to Heaton (2007),
for non-zero viscosity, σ 0

c is replaced by a large number of closely packed discrete
eigenmodes, but a detailed explanation was not given. Numerical observations by Bölle
et al. (2021) identified randomly scattered eigenvalues in the shaded region in figure 4(b),
suggesting that they are the viscous remnants of σ 0

c . Mao & Sherwin (2011), who earlier
discovered this region, named it the potential spectrum, denoted σνp , and suggested
that it could be continuous based on the shape of the surrounding pseudospectra. The
(ε-)pseudospectrum is defined as follows (Trefethen & Embree 2005).
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DEFINITION 2. Let R(z;L) ≡ (L − z)−1 be the resolvent of L at z ∈ C \ σ(L). For ε >
0, the ε-pseudospectrum, denoted σε(L), is the set

σε(L) ≡
{

z ∈ C

∣∣∣∣‖R(z;L)‖ > 1
ε

}
. (4.11)

Note that the lower bound of the resolvent norm is determined by the inequality

‖R(z;L)‖ ≥ sup
μ∈σ(L)

1
|z − μ| , (4.12)

where equality holds if the resolvent is normal (Bölle et al. 2021, pp. 9–10). For discrete
eigenvalues, when ε is sufficiently small, the ε-pseudospectrum is formed by an open
disk that surrounds the eigenvalue. However, when it comes to continuous spectra, Mao
& Sherwin (2011) pointed out that as ε approaches zero, the ε-pseudospectrum tends
to cover the entire region in the complex σ plane that is equivalent to σνp , as shown in
figure 4(b). They proposed that this region comprises entirely of the viscous continuous
spectra together with σνf , which is located on the negative real axis. Such an asymptotic
topology of pseudospectra implies the presence of continuous spectra in this region.

Although this argument appears reasonable, it requires careful examination for the
following reasons. Firstly, as we numerically solve the eigenvalue problem, solutions
that do not exhibit convergence may result from spurious modes due to discretisation.
While randomly scattered eigenvalues may be true examples of eigenmodes within the
continuous spectrum, they can also be spurious eigenmodes created by the disretised
approximation of Lνmκ . Secondly, describing the pseudospectra of Lνmκ as proximity to the
spectrum is valid only if R(z;Lmκ) is normal and the equality in (4.12) holds. According to
Bölle et al. (2021), the resolvent is selectively non-normal in a frequency band where σνp
is located, meaning that R(z;Lmκ) can take a large value even if z is not actually close to
σ(Lmκ). Lastly, for the sake of rigour, the shape of the potential spectrum, as depicted in
the schematic in figure 4(b), should be considered suggestive. This is because, to the best of
our knowledge, its presence has only been numerically proposed in the discretised problem
with increasing M (i.e. Lνmκ ), but has not been analytically verified in the original problem
(i.e. Lνmκ ). It should be noted that in the present study we premise the analytic presence
of the potential spectrum, as depicted in figure 4(b), so that numerical eigenvalues found
on the ε-pseudospectrum of Lνmκ in the limit of ε → 0 with a sufficiently large value of
M can be considered the discretised representation of this analytic entity, and therefore,
non-spurious.

Although σνp is known to be associated with stable eigenmodes that decay to zero as
r → ∞, their decay rates in r have been reported to be much slower than the exponential
decay rates of the discrete eigenmodes (Mao & Sherwin 2011). In the following section
we will show that the decay behaviours of the inviscid critical-layer eigenmodes are
comparable to those of the discrete eigenmodes. Therefore, we cast doubt on whether σνp
accurately represents the viscous remnants of σ 0

c that result from the viscous regularisation
of the critical layers. If there exist spectra associated with eigenmodes that possess not
only regularised critical-layer structures due to viscosity but also exhibit radial decay
behaviours similar to those seen in the inviscid critical-layer eigenmodes, it would be
accurate to refer to them as the true viscous remnants of σ 0

c . We propose to distinguish
these spectra and call them the ‘viscous critical-layer spectrum’, denoted σνc . Using the
present numerical method, we will demonstrate that σνc is formed by two distinct curves
near the right end of σνp , as depicted in figure 4(b).
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5. Inviscid linear analysis

The eigenvalue problem σ [Pmκ(ũ)] = L0
mκ [Pmκ(ũ)] is analysed by finding the spectra of

the discretised operator L0
mκ and their associated eigenmodes. Since the number of spatially

resolved discrete eigenmodes is typically far less than M due to the spatial resolution
limit, the majority of numerical eigenmodes should be associated with the continuous
critical-layer spectrum σ 0

c . Although σ 0
c is associated with neutrally stable eigenmodes,

its numerical counterpart often creates a ‘cloud’ of incorrect eigenvalues clustered around
the true location of σ 0

c , as observed by Mayer & Powell (1992), Fabre & Jacquin (2004),
Heaton (2007). However, the previous studies that observed this incorrect spectrum paid
less attention to its correction, which is our major interest, as they were primarily interested
in discrete unstable modes that can be resolved out of (and, thus, are sufficiently far from)
the cloud. When discrete unstable eigenmodes are present for small q, the most unstable
one prevails in the linear instability of the q vortex. Therefore, the presence of these
incorrect eigenmodes may not be problematic.

On the other hand, for large q (typically, |q| > 1.5 according to Lessen et al. (1974),
or |q| > 2.31 according to Heaton (2007), depending on the parameter values of m and
κ), the inviscid q vortex is linearly neutrally stable and the eigenmodes are located on
iR of the complex σ plane. Although the flow is analytically neutrally stable, incorrect
eigenmodes may appear in association with eigenvalues clustered around the imaginary
axis, leading to the incorrect conclusion that the flow is linearly unstable because some
of the eigenvalues lie in the right half of the complex σ plane (Re(σ ) > 0). We focus
our attention on the analysis of large or infinite q cases as any unstable eigenmodes
occurring in the analysis are incorrect. In what follows, we demonstrate that these incorrect
eigenmodes are under-resolved eigenmodes of the inviscid critical-layer eigenmodes and
can be corrected by adjusting the numerical parameters so that they correctly exhibit their
neutrally stable nature (Re(σ ) = 0) in our numerical analysis.

5.1. Numerical spectra and eigenmodes
In figure 6 we present the eigenvalues of two inviscid vortices: the Lamb–Oseen vortex
with (m, κ, q) = (1, 1.0,∞) and the strong swirling Batchelor vortex with (m, κ, q) =
(2, 3.0, 4.0). By comparing these two vortices, we demonstrate their common properties
and extract features that can be generalized to vortices with large q and moderate m and κ
of order unity, which are thought to be relevant for practical aeronautical applications (see
Fabre & Jacquin 2004, pp. 258–259). To observe the effect of the numerical parameter
M, we computed each vortex in four ways: with M = 100, 200, 300 and 400. Analytically,
every eigenvalue is expected to lie on iR. The shaded area in each plot is the non-normal
region of the spectra, indicating the frequency band that includes the analytic range of σ 0

c .
Clearly, all these numerical spectra contain some eigenvalues that are incorrect (i.e. not

on the imaginary axis). We can observe three families of numerical eigenvalues. A discrete
family (+) corresponds to σ 0

d , where the eigenvalues are discrete and located outside the
shaded area. An inviscid critical-layer family (•) corresponds to σ 0

c . Its eigenvalues lie
on the imaginary axis, are within the shaded area and the number of them increases as
M increases. Finally, a family of under-resolved eigenvalues (×), which, had they been
spatially well resolved, would have been eigenvalues belonging to σ 0

c and lie on the
imaginary axis. Instead, these eigenvalues lie off the imaginary axis and within the shaded
area. These under-resolved eigenvalues are characterised by non-zero real parts with
absolute values typically greater than 10−10 as a result of numerical discretisation errors.
The eigenvalues form clouds of structures that are symmetric about the imaginary axis.
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Figure 6. Numerical spectra computed with zero viscosity (a) for the Lamb–Oseen vortex (q → ∞) in
(m, κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m, κ) = (2, 3.0) with respect
to M = 100, 200, 300 and 400. Here L is fixed at 6.0 and N = M + 2. A shaded band in each plot indicates
the non-normal region where σ 0

c appears. The larger M we use, the closer the numerical spectra is to their true
shape (see figure 4a). However, with sufficiently large values of M and with appropriately tuned values of L,
the under-resolved can be corrected, making all eigenvalues lie on the imaginary axis; see figure 10.

The cloud structures are due to insufficient spatial resolution, and the absolute values of the
real parts of the eigenvalues tend to increase as the value of q decreases. As M increases,
the absolute values of the real parts of the eigenvalues tend to decrease, and the cloud
of eigenvalues gets ‘squeezed’ to the imaginary axis, which is similar to the ‘squeeze’
observed by Mayer & Powell (1992) when they increased the number of Chebyshev basis
elements in their spectral method calculation.

5.1.1. Discrete eigenmodes
Although σ 0

d and the discrete eigenmodes are not the main focus of this paper, it is
worthwhile to confirm their convergence properties. Figure 6 shows that the discrete
eigenmodes associated with eigenvalues away from the accumulation points (see Gallay
& Smets 2020, pp. 14–16) (i.e. intersections of the imaginary axis with the lower
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Figure 7. Radial velocity profiles of the inviscid discrete eigenmodes associated with three largest |Im(σ )|
(a) for the Lamb–Oseen vortex (q → ∞) in (m, κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex
(q = 4.0) in (m, κ) = (2, 3.0). The maximum of Re(rũr) is normalised to unity. Here M = 400 and L = 6.0
are used. The number of ‘wiggles’ in and around the vortex core distinguishes each discrete eigenmode. Note
that, for the eigenmodes that are neutrally stable, the phase of the eigenmodes can be chosen such that the
radial velocity components are made to be either real or pure imaginary for all r. Results are shown for (a)
(m, κ, q,Re) = (1, 1.0,∞,∞) and (b) (m, κ, q,Re) = (2, 3.0, 4.0,∞).

boundary of the shaded regions in figure 6) are spatially resolved for M ≥ 100, L = 6
and N = M + 2. For these values of L,M and N, each eigenvalue approaches a fixed
point as M increases. The discrete eigenmodes are distinguishable from each other by
their radial structures and, in particular, by the number of ‘wiggles’ (intervals between two
neighbouring zeros) as a function of radius. Typically, the eigenmodes with eigenvalues
farthest from the accumulation points have the fewest wiggles, as shown in figure 7. The
discrete eigenmodes have an increasing number of wiggles as the eigenvalue approaches
the accumulation point, forming a countably infinite, linearly independent set in the
eigenspace of L0

mκ .
The eigenmodes with discrete eigenvalues and Im(σ )/m > 0 in figure 6 were referred

to as ‘countergrade’ by Fabre et al. (2006). They appear to exist only for eigenmodes with
specific values of m, including m = ±1 (see Gallay & Smets 2020). However, we remark
that these eigenmodes are also legitimate solutions to the problem and can be spatially
resolved using our numerical method, just like those shown in figure 7. They are also
expected to be crucial for triad-resonant interactions among the eigenmodes and will be
actively considered in further instability studies.

The numerically computed eigenmodes correspond to the eigenvectors of the 2M × 2M
matrix L0

mκ , which implies that the maximum number of numerical eigenmodes that can
be obtained is 2M under double-precision arithmetic. The number of discrete eigenmodes
that our numerical solver can find increases with an increase in M. For instance, in the
case of a strong swirling Batchelor vortex illustrated in figure 6(b), the number of discrete
eigenmodes (i.e. in the σ 0

d spectrum) is 4, 7, 9 and 11 for M = 100, 200, 300 and 400,
respectively. This behaviour is expected because a finer spatial resolution is required to
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resolve more wiggles in the eigenmode structure. If n wiggles exist in the vortex core
region (r ≤ 1.122), whose non-dimensionalised scale is of order unity, the necessary
spatial resolution to resolve all the wiggles is O(1/n). As Δ = 2L/(M + 2) ∼ O(1/M)
in our analysis, the proportionality of n to M is verified. The implication of this scaling
is that the number of discrete eigenmodes accounts for only a small portion of the total
number of numerical eigenmodes computed, and the vast majority are associated with the
non-regular, continuous part of the spectrum, σ 0

c .

5.1.2. Inviscid critical-layer eigenmodes
We emphasise that our essential interest lies in eigenmodes with small, but non-zero
viscosity. This ensures that the eigenmodes can be physical and do not have
difficult-to-compute singularities. Nevertheless, it is still intriguing to compute the
eigenmodes with ν ≡ 0, which are numerically (not physically) regularisable by the spatial
discretisation. By selecting a suitably large value of M and an appropriate value for the
mapping parameter L (see § 5.2), we can resolve the spatial structure of the inviscid
eigenmode outside the critical-layer singularity neighbourhood well. In addition, the
numerical error in the eigenvalue, caused by the slow decay of spectral coefficients or
the Gibbs phenomenon around the critical-layer singularity, can be kept adequately small
and the eigenvalues correctly lie on the imaginary axis.

Figure 8 shows some critical-layer eigenmodes, which were numerically obtained with
M = 400. The real parts of the eigenvalues are zero, and the velocity components are either
real or purely imaginary for all r, with a suitable phase choice. Typically, rc increases as |σ |
decreases along the critical-layer spectrum. The singular behaviour of abrupt slope change
commonly occurs at the critical-layer singularity, as predicted analytically by (4.9). As
stated in § 1.3, we cannot claim that they are perfectly resolved due to the presence of the
singularity and the continuous nature of their associated spectrum. However, our focus is
not on their exact convergence but rather on their well-behaved spatial structure outside
the neighbourhood of the singularity, achieved by using a large M, along with purely
imaginary eigenvalues that conform to analytic expectations. We use this information later
to study the spatial correspondence of eigenmodes with non-zero viscosity to determine
which viscous eigenmodes are of physical relevance.

For r < rc, the radial velocity components of the inviscid critical-layer eigenmodes
oscillate in r, and the number of oscillations decreases as the value of rc increases (or
equivalently, as |σ | decreases). Consequently, when rc > rcc for some value rcc, there
is no longer one full oscillation. In our numerical investigation we found that for the
Lamb–Oseen vortex with (m, κ) = (1, 1.0), rcc equals 2.2, which corresponds to σ =
−0.21i. We believe that our numerically found value of rcc approximately coincides with
the theoretical threshold of r = 2.124, at which the analytic solutions obtained by the
Frobenius method change form regarding the roots of the indicial equation (see Gallay &
Smets 2020, pp. 20 and 50). For r > rc, the radial velocity components of the critical-layer
eigenmodes are not oscillatory, and the amplitudes of rũr achieve the local maximum or
minimum values close to r = rc, before decreasing monotonically as rapidly as those of
the discrete eigenmodes, as shown in figure 7.

5.1.3. Under-resolved eigenmodes
The under-resolved eigenmodes, which, if resolved, would be part of the spectrum with
σ 0

c , have eigenvalues in the complex σ plane on either side of the imaginary axis in the
shaded region in figure 6. The eigenvalues come in pairs, with one unstable and one
stable eigenmode. The reflection symmetry with respect to the imaginary axis is due to
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r

N
o
rm

al
is

ed
 rũ
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Figure 8. Radial velocity profiles of three inviscid, critical-layer eigenmodes (a) for the Lamb–Oseen vortex
(q → ∞) in (m, κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m, κ) = (2, 3.0).
The maximum of the real part of rũr is normalised to unity. Here M = 400,N = M + 2 and L = 6.0 are
used. For each eigenmode, the vertical dashed line indicates the critical-layer location rc determined by (4.9).
Note that all of the radial components of the velocity can be made to be real valued for all r by a proper
choice of phase as they are neutrally stable. Results are shown for (a) (m, κ, q,Re) = (1, 1.0,∞,∞) and (b)
(m, κ, q,Re) = (2, 3.0, 4.0,∞).

the fact that the analytic operator L0
mκ is time reversible (cf. Bölle et al. 2021, p. 10).

Therefore, the eigenmode (ũr, ũφ, ũz, p̃) with eigenvalue σs corresponds to the eigenmode
(ũ∗

r ,−ũ∗
φ,−ũ∗

z ,−p̃∗) with eigenvalue −σ ∗
s .

Some examples of under-resolved eigenmodes are shown in figure 9. These eigenmodes
are qualitatively incorrect because (1) unlike the eigenmodes in figures 7 and 8, there
is no choice of phase that makes their radial components real for all r, and more
importantly, because (2) we know that their eigenvalues should be purely imaginary when
q is sufficiently large, and they are not. However, these eigenmodes appear to exhibit
no other distinguishing properties, except for the two properties listed above, from the
inviscid critical-layer eigenmodes in figure 8. It should be noted that they have been
called ‘spurious’ in previous numerical studies (see Mayer & Powell 1992; Heaton 2007),
of which the usage was similar to our clarification given in § 1.3. However, instead of
following convention, we propose naming these numerical eigenmodes ‘under-resolved’
eigenmodes of the continuous part of the inviscid spectrum. In this way, we put
more emphasis on the fact that adjusting the numerical parameters can ‘correct’ these
eigenmodes so that neither of the two key properties listed above apply.

By examining the spatial structure of the under-resolved eigenmodes, we can detect
sudden changes in slope at the critical-layer singularity point at r = rc. The value of rc is
obtained by setting the imaginary part of either of the eigenvalues Im(σs) to σc in (4.9).
The break in slope confirms that the under-resolved eigenmodes originate from σ 0

c and
indicates that they have lost their neutrally stable property due to numerical errors at the
critical-layer singularity.
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Figure 9. Radial velocity profiles of two inviscid under-resolved eigenmodes whose eigenvalues are symmetric
about the imaginary axis (a) for the Lamb–Oseen vortex (q → ∞) in (m, κ) = (1, 1.0) and (b) for the strong
swirling Batchelor vortex (q = 4.0) in (m, κ) = (2, 3.0). The maximum of the real part of rũr is normalised to
unity. Here M = 400 and L = 6.0 are used. For each eigenmode, an abrupt slope change occurs at the vertical
dashed line at the critical-layer location r = rc (which is determined from (4.9) by ignoring the real part of the
eigenvalue), indicating that they will become correct critical-layer eigenmodes given more resolution. Results
are shown for (a) (m, κ, q,Re) = (1, 1.0,∞,∞) and (b) (m, κ, q,Re) = (2, 3.0, 4.0,∞).

Correcting the under-resolved eigenmodes is crucial, not only for correctly evaluating σ 0
c

but also for the following reasons. Despite their invalid origin, half of the under-resolved
eigenmodes in Re(σ ) > 0 erroneously suggest that the wake vortex is linearly unstable. In
the future, we plan to use the computed velocity eigenmodes from the present numerical
method to initialise an initial-value code that solves the full nonlinear equations of motion
given by (2.6) and (2.7). Inappropriately computed eigenmodes that grow erroneously,
rather than remain neutrally stable, are likely to corrupt these calculations.

5.2. Correction of the under-resolved eigenmodes
An intriguing question is whether the under-resolved eigenmodes tend towards something
as M increases and, furthermore, what is the potential outcome of such a convergence? In
the beginning of this section it was argued that the real part of eigenvalues remains at zero
(i.e. all eigenmodes are neutrally stable) when q is sufficiently large. In figure 6 this can be
observed as the ‘squeeze’ of the eigenvalue cluster towards the imaginary axis. However,
we have also indicated that the imaginary part of the eigenvalues may not converge to
a fixed point, instead continuing to evolve along the imaginary axis. Therefore, instead
of concentrating on the convergence of individual under-resolved eigenmodes to a fixed
point, it is more pragmatic to aim to ‘correct’ the set of eigenmodes as a whole, that is, to
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restore their neutrally stable nature. The ‘correction’ means that we comprehensively treat
the entire set of eigenmodes as a single entity, which complies with the usage of this term
in this section up to this point.

To ‘correct’ the under-resolved eigenmodes, we first consider increasing M to its
largest possible value within the available computing resources. However, increasing M
is generally undesirable because it always comes at a steep computational expense; the
cost of finding the eigenmodes is proportional to (2M)3. Instead, we may consider dealing
with the mapping parameter L, where the novelty and usefulness of our method come from.
Here L controls the spatial resolution locally as a function of r. As seen from the resolution
parameter Δ in (3.11), L controls the spatial resolution by providing more resolution near
the radial origin (i.e. 0 ≤ r < L). It is important to note that changing or tuning L does not
affect the cost of computation.

For a fixed M, with N = M + 2, figure 10 shows five numerical eigenvalue spectra
for two prescribed cases with different values of L, varying from 1.0 to 5.0. Overall,
decreasing L brings the numerical spectra closer to the imaginary axis. In particular,
some values of L enable complete resolution of σ 0

c on the imaginary axis, which cannot
be achieved by increasing M within a modest computing budget. However, decreasing
L does not always shrink the clouds of eigenvalues closer to the imaginary axis. We
separate the numerically computed eigenvalues and eigenmodes into two categories: those
with the critical layer r = rc located in the high-resolution region 0 ≤ r < L, and those
where rc is in the low-resolution region r ≥ L. Figure 10 indicates this separation with
horizontal dashed lines. For the former, the cloud structures vanish as L decreases, and σ 0

c
is correctly resolved. In contrast, for the latter, the cloud structures persist or even recur if
L is too small, resulting from excessive concentration of collocation points solely around
the centre. Once σ 0

c is satisfactorily resolved, adjusting L should stop to keep the portion
of σ 0

c resolved in the high-resolution region as large as possible. For instance, in figure 10
we propose setting L between 3.0 and 4.0 for the Lamb–Oseen vortex case and between
1.0 and 2.0 for the Batchelor vortex case.

To provide a detailed explanation of what we have seen, we must revisit the differences
in the way M and L operate in the current numerical method, as stated in § 3.3. One of
the roles of L is to serve as a tuning parameter for spatial resolution in physical space,
whereas M determines the number of basis elements used in spectral space. Increasing
M allows us to handle eigenmodes with more complex shapes, such as (nearly) singular
functions, which often have more wiggling and are thus more numerically sensitive. Here
M has only an indirect effect on spatial resolution through N, which is required to be
greater than or equal to M. On the other hand, the critical-layer singularity is essentially a
phenomenon that occurs in physical space. Although using more spectral basis elements
relates to improving spatial resolution because we set N = M + 2, the main contribution
to dealing with the critical-layer singularity with minimal errors comes from the latter.
Therefore, it can be more effective to use L to directly control resolution and suppress
the emergence of under-resolved eigenmodes, rather than using M. It is worth noting that
increasing N to very large values while keeping M constant can also reduce the number
of under-resolved eigenvalues to some extent. This observation supports that high spatial
resolution is crucial for suppressing under-resolved eigenmodes.

If one aims to correct the under-resolved eigenmodes and obtain σ 0
c using the present

numerical method, the following steps are suggested to properly set up the numerical
parameters. Assuming that M is already at the practical maximum due to finite computing
budget, and N follows M + 2.
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Figure 10. Numerical spectra computed at zero viscosity (a) for the Lamb–Oseen vortex (q → ∞) in (m, κ) =
(1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m, κ) = (2, 3.0) with respect to L =
5.0, 4.0, 3.0, 2.0 and 1.0. Here M is fixed at 400 and N = M + 2. In each plot a shaded band indicates the
non-normal region in which σ 0

c appears, and a horizontal dashed line represents the threshold used to determine
if the critical layer r = rc is located within the high-resolution region 0 ≤ r < L. It should be noted that there
is a one-to-one correspondence between a critical-layer eigenvalue σ and a critical-layer radius rc, as seen in
(4.9). Furthermore, rc approaches zero at the bottom of the shaded band, Im(σ ) = m + κ/q, and monotonically
increases towards infinity as |σ | becomes smaller. By tuning L, under-resolved eigenmodes can be corrected
without requiring additional computing resources. Results are shown for (a) (m, κ, q,Re) = (1, 1.0,∞,∞)

and (b) (m, κ, q,Re) = (2, 3.0, 4.0,∞).

(i) Start with an arbitrarily chosen value of L and gradually decrease it if under-resolved
eigenmodes exist, until they vanish in the high-resolution region 0 ≤ r < L. This
step improves spatial resolution, helping to identify the critical-layer singularity with
less numerical error despite the discretisation.

(ii) If there are no eigenvalue clouds around the imaginary axis, increase L as long as
they do not appear in the numerical spectra. This step expands the high-resolution
region where the critical-layer singularity can be accurately treated.
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5.3. Pairing in the inviscid critical-layer spectrum
In the numerical spectrum of σ 0

c , we observe that numerical eigenvalues tend to appear
in pairs. This pairing phenomenon is demonstrated in the left panel of figure 11, which
illustrates the Lamb–Oseen vortex case with (m, κ) = (1, 1.0) that we computed with
M = 400 and L = 3.0 (see figure 10a). We argue that the pairing in our numerical results
arises from a degeneracy resulting from the critical-layer singularity. We refer to Gallay &
Smets (2020, pp. 19–21), who used the Frobenius method to construct analytic solutions
to the problem under the assumption of non-zero m and κ with q → ∞. They showed that
if a critical-layer singularity occurs at r = rc, there exists a unique solution with scalar
multiplication that is only non-zero on (0, rc) and another one that is only non-zero on
(rc,∞). Here we call the inner and outer solutions, respectively. For both the inner and
outer solutions, the radial velocity components can be made real valued by an appropriate
choice of phase, since their degenerate eigenvalue is purely imaginary. These two solutions
are independent of each other, and their linear combination should be the general form of
an inviscid critical-layer eigenmode that is singular at r = rc.

We can observe these analytic characteristics in our numerically computed pairs. In
the right panel of figure 11 we present the rũr profiles of the critical-layer eigenmodes
from two neighbouring pairs. In each pair, the velocity profiles have an abrupt change
in slope across an interval between two collocation points, whose location matches
the critical-layer singularity radius calculated by (4.9). The difference in rc among the
neighbouring pairs corresponds to the collocation interval, indicating their continuous
emergence. Furthermore, by linearly combining these paired eigenmodes, we can construct
the inner and outer solutions as derived analytically, each of which is approximately zero
on (0, rc) or (rc,∞). Although their eigenvalues are slightly different, we believe that it is
due to the numerical error resulting from the spatial discretisation, which slightly breaks
the degeneracy. This error decreases with increasing M.

Strictly speaking, the discussion made here is limited to infinite q because the analytic
results found in Gallay & Smets (2020) were verified in the Lamb–Oseen vortex case, and
we can only compare this case. Nonetheless, we remark that we have numerically observed
this same pairing phenomenon with finite q (e.g. q = 4.0). We conjecture that the pairing
phenomenon exists for values of q where the eigenmodes are all neutrally stable.

6. Viscous linear analysis

We numerically examine the viscous eigenvalue problem σ [Pmκ(ũ)] = Lνmκ [Pmκ(ũ)] by
studying the spectra of the discretised operator Lνmκ and their associated eigenmodes. Due
to viscous regularisation, the viscous eigenmodes do not exhibit critical-layer singularities.
Instead, at or near the locations where the inviscid critical layer would have been, the
viscous eigenmodes have thin layers characterised by large amplitudes and small-scale
oscillations, with widths proportional to Re−1/3 (Maslowe 1986; Le Dizès 2004). Note that
the Re−1/3 law is a well-established analytic principle, similar to the Re−1/2 law for the
laminar viscous boundary layer thickness. Several classic textbooks have already provided
an in-depth description of this principle (see Lin 1955; Drazin & Reid 2004).

The families of viscous eigenmodes are not just small corrections to the inviscid
eigenmodes; the addition of the viscous term, despite being small for Re−1, serves as
a singular perturbation (Lin 1961). This is because it increases the spatial order of the
set of equations that govern the eigenmodes. Therefore, the linear stability features of
wake vortices from vanishing viscosity can differ from the purely inviscid instability
characteristics (see Fabre & Jacquin 2004, p. 258). It is well known that exactly inviscid
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Figure 11. (a) Numerical inviscid spectra with no under-resolved eigenmodes for the Lamb–Oseen vortex
(q → ∞) in (m, κ) = (1, 1.0) along with a magnified part exhibiting the pairing phenomenon, and (b) four
radial velocity profiles of the critical-layer eigenmodes from two neighbouring pairs, labelled as A1/2 and B1/2.
Here, M = 400,L = 3.0 and N = M + 2. Note the similarity in structure within each pair, and the change in the
critical-layer location (marked by vertical dashed lines) by one collocation point between these neighbouring
pairs. This pairing phenomenon stems from the singular degeneracy in σ 0

c . The linear combination of the pair
constructs two independent solutions that are singular at the same critical-layer location and are nearly zero on
either (0, rc) or (rc,∞).

flows where ν ≡ 0 often behave quite differently from high-Reynolds-number flows where
ν → 0+. In particular, not only do the locations of the eigenvalues in the complex σ plane
change, but new families can also be created. One example is the free-stream spectrum
σνf shown in figure 4. This spectrum consists of non-normalisable eigenmodes that do not
vanish as r → ∞ and is mathematically derivable. However, its non-physical behaviour at
radial infinity renders it unsuitable for computation using our method. Otherwise, all other
families that we depicted in figure 4 are in the scope of the analysis.
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Mao & Sherwin (2011) and Bölle et al. (2021) reported that the inviscid critical-layer
spectrum σ 0

c changes with viscosity and spreads to an area on the left half-plane of
the complex σ plane, which they called the potential spectrum σνp . In this section we
demonstrate that our numerical method can produce randomly scattered eigenvalues,
which represent σνp numerically as reported by previous authors, and investigate their
spatial characteristics. Also, we identify and describe the viscous critical-layer eigenmodes
associated with the spectrum σνc (see figure 4), which, to the best of our knowledge, have
not been distinguished before.

6.1. Numerical spectra and eigenmodes
The Lamb–Oseen vortex with (m, κ, q) = (1, 1.0,∞) and the strong swirling Batchelor
vortex with (m, κ, q) = (2, 3.0, 4.0) are analysed at Re = 105. As with the prior inviscid
analysis, our aim is to identify common characteristics in the linear vortex dynamics with
viscosity for large q and moderate m and κ . In the current analysis, however, we have
a specific focus on the physical relevance of each eigensolution. To observe how the
viscous numerical spectra converge, we compute four numerical spectra for each case,
with different values of M ranging from 100 to 400. The spectra are presented in figure 12,
or supplementary movie 1 is available at https://doi.org/10.1017/jfm.2023.455. Based on
these spectra, we classify the numerical eigenmodes into five families: unresolved (−),
discrete (+), spurious (×), potential (�) and viscous critical layer (•). Note that with
increasing numerical resolution, an eigenmode in the unresolved family will always evolve
into an eigenmode in one of the other four families.

The eigenvalues in the discrete spectrum, σνd , converge to fixed points with increasing
M. These eigenvalues populate two distinct discrete branches shown near the bottom of
the panels in figure 12, in addition to a few locations outside of these branches. The
eigenmodes in the discrete spectrum were known previously and were studied by other
authors. For example, according to Fabre et al. (2006), the lower branch was designated as
the C-family, while the upper one was labelled the V-family.

With viscosity, none of the eigenmodes have critical-layer singularities as they are
regularised, and no eigenvalues lie exactly along the imaginary axis. In the non-normal
region, the spectrum of eigenmodes, σνp , that we have labelled as potential, occupies an
area in the complex σ plane that stretches out towards Re(σ ) → −∞ as M increases.
However, unlike the region shown in the schematic in figure 4, there is a gap between
the upper bound of this numerical spectrum and the real axis on which the free-stream
spectrum σνf is located. The reason is that we force solutions to vanish at radial infinity
due to the decaying nature of the spectral basis elements. Therefore, the gap should be
considered a peculiar product of our numerical method that excludes solutions with decay
rates that are too slow in r, such as those with velocity decaying slower than O(r−1) in r
and φ, or O(r−2) in z in the far field; see (2.19) in § 2.3.

The fact that the numerically computed eigenvalues in σνp shift towards the left side of
the complex σ plane as M increases coincides with Mao & Sherwin (2011). Additionally,
the number of potential eigenmodes increases with increasing M. Up to the largest value
of M that we have explored, the numerical eigenvalues in σνp tend to emerge randomly.
This random scattering can be understood as the spectrum’s extremely high sensitivity to
numerical errors even in the order of machine precision (see § 6.4.1).

On the other hand, we observe a moving branch of numerical eigenvalues attached to
the left end of σνp . They also never converge with respect to M, and the values of their
|Re(σ )| increase rapidly. We explicitly label them as spurious because of their absolutely
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Figure 12. Numerical viscous spectra at Re = 105 (a) for the Lamb–Oseen vortex (q → ∞) in (m, κ) =
(1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m, κ) = (2, 3.0) with respect to
M = 100, 200, 300 and 400. Here L is fixed at 2.0 and N = M + 2. Larger M enables more portion of the
spectra to be resolved. Near the right boundary of the potential spectrum there are two distinct branches
of the viscous critical-layer spectrum. See supplementary movie 1 for animation. Results are shown for
(a) (m, κ, q,Re) = (1, 1.0,∞, 105) and (b) (m, κ, q,Re) = (2, 3.0, 4.0, 105).

irregular spatial characteristics, as shown later in § 6.1.2. Although they are not removable,
we can pull them away by setting M to a large value.

Last but not least, we report the presence of two new distinct branches of viscous
critical-layer eigenvalues, which are seen on the right side of the area containing the
potential eigenvalues. The two branches of these eigenvalues, σνc , as depicted in figure 4,
converge to distinct loci. We distinguish σνc from σνp because of their unique bifurcating
shape. Furthermore, this is the only part of the spectra in the non-normal region that
approach fixed points at finite M, along with the discrete spectrum. As the name suggests,
we argue that their associated eigenmodes are not only non-spurious but also physical,
since they are the true viscous remnants of the inviscid critical-layer eigenmodes, as
explained with details in § 6.1.4.

967 A2-36

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.455


Numerical linear stability analysis of wake vortices

1.2

0.6

–0.6

–1.2

0

1.2

0.6

–0.6

–1.2

0

1.2

0.6

–0.6

–1.2

0

1.2

0.6

–0.6

–1.2

0

1.2

0.6

–0.6

–1.2

0

1.2

0.6

–0.6

–1.2

0

0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3

N
o
rm

al
is

ed
 rũ
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Figure 13. Radial velocity profiles of the viscous discrete eigenmodes associated with three smallest Im(σ )
(a) for the Lamb–Oseen vortex (q → ∞) in (m, κ) = (1, 1.0) and (b) for the strong swirling Batchelor
vortex (q = 4.0) in (m, κ) = (2, 3.0). The maximum of Re(rũr) is normalised to unity. Here M = 400 and
L = 2.0 are used. Comparing with the inviscid counterparts in figure 7, we note that viscosity only marginally
affects these eigenmodes. Results are shown for (a) (m, κ, q,Re) = (1, 1.0,∞, 105) and (b) (m, κ, q,Re) =
(2, 3.0, 4.0, 105).

6.1.1. Discrete eigenmodes
Figure 13 presents three viscous discrete eigenmodes with respect to each base flow,
whose spatial structures are inherited from the inviscid discrete eigenmodes displayed in
figure 7. They remain non-singular throughout the whole radial domain. Viscosity only
marginally affects the spatial structures of these eigenmodes compared with their inviscid
counterparts, making the velocity components have slightly non-zero imaginary parts
due to viscous perturbation. The number of wiggles in the eigenmodes still determines
their spatial characteristics. Moreover, those eigenmodes with more wiggles near r =
0 are more stable over time, i.e. |Re(σ )| increases. This phenomenon is physically
justifiable since the spatial gradient of velocity components becomes steeper when the
spacing between the wiggles is reduced, and viscous diffusion should, therefore, be more
intensive. These eigenmodes are physical as they are regular, well-resolved solutions to
the linearised Navier–Stokes equations on the q vortex. They are typically characterised
by modest wiggles that are spatially resolved, have rapid monotonous decay in r and clearly
correspond to the inviscid discrete eigenmodes associated with σ 0

d .

6.1.2. Spurious eigenmodes
Two numerically computed eigenmodes that represent the viscous spurious eigenmodes
are shown in figure 14. We have not observed any signs of convergence up to M = 400.
These eigenmodes are not spatially resolved, as evidenced by irregularly fast oscillations
that alternate at every collocation point. It is apparent that they are neither analytically nor
physically meaningful. Therefore, we will not perform an in-depth analysis of them.
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Figure 14. Radial velocity profiles of a representative viscous spurious eigenmode (a) for the Lamb–Oseen
vortex (q → ∞) in (m, κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m, κ) =
(2, 3.0). The maximum of Re(rũr) is normalised to unity. Here M = 400 and L = 2.0 are used. Non-trivial
and irregularly fast oscillations with alternating sign at every collocation point, as shown in each inset for
magnification, manifest that they are spurious. Results are shown for (a) (m, κ, q,Re) = (1, 1.0,∞, 105) and
(b) (m, κ, q,Re) = (2, 3.0, 4.0, 105).

6.1.3. Potential eigenmodes
Next, we examine the numerical eigenmodes associated with σνp , or the potential
eigenmodes. If we look at the randomly scattered eigenvalues while increasing M, it is
possible to observe common spatial characteristics of these eigenmodes that are spatially
resolved with a sufficiently large value of M, unlike the spurious family mentioned above.
Figure 15 presents the three representative potential eigenmodes for each vortex case, using
M = 400. We note that we have selected eigenmodes whose smallest wiggle is captured
with more than two collocation points to ensure that we validly discuss their common
spatial features. These eigenmodes are characterised by excessive wiggles, resulting in
slow radial decay rates (cf. Mao & Sherwin 2011). They exhibit generally faster decay
rates in time (i.e. larger |Re(σ )|) than the discrete ones, as more wiggles demand steeper
spatial gradients vulnerable to viscous diffusion.

The potential eigenmodes have wiggles that are usually concentrated roughly near the
inviscid critical-layer singularity locations, which is estimated by setting their Im(σ ) to
σc in (4.9). In other words, as noted by Mao & Sherwin (2011), they take the form
of ‘wavepackets’, whose major oscillatory components are localised both in physical
and spectral spaces. The correspondence between these ‘wavepackets’ and the inviscid
critical-layer singularity locations leads us to posit that the potential eigenmodes originate
from the viscous regularisation of the critical layers. From a mathematical standpoint,
the introduction of the viscous term serves only to ensure their regularisation and does not
impose any restrictions on their appearance following regularisation, such as thickness and
wave amplitude. This may explain why potential eigenmodes exhibit various wavepacket
widths at different locations.

In figure 15 the first and second eigenmodes have similar decay rates in time,
i.e. Re(σ1) � Re(σ2), which relates to the fact that they also have a similar number
of wiggles at their major oscillatory positions. On the other hand, the second and
third eigenmodes have similar wave frequencies, i.e. Im(σ2) � Im(σ3), which means
that their major oscillatory locations are close. As the number of wiggles increases,
|Re(σ )| becomes large, and the major oscillatory structure extends to a wide range in r.
This extension likely contributes to the retardation of radial decay rates, as the wiggles
remain at large radii in small scales (see the insets in figure 15).
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Figure 15. Radial velocity profiles of three viscous potential eigenmodes (a) for the Lamb–Oseen vortex (q →
∞) in (m, κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m, κ) = (2, 3.0). The
maximum of Re(rũr) is normalised to unity with the use of M = 400 and L = 2.0. The first and middle two
potential eigenmodes exhibit similar Re(σ ), and their number of major oscillations is comparable. The middle
and last two eigenmodes have similar Im(σ ), and their major oscillatory positions are similar. Each vertical
dashed line indicates the critical-layer location rc, which is estimated by setting each Im(σ ) to σc in (4.9). Each
inset within a dashed box reveals small-amplitude wiggles where rũr ∼ O(10−5) that persist at large r even
when the amplitude seems to be nearly zero, indicating their slow radial decay rates. Results are shown for
(a) (m, κ, q,Re) = (1, 1.0,∞, 105) and (b) (m, κ, q,Re) = (2, 3.0, 4.0, 105).

There are several noteworthy factors that should be pointed out regarding the spatial
characteristics of these eigenmodes. Although they appear physical, they make it difficult
to believe that they are the true viscous remnants of the inviscid critical-layer eigenmodes.
First, potential eigenmodes’ wavepackets can have varying widths even at the same Re,
indicating the absence of a clear scaling relationship between wavepacket widths and
the important physical parameter Re. Second, it is challenging to identify a clear spatial
similarity to the inviscid critical-layer eigenmodes. The typical radial decaying behaviour
of the viscous eigenmodes appears slow and oscillatory, as shown in figure 15, in contrast
to the inviscid critical-layer eigenmodes that exhibit monotonically rapid radial decay (see
figure 8). We postulate that the rapid radial decaying behaviour in σ 0

c must be sustained for
its true viscous remnants since the viscous regularisation effect should be highly localised
around the critical-layer singularity. Therefore, a subsequent question should arise as to
which other eigenmodes in the non-normal region can be considered the true viscous
remnants of σ 0

c . As the name suggests, we claim that the viscous critical-layer eigenmodes
associated with σνc offer the answer, which we set forth in the following.

6.1.4. Viscous critical-layer eigenmodes
Figure 16(a) shows two viscous critical-layer eigenmodes of a Lamb–Oseen vortex with
values of Im(σ νc ) that are within 6 % of each other. Due to the closeness of their
eigenvalues and their similar appearances, we believe that they evolved from a pair of
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Figure 16. Two viscous critical-layer eigenmodes with nearly identical Im(σ ). (a) Radial component of the
velocity eigenmode of the Lamb–Oseen vortex (q → ∞) with (m, κ) = (1, 1.0) and (b) of the Batchelor vortex
(q = 4.0) with (m, κ) = (2, 3.0). The maximum of Re(rũr) is normalised to unity. Here M = 400 and L = 2.0
are used. Each vertical dashed line indicates the location of the viscous critical layer estimated by setting
Im(σ ) equal to σc in (4.9). These locations are nearly equal to the centroid of the magnitude of rũr. Due to the
similarity of the shape of small-amplitude structures in the right and left columns, where rũr ∼ O(10−5),
to the inviscid critical-layer eigenmodes (compare them with the middle column panels in figures 8(a)
and 8(b), respectively), we hypothesise that these nearly degenerate viscous critical-layer eigenmodes are
the viscous analogues of the inviscid two-fold degenerate critical-layer eigenmodes. Results are shown for
(a) (m, κ, q,Re) = (1, 1.0,∞, 105) and (b) (m, κ, q,Re) = (2, 3.0, 4.0, 105).

degenerate inviscid critical-layer eigenmodes. The eigenvalue of the eigenmode in the
upper row of figure 16(a) is in the left branch, while the lower row is in the right branch of
σνc in figures 4 and 12. We believe that the regions of large amplitude oscillations shown
in the middle column of figure 16(a) are the true remnants of the inviscid critical layers.
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The central locations of the critical layers in the middle column of figure 16(a), which we
define as the centroid of the magnitude of rũr, are nearly equal to the inviscid critical-layer
singularity locations rc, as estimated by setting Im(σ νc ) to σc in (4.9). An important
qualitative difference from the potential eigenmodes in figure 15 and the critical-layer
eigenmodes is that in the radial regions outside the large amplitude oscillations the
viscous critical-layer eigenmodes decay monotonically, while the decay of the potential
eigenmodes is highly oscillatory. Figure 16(b) shows two eigenmodes of the Batchelor
vortex, which have similar eigenvalues (differing by only 6 %). Their properties are similar
to those of the eigenmode of the Lamb–Oseen vortex.

These numerical eigenmodes and eigenvalues exhibit good convergence with increasing
M and are spatially resolved. For physical relevance, it is worthwhile to investigate their
structures outside the remnant critical layers. By normalising the oscillation amplitude in
the remnant critical layer to be of order unity, we can identify small-scale perturbation
structures outside the critical layer of O(10−5) or less. We note the similarity in shape of
these small-scale perturbations to the inviscid critical-layer eigenmodes of similar Im(σ )
(see the middle column of panels in figure 8), where each part in (0, rc) and (rc,∞)

appears to be a scalar multiple of each side of the inviscid solutions (see § 5.3). This is one
indication that the viscous critical-layer eigenmodes are truly inherited from the inviscid
critical-layer eigenmodes. Note that viscosity has a profound influence on the structure
of the eigenmode at radial locations inside the remnant critical layer, where it locally
regularises the critical layer’s singularity, but viscosity has only a marginal impact on the
eigenmode at radial locations outside the remnant critical layer. Therefore, we expect the
inviscid critical-layer eigenmodes (in figure 8) and the viscous critical-layer eigenmodes
(in figure 16) to look similar in the regions outside the critical layer.

As can be seen in the viscous spectra, the decay rates in time of the viscous critical-layer
eigenmodes are comparable to those of the viscous discrete eigenmodes, indicating
that they can last for a relatively long time against viscous diffusion. Moreover, when
comparing an eigenmode in the left branch with another in the right branch of σνc ,
no notable structural difference is observed between them. This observation is further
supported by the fact that these eigenmodes lie in the non-normal region. A more detailed
analysis of the viscous critical-layer eigenmodes is presented later in this paper, dealing
with L and including the viscous remnant critical layers conforming to the Re−1/3 scaling
law (see § 6.2) and the continuity of the viscous critical-layer spectrum σνc (see § 6.4).

If σνc is the truly regularised descendant of σ 0
c with the correct critical-layer thickness, an

important question that remains to be answered is how the spectrum of a single straight line
bifurcates into two distinct branches. This bifurcation is physically meaningful because
the separation of the branches, or, equivalently, the difference in Re(σ ), is significantly
larger compared with the extent of purely numerical error at the same level of M, such
as the eigenvalue difference found in the pairing phenomenon in σ 0

c (see figure 11).
Recall that there exist numerous singular, degenerate eigenmodes associated with the
same eigenvalue due to the critical-layer singularities in σ 0

c . We can infer that the viscous
effect perturbs these two-fold degenerate singular eigenmodes and splits them into two
regularised eigenmodes with marginally different eigenvalues. Hence, we expect that the
emergence of σνc in two bifurcating curvy branches is not accidental but explicable by
means of perturbation theory dealing with two-fold degeneracy (Sakurai & Napolitano
2021, pp. 300–305).

It is worth discussing why σνc was not distinguished by previous researchers. When
we compare our numerical method with that of Mao & Sherwin (2011) or Bölle et al.
(2021), we see that they truncated the radial domain at a large but finite r and applied
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a homogeneous boundary condition there. In contrast, our method essentially involves
the entire radial domain 0 ≤ r < ∞, and each basis function Pn

Lm
(r) obeys the boundary

conditions that we want to apply. As a result, our truncated spectral sums, expanded by
Pn

Lm
(r) as the basis elements of the Galerkin method, implicitly and exactly impose the

boundary conditions on the solutions, regardless of the value of M used. However, the
boundary condition at r → ∞ is only approximately satisfied by the others. Considering
the sensitivity of the numerical spectra to numerical errors (see § 6.4.1), the truncation
is likely to impede the numerical convergence of σνc because an approximate far-field
radial boundary condition introduces errors. For instance, in the numerical spectrum
plot provided by Mao & Sherwin (2011, p. 8), we can see faint traces of the two
bifurcating branches at the location of σνc found in our results. Nonetheless, the results
were substantially disturbed with respect to the radial truncation as well as the number of
spectral elements, and the authors could not distinguish them from σνp .

6.2. Optimal choice of L to resolve the viscous critical layers
One of our goals is to accurately compute the viscous critical-layer modes. Clearly, we
should use the largest M (with N ≡ M + 2) that our computational budget allows, which
in this analysis is M = 400. We are interested in finding all of the viscous critical-layer
eigenmodes and eigenvalues, not just one, nor are we interested in finding them one at
a time. Unlike previous studies that looked at individual eigemmodes and stretched the
radial domain locally around the location of that eigenmode’s critical layer to maximise
the resolution there (e.g. Le Dizés & Lacaze 2005), our numerical method is designed for a
fixed Re,m and κ to compute the entire radial domain for all of the eigenmodes, regardless
of the locations of their critical layers, using the same radial collocation points.

Choosing a small value of L is advantageous because the spatial resolution of our
method is Δ = L/(M + 2) (see (3.11)), and we need to have Δ smaller than the
critical-layer thickness to resolve it. However, only half of the collocation points lie in the
vast range between L and infinity, so eigenmodes with critical-layer radii with rc > L will
have few collocation points (if any) within their critical layers and, therefore, be spatially
under-resolved. The optimal value of L, denoted Lopt, must be a ‘Goldilocks’ value: not
too big or too small. Figure 17 demonstrates another reason why Lopt is a ‘Goldilocks’
value. The figure displays the eigenvalues in the imaginary plane for Re = 105 with three
different values of L. The left column of the figure represents a scenario with small L,
where viscous critical layer eigenmodes with small rc (and, therefore, large |σνc |; see
figure 5) are spatially well resolved. However, eigenmodes with small values of |σνc | and
large rc are not adequately resolved. The right column of the figure shows the case with a
large L. In this case, only eigenmodes with small |σνc | and large rc are well resolved.

Nevertheless, figure 17 reveals another reason for the ‘Goldilocks’ behaviour. The
panels in the left column exhibit a clear separation between the potential eigenvalues σνp
and the two new branches of viscous critical-layer eigenvalues σνc . As L increases, the
potential eigenvalues shift towards the right in the complex plane (middle column). When
L becomes sufficiently large, the potential eigenvalues become intertwined with those of
the viscous critical-layer eigenmodes (right column), and the latter set of eigenmodes are
no longer well-resolved spatially.

Upon detailed examination of the viscous critical-layer eigenmodes of the Lamb–Oseen
vortex with (m, κ) = (1, 1.0) and the Batchelor vortex with (q = 4.0) and (m, κ) =
(2, 3.0), with M = 400 and Re = 105, we found that Δ = L/(M + 2) is just small enough
to resolve the viscous critical-layer thicknesses when L = 4.0 and 2.5, respectively.
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Figure 17. Changes of numerical viscous spectra (a) for the Lamb–Oseen vortex (q → ∞) in (m, κ) =
(1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m, κ) = (2, 3.0) with respect to
three different L values. Here M is fixed at 400 and N = M + 2. If we aim to optimally resolve the
critical-layer spectrum, we should appropriately tune L to find a balance between (left) the expansion of
the high-resolution region 0 ≤ r < L, and (right) the deterioration of the overall resolution represented
by Δ ∼ O(L). The middle one shows the optimal L, denoted Lopt, which minimises the emergence of
the numerical potential spectrum. Thus, most numerical eigenvalues in the non-normal region belong to
the viscous critical-layer eigenvalues. See supplementary movie 2 for animation. Results are shown for
(a) (m, κ, q,Re) = (1, 1.0,∞, 105) and (b) (m, κ, q,Re) = (2, 3.0, 4.0, 105).

Figure 17 illustrates that these values of L also represent the maximum values where
the eigenvalues of the potential eigenmodes remain distinct from those of the viscous
critical-layer eigenmodes. Thus, we believe that these values of L are the ‘Goldilocks’
values: large enough to maximise the region 0 ≤ rc < L, providing a sufficient number
of collocation points to resolve the eigenmodes and small enough that Δ = L/(M + 2)
adequately resolves the critical-layer thicknesses. Our procedure for determining the
optimal value Lopt is similar to how we found the optimal L for resolving the inviscid
critical-layer eigenvalues σ 0

c in § 5.2.

(i) Start with L of order unity (i.e. the core radius of the unperturbed aircraft wake
vortex), and increase L to expand the high-resolution region 0 ≤ rc < L.
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Figure 18. Numerical viscous spectra with Lopt at Re = 104 and 103 (a) for the Lamb–Oseen vortex (q → ∞)
in (m, κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q = 4.0) in (m, κ) = (2, 3.0). Here M is
fixed at 400 and N = M + 2. Results are shown for (a) (m, κ, q) = (1, 1.0,∞) and (b) (m, κ, q) = (2, 3.0, 4.0).

(ii) Stop increasing L just before the spatial resolution is so poor that the σνp and σνc
eigenvalues intertwine as shown in the middle panels of figure 17.

6.3. Use of Lopt to find the scaling behaviour of the critical-layer thickness with Re
We hypothesise that the values of L at which the potential and viscous critical-layer
eigenvalues intermingle in figure 17 and where L/(M + 2) just barely resolves the
critical-layer thickness are the same for all Re. We believe that the loss of numerical
spatial resolution causes the two families of eigenvalues to become non-distinct from one
another. To partially test this hypothesis, we calculate Lopt using the two-step procedure
mentioned above, using the data in figures 17 and 18. We then assume that Δopt ≡
Lopt/(M + 2) represents the critical-layer thickness. Plotting Δopt as a function of Re in
figure 19 demonstrates that the critical-layer thickness (if our hypothesis is correct) scales
approximately as Re−1/3. This scaling agrees with previous analyses using asymptotic
expansions (Maslowe 1986; Le Dizès 2004).

6.4. Continuity in the viscous critical-layer spectrum

6.4.1. Pseudospectral analysis
Finding the pseudospectra of the viscous operator Lmκ , we can obtain evidence that the
spectra σνp and σνc fill the continuous region in the complex σ plane, as depicted in the
schematic in figure 4. According to Mao & Sherwin (2011), the ε-pseudospectra around
the potential and critical-layer eigenvalues seem to enclose the entire area when ε is small,
as shown in figure 20. In addition, we present the ε-pseudospectrum with ε as small as
10−14, which is much smaller than the values used by Mao & Sherwin (2011) or Bölle
et al. (2021). Therefore, we believe that our observation provides strong empirical support
for the continuity of the non-normal region that we have numerically resolved.

Furthermore, based on the alternative statement of the pseudospectra given by Trefethen
& Embree (2005), any point in the ε-pseudospectra of Lmκ can be on the spectrum
of Lmκ + E for some small disturbance E where ‖E‖ < ε. Since ε = 10−14 is almost
comparable to the double-precision machine arithmetic used in modern computing,
one possible explanation for the random scattering of the numerical eigenvalues in the
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Figure 19. The optimal numerical resolution Δopt ≡ 2Lopt/(M + 2), at fixed M = 400, to resolve the
critical-layer spectrum with respect to Re. The trend indicates Δopt ∝ Re−1/3. The presented cases of Re =
103, 104 and 105 for each vortex can be found in figures 17 and 18.
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Figure 20. The ε-pseudospectrum bounds of ε = 10−14, 10−8 and 10−2 with respect to Lmκ at Re = 104 (a)
for the Lamb–Oseen vortex (q → ∞) in (m, κ) = (1, 1.0) and (b) for the strong swirling Batchelor vortex (q =
4.0) in (m, κ) = (2, 3.0). To construct the matrix, we use M = 400 and N = M + 2. Here L is optimally chosen.
We can infer from their formation which part of the spectra is continuous and how big the maximum transient
growth is. Results are shown for (a) (m, κ, q,Re) = (1, 1.0,∞, 104) and (b) (m, κ, q,Re) = (2, 3.0, 4.0, 104).

numerical representation of σνp is that they are perturbed by machine-dependent precision
errors serving as E .

As an aside, we observe that the ε-pseudospectrum of ε = 10−2 protrudes into the
right half-plane of the complex σ plane, as shown in figure 20. It is well known that
the supremum of the real parts of σ ∈ σε(Lmκ), denoted αε and referred to as the
ε-pseudospectral abscissa (Trefethen & Embree 2005), is relevant to the lower bound of
the maximum transient growth of the stable system with an arbitrary initial state of x = x0
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where ‖x0‖ = 1,

∂x
∂t

= Lmκx. (6.1)

The supremum of αε/ε in ε > 0 determines the lower bound of the maximum transient
growth of the system (Apkarian & Noll 2020), or

sup
t≥0

‖eLmκ t‖ ≥ sup
ε>0

αε(Lmκ )

ε
. (6.2)

The fact that the ε-pseudospectral abscissa of ε = 10−2 occurs in the frequency band
coinciding with the critical-layer spectrum implies the significance of this spectrum in
regards to the transient vortex growth, which needs more investigation in further studies.

6.4.2. Loci of the numerical spectra
One issue with pseudospectra is that they cannot provide non-normal eigenmodes
corresponding to each eigenvalue point in the continuum. Instead, pseudomodes can be
constructed in association with pseudospectra as an approximation of the eigenmodes,
which were introduced and described by Trefethen & Embree (2005). Unfortunately,
pseudomodes do not necessarily satisfy the exact governing equations and boundary
conditions (see Mao & Sherwin 2011, p. 11).

In our numerical method it is possible to find critical-layer eigenmodes whose spatial
structures continuously vary by fine tuning L. Recalling the role of L (see § 3), we know
that it changes the entire Pn

Lm
(r) in the basis function set. If we replace L and solve the

eigenvalue problem again, we can expect the eigenmodes generated from a new L not
necessarily to be identical to the eigenmodes generated from an old L. Moreover, if this
parametric change occurs in parts of the spectra where numerical convergence with respect
to M is ensured, including σνd and σνc , the loci of them with respect to L should genuinely
reflect the analytic spectra.

Based on the idea described above, we create the loci of the numerical spectra with
respect to L for the Lamb–Oseen vortex case, where (m, κ, q) = (1, 1.0,∞) at Re = 104

in figure 21(a). To draw the loci, the viscous eigenvalue problem is solved multiple times
with fine tuning L from 8.3 to 8.7 with M = 400, where both σνd and σνc are found to be
well resolved. The other parts of the spectra, including σνp , are excluded due to no clear
convergence with respect to M. That being said, we note that the loci of σνp with varying
L sweep over the shaded area depicted in the schematic in figure 4.

As for σνd , its locus is completely invariant against changes in L. It makes sense because
there is no chance to find an intermediate form of two discrete eigenmodes. The locus of σνd
remaining discrete rather strengthens our method’s robustness for any L. On the contrary,
the locus of σνc is notably different from that of σνd ; as L changes, the eigenvalue points on
two branches of σνc also move and eventually fill in two distinct curves as in figure 4. In
figure 21(b) it can be confirmed that the critical-layer eigenmodes with slightly different
eigenvalues, having only a marginal difference in their spatial structures, are obtained from
varying L. By comparing the two loci of σνd and σνc , we can conclude the continuity of the
critical-layer spectrum.

For reference, we report the polynomial fitting results up to sixth order of some loci of
σνc among what we have explored. In the case (m, κ, q) = (1, 1.0,∞) at Re = 104, the left
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Figure 21. (a) Loci of the numerical spectra for the Lamb–Oseen vortex (q → ∞) in (m, κ) = (1, 1.0)
obtained by fine tuning L from 8.3 to 8.7, where Re = 104, and (b) three viscous critical-layer eigenmodes
that marginally vary, all of which are obtained from different L. Unlike the discrete spectrum that does not
change with respect to L, the critical-layer spectrum is continuously filled by numerical eigenvalues associated
with valid critical-layer eigenmodes. (a) Loci of the numerical spectra by fine tuning L and (b) numerical
critical-layer eigenmodes varying marginally.

and right branches of σνc in the complex σ plane are fitted as

σr = −(1.905 × 101) · σ 6
i − (4.562 × 101) · σ 5

i − (4.138 × 101) · σ 4
i

− (1.741 × 101) · σ 3
i − (2.761 × 100) · σ 2

i + (5.348 × 10−1) · σi (6.3)

and

σr = −(4.682 × 100) · σ 6
i − (8.233 × 100) · σ 5

i − (6.816 × 100) · σ 4
i

− (3.243 × 100) · σ 3
i − (2.636 × 10−1) · σ 2

i + (6.108 × 10−1) · σi, (6.4)

where σr and σi indicate the real and imaginary parts of σ , respectively. In the case
(m, κ, q) = (2, 3.0, 4.0) at Re = 104, the left and right branches of σνc are fitted as

σr = +(1.071 × 10−2) · σ 6
i + (2.553 × 10−2) · σ 5

i − (9.022 × 10−2) · σ 4
i

− (3.417 × 10−1) · σ 3
i − (1.906 × 10−1) · σ 2

i + (4.764 × 10−1) · σi (6.5)
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and

σr = +(7.098 × 10−2) · σ 6
i + (4.052 × 10−1) · σ 5

i + (8.111 × 10−1) · σ 4
i

+ (6.323 × 10−1) · σ 3
i + (2.508 × 10−1) · σ 2

i + (4.833 × 10−1) · σi. (6.6)

We will work on the analytic formulation of σνc to better understand the bifurcation in
future studies. These fitting forms will be considered for comparison and validation.

7. Conclusion

In this study we proposed a numerical method that is capable of computing eigenmodes
and eigenvalues for linear stability analyses of aircraft wake vortices with high time
efficiency and accuracy compared with previous studies. Also, we established a means of
unambiguously verifying whether the numerically computed eigenmodes and eigenvalues
are physical, spatially resolved or spurious.

We developed a numerical method for the linear stability analysis of aircraft wake
vortices, and applied this method to the q-vortex model, which is a non-dimensional
vortex model that portrays the Lamb–Oseen or Batchelor vortices, used as the base
vortex profile. Our numerical method employs algebraically mapped associated Legendre
functions Pn

Lm
(r), defined in (1.1), as Galerkin basis functions for the spectral expansion of

functions in a radially unbounded domain. We found these basis functions to be suitable as
they capture the correct boundary conditions, including analyticity at the origin and rapid
decay in the far field. By applying the poloidal–toroidal decomposition to the linearised
governing equations, we reduced the problem size for computation while preserving the
spatial order of the equations. Furthermore, we believe that our numerical method is
preferable for linear analyses of vortex dynamics for the following reasons.

(i) Our method, the mapped Legendre spectral collocation method, converts the original
vortex stability problem into a standard matrix eigenvalue problem of toroidal and
poloidal streamfunctions. In comparison to other methods that lead to a generalized
matrix eigenvalue problem of primitive variables, our method effectively reduces
the number of state variables of the problem from four to two, and the number of
matrices constructed for eigenvalue computation from two to one.

(ii) Our method does not require extra treatments for analyticity and boundary
conditions in a radially unbounded domain. The use of toroidal and poloidal
streamfunctions expanded by Pm

Ln
(r) guarantees that computed linear perturbation

velocity fields are analytic at r = 0 and decay to zero as r → ∞. This prevents
artificial interference in the problem, such as truncation of the radial domain and
imposition of artificial boundary conditions at the point of truncation, which likely
cause unnecessary numerical errors.

(iii) Our method allocates collocation points properly around the vortex core, ensuring
that half of them remain within the high-resolution region of 0 ≤ r < L while the
other half contribute to sustaining the domain’s unboundedness, where L is the
map parameter of associated Legendre functions. In comparison to the numerical
method proposed by Mayer & Powell (1992), our method requires about three times
fewer radial basis elements, which is expected to result in roughly ten times greater
efficiency in terms of computing time. Moreover, L offers an additional degree of
computational freedom, enabling us to adjust the spatial resolution without requiring
extra computing resources to match the smallest radial length scale to be resolved.
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We numerically computed eigenmodes and eigenvalue spectra with azimuthal and axial
wavenumbers of order unity for strong swirling q vortices, and classified these eigenmodes
and eigenvalue spectra into different families based on the criteria outlined in § 1.3, which
determine whether they are physical, spatially resolved or spurious. Some family, such as
the free-stream family which do not decay at radial infinity, were beyond the scope of our
analysis as we considered such non-vanishing solutions to be non-physical. For this reason,
our method only calculates solutions that decay to zero. Our main focus was on physical
eigenmodes that exist in the real world, i.e. those that can destabilise an aircraft wake
vortex, with greater emphasis on critical layers. In this regard, we identified the following
important families of eigenmodes and eigenvalue spectra, some of which we believe we
distinguished for the first time.

(i) Discrete family (see §§ 5.1.1 and 6.1.1): they consist of entirely regular solutions
to the linearised governing equations. Each of their eigenvalues is discrete and
approaches a fixed point as the number of spectral basis elements M increases.
The eigenmodes are characterised by ‘wiggles’ around the vortex core, and
monotonically rapid decay in the r direction. All spatially resolved eigenmodes with
small but finite viscosity are found to have their respective inviscid counterparts,
exhibiting only marginal changes in their spatial structures. Without doubt, this
family are physical.

(ii) Inviscid critical-layer family (see § 5.1.2): the analytic presence of their spectrum on
the imaginary axis arises from mathematical point singularities, which are given in
(4.9). Although the eigenmodes possess a critical-layer singularity, our numerical
method yields well-behaved spatial structures outside the neighbourhood of the
singularity when using a sufficiently large value of M. These structures are crucial
for identifying the remnants of this family after adding small viscosity. However,
their singular nature often causes the eigenmodes to be under-resolved, i.e. to have
incorrect eigenvalues out of the imaginary axis, leading to a misjudgement of the
wake vortex’s linear instability. Adjusting the map parameter L can help correct these
errors so that the numerical spectrum reflects its analytic ground truth (see § 5.2).
In the corrected inviscid critical-layer spectrum, eigenvalues tend to emerge in pairs.
This phenomenon is understood as a marginal separation caused by numerical errors
of two singular degenerate critical-layer eigensolutions, whose exact eigenvalues are
supposed to be the same (see § 5.3).

(iii) Potential family (see § 6.1.3), which were first proposed by Mao & Sherwin (2011).
Bölle et al. (2021, p. 17) suggested this family be the viscous remnants of the
inviscid critical-layer spectrum. The spectrum is supposed to fill continuously a
portion of the left half of the complex eigenvalue plane, as depicted in the schematic
in figure 4. Its discretised representation can be found in our method through
an area with randomly scattered numerical eigenvalues that keeps stretching out
to the left as M increases. We cannot establish the convergence of a particular
eigenvalue to a fixed point due to the continuous nature of the spectrum. The random
scattering makes it impossible to find a clear correspondence between the eigenvalue
computed with M + 1 basis elements and another computed with M basis elements.
Nevertheless, the eigenmodes are spatially resolved enough to identify their common
spatial characteristics. They are typified by local rapid oscillations (‘wavepackets’)
around the corresponding critical-layer radius, estimated by setting the imaginary
part of their respective eigenvalues to (4.9). This implies that they stem from the
viscous regularisation of the inviscid critical layers. Considering their uninteresting
near-zero region outside the respective ‘wavepackets’ together, we deem these

967 A2-49

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.455


S. Lee and P.S. Marcus

eigenmodes to be physical. Nonetheless, the fact that their ‘wavepackets’ can have
varying widths even at the same Re raises concern about the absence of a scaling
relationship between wavepacket widths and Re. Moreover, their slow and oscillatory
decaying behaviour does not resemble the inviscid critical-layer eigenmodes’ rapid
and monotonous decaying behaviour (see § 5.1.2). Unlike the suggestion by Bölle
et al. (2021), we argue that they do not represent the true viscous remnants of the
inviscid critical-layer family. The true viscous remnants mean that they not only
originate from the viscous regularisation but also exhibit spatial similarity to the
inviscid critical-layer eigenmodes, in compliance with the Re−1/3 scaling law for
critical layers.

(iv) Viscous critical-layer family (see § 6.1.4), which are believed to be distinguished
for the first time. As the name suggests, we argue that this family is the true
viscous remnants of the inviscid critical-layer spectrum. The spectrum of this
family is identified near the right end of the potential spectrum as two distinct
continuous curves. It shows good numerical convergence with respect to M, and their
continuous loci are confirmed by fine tuning L (see § 6.4). When spatially resolved,
these eigenmodes exhibit thin and distinct local rapid oscillations at the inviscid
critical-layer singularity radius as estimated above. This implies their origination
from the viscous regularisation of the inviscid critical layers, as with the potential
family. However, unlike the potential family, they are not only considered physical
but also thought of as the true viscous remnants of the inviscid critical-layer
spectrum for the following reasons. First, the similarity in spatial structure to the
corresponding inviscid critical-layer eigenmode is noticeable in the regions outside
the critical layer. Second, the optimal resolution required to compute as many
spatially resolved viscous critical-layer eigenmodes as possible is defined (see § 6.2),
providing a measure of the numerical resolution necessary to resolve the viscous
critical-layer family overall. This optimal numerical resolution is found to be scaled
in the order of Re−1/3.

The bifurcation of the viscous critical-layer spectrum has remained an unanswered
question as of yet, and will be analytically examined based on our conjecture that
viscosity breaks the singular degeneracies, which are numerically shown as the pairing
phenomenon in the inviscid critical-layer spectrum. As the current study is limited to
linear stability analyses, we plan to investigate the nonlinear or non-normal dynamics
of the eigenmodes in the future. This investigation will include the triad-resonant
instability among the degenerate eigenmodes and the transient growth with respect to
the critical-layer eigenmodes. Moreover, we expect to use well-resolved eigenmodes,
computed from the current method, as initial conditions for an initial-value problem
solving the full, nonlinear governing equations of vortex motion.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.455.
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Appendix A. Differential operators

For an r-dependent scalar function f (r), the gradient and the Laplacian are

∇mκ f ≡ df
dr

êr + im
r

f êφ + iκf êz, (A1)

∇2
mκ f ≡ 1

r
d
dr

(
r

df
dr

)
− m2

r2 f − κ2f . (A2)

For an r-dependent vector field F (r) ≡ Fr(r)êr + Fφ(r)êφ + Fz(r)êz, the divergence, curl
and vector Laplacian are

∇mκ · F ≡ dFr

dr
+ Fr

r
+ im

r
Fφ + iκFz, (A3)

∇mκ × F ≡
(

im
r

Fz − iκFφ

)
êr +

(
iκFr − dFz

dr

)
êφ

+
(

dFφ
dr

+ Fφ
r

− im
r

Fr

)
êz,

(A4)

∇2
mκF ≡

(
∇2

mκFr − Fr

r2 − 2im
r2 Fφ

)
êr +

(
∇2

mκFφ − Fφ
r2 + 2im

r2 Fr

)
êφ

+ (∇2
mκFz)êz.

(A5)

Appendix B. Analyticity at the origin

In literature studying swirling flows in a radially unbounded domain with respect to
the perturbation with azimuthal wavenumber m and axial wavenumber κ , i.e. u′ =
ũ(r; m, κ) ei(mφ+κz)+σ t and p′ = p̃(r; m, κ) ei(mφ+κz)+σ t, the boundary conditions in terms
of primitive variables (ũr, ũφ, ũz, p̃) have been typically expressed as

ũr = ũφ = 0, ũz and p̃ finite for m = 0,
dũr

dr
= ũr + mũφ = ũz = p̃ = 0 for |m| = 1, at r = 0, ũ, p̃ → 0 as r → ∞.

ũr = ũφ = ũz = p̃ = 0 for |m| > 1,

⎫⎪⎪⎬
⎪⎪⎭

(B1)

These conditions were first suggested by Batchelor & Gill (1962) and the detailed
derivation can be found in Ash & Khorrami (1995, pp. 339–342). Our numerical method
naturally complies with the far-field condition as all spectral basis elements, Pm

Ln
(r), are

designed to vanish at radial infinity. Additionally, our method’s handling of velocity
functions at the origin not only meets the centreline condition given above, but also leads
to a more accurate function behaviour. This is verified in the following.

The derivation of the centreline condition begins with

lim
r→0

∂u′

∂φ
= 0, (B2)

to remove the coordinate singularity at r = 0, ensuring smoothness. As the pressure term is
implicit in our formulation, it is excluded from consideration. The term-by-term expression
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of (B2) is
− imũr + ũφ = −iũr + mũφ = mũz = 0 as r → 0. (B3)

With the additional condition dũr/dr = dũφ/dr = 0 for |m| = 1 (Mayer & Powell 1992;
Ash & Khorrami 1995; Bölle et al. 2021), which is independent of (B2) and from the
regularity of the governing equations around r = 0, the final formula is obtained.

In our numerical approach the toroidal ψ̃(r; m, κ) and poloidal χ̃ (r; m, κ)
streamfunctions are chosen as the state variables of the eigenvalue problem and are
expanded by the mapped Legendre functions, both of which behave O(r|m|+2s) for a
non-negative integer s as r → 0 (see Matsushima & Marcus 1995, 1997). That is, in our
numerical method it is guaranteed that as r → 0, these streamfunctions are expressed in
power series as

ψ̃(r; m, κ) = a0r|m| + a1r|m|+2 + · · · , χ̃(r; m, κ) = b0r|m| + b1r|m|+2 + · · · ,
(B4a,b)

where all coefficients are finite constants, as in (3.18). From the decomposition, it is known
that

ũr = im
r
ψ̃ + iκ

∂χ̃

∂r
, ũφ = −∂ψ̃

∂r
− κm

r
χ̃ , ũz = −1

r
∂

∂r

(
r
∂ψ̃

∂r

)
+ m2

r2 ψ̃. (B5)

Therefore, our method ensures that as r → 0,

ũr = (ia0m + ib0κ|m|)r|m|−1 + (ia1m + ib1κ(|m| + 2))r|m|+1 + · · · ,
ũφ = (−a0|m| − b0κm)r|m|−1 + (−a1(|m| + 2)− b1κm)r|m|+1 + · · · ,

ũz = a1(−(|m| + 2)2 + m2)r|m| + · · · .

⎫⎬
⎭ (B6)

These power series satisfy (B3) for all m, which can be shown by simply putting (B6)
into (B3). This verifies that the mapped Legendre expansion of the poloidal and toroidal
streamfunctions, as in (B4a,b), meets the centreline condition of the primitive velocity
components, as in (B1).

The power series expansion in (B6) ultimately stands for the analyticity at the origin,
providing more accurate constraints for smoothness on the coordinate singularity. The
typical centreline condition is not a sufficient condition for smoothness due to the lack
of derivative constraints, as seen in (B2), even requiring an additional condition for some
cases. Correctly removing coordinate singularities in spectral methods has been known
to be crucial for the accuracy of the spectral representation, which can be done by
choosing appropriate basis spectral elements with regard to what coordinate singularity
is in consideration (Orszag 1974; Bouaoudia & Marcus 1991; Matsushima & Marcus
1995, 1997). General Chebyshev or Legendre spectral methods that do not implicitly take
into account such analyticity issues, thus necessitating an explicit boundary condition
to mimic the analyticity, might not be the suitable choice for systems with coordinate
singularities to achieve fast spectral convergence (see Gottlieb & Orszag 1977; Boyd 2001).
We note two papers (Vasil et al. 2016, 2019) that looked at a variety of spectral methods
dealing with coordinate singularities and gave evidence to support the use of the mapped
associated Legendre functions for the cylindrical coordinate singularity.
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