
Journal of Glaciology

Article

Cite this article: Haq MA, Azam MF, Vincent C
(2021). Efficiency of artificial neural networks
for glacier ice-thickness estimation: a case
study in western Himalaya, India. Journal of
Glaciology 67(264), 671–684. https://doi.org/
10.1017/jog.2021.19

Received: 1 January 2020
Revised: 1 February 2021
Accepted: 2 February 2021
First published online: 25 March 2021

Key words:
Glacier modelling; glacier volume; ice
thickness measurements; remote sensing;
subglacial exploration geophysics

Author for correspondence:
Mohd Anul Haq, E-mail: m.anul@mu.edu.sa

© The Author(s), 2021. Published by
Cambridge University Press. This is an Open
Access article, distributed under the terms of
the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use,
distribution, and reproduction in any medium,
provided the original work is properly cited.

cambridge.org/jog

Efficiency of artificial neural networks for
glacier ice-thickness estimation: a case study in
western Himalaya, India

Mohd Anul Haq1 , Mohd Farooq Azam2 and Christian Vincent3

1Department of Computer Science, College of Computer and Information Sciences, Majmaah University,
Al-Majma’ah, 11952, Saudi Arabia; 2Discipline of Civil Engineering, Indian Institute of Technology Indore, Simrol
453552, India and 3University of Grenoble Alpes, CNRS, IRD, IGE, F-38000 Grenoble, France

Abstract

Knowledge of glacier volume is crucial for ice flow modelling and predicting the impacts of
climate change on glaciers. Rugged terrain, harsh weather conditions and logistic costs limit
field-based ice thickness observations in the Himalaya. Remote-sensing applications, together
with mathematical models, provide alternative techniques for glacier ice thickness and volume
estimation. The objective of the present research is to assess the application of artificial neural
network (ANN) modelling coupled with remote-sensing techniques to estimate ice thickness
on individual glaciers with direct field measurements. We have developed two ANN models
and estimated the ice thickness of Chhota Shigri Glacier (western Himalaya) on ten transverse
cross sections and two longitudinal sections. The ANN model estimates agree well with ice thick-
ness measurements from a ground-penetrating radar, available for five transverse cross sections
on Chhota Shigri Glacier. The overall root mean square errors of the two ANN models are 24 and
13m and the mean bias errors are ±13 and ±6m, respectively, which are significantly lower than
for other available models. The estimated mean ice thickness and volume for Chhota Shigri
Glacier are 109 ± 17m and 1.69 ± 0.26 km3, respectively.

1. Introduction

Himalayan glaciers have been showing wastage over the last few decades (Brun and others,
2017; Azam and others, 2018; Bolch and others, 2019); consequently, their dynamics are
gradually adjusting (Azam and others, 2012; Dehecq and others, 2019) to the current mass
distribution and hypsometry. Reliable information on glacier ice thickness and volume is
necessary to understand the status of these glaciers, determine future fresh water availability
in the region and assess future sea level rise potential. Field-based ground penetrating radar
(GPR) surveys (Hubbard and Glasser, 2005), one of the best available methods to estimate
the ice thickness, have been used on glaciers worldwide (Pettersson and others, 2003;
Pattyn and others, 2009; Wagnon and others, 2013). Due to rough terrain, harsh climatic con-
ditions and high expedition costs in the Himalaya, GPR surveys have been conducted for
ice-thickness estimates only for a few selected glaciers: Khumbu (Iwata and others, 1980),
Dokriani (Gergan and others, 1999), Chhota Shigri (Azam and others, 2012; Singh and others,
2012), Mera (Wagnon and others, 2013), Changri Nup (Vincent and others, 2016), Lirung
(McCarthy and others, 2017) and Satopanth (Mishra and others, 2018) Glaciers.

1.1 Ice thickness and volume estimation

Glacier ice thickness and volume are generally estimated using mathematical models such as
volume–area scaling (Meier and Bahr, 1996; Raper and Braithwaite, 2005; Frey and others,
2014), ice flux method (Haeberli and Hoelzle, 1995; Farinotti and others, 2009a, 2009b;
Huss and Farinotti, 2012), surface velocity–slope relationship (Gantayat and others, 2014),
inverse modelling of glacier ice flow (Raymond-Pralong and Gudmundsson, 2011; Mosbeux
and others, 2016) and artificial neural networks (ANNs) (Clarke and others, 2009; Haq and
others, 2014).

Due to its simplicity, volume–area scaling has been used extensively to estimate glacier ice
thickness and volume (Singh, 2011; Frey and others, 2014; Bahr and others, 2015). Volume–
area scaling is essentially a transposition because unknown parameters such as glacier depth
are derived from glacier area (Lliboutry, 1987; Gantayat and others, 2014). This method has
generally been applied at the regional scale (Radić and Hock, 2011; Bliss and others, 2013;
Frey and others, 2014) and can be erroneous when applied to individual glaciers for which
the scaling parameter have not been well-established (Agrawal and Tayal, 2013; Bahr and
others, 2015). Another shortcoming of the volume–area scaling method is that it yields no use-
ful information on subglacial topography, which is a necessary boundary condition for glacier
dynamics models (Clarke and others, 2009). Paul and Linsbauer (2012) derived the ice thick-
ness of glaciers based on a numerical model of perfect-plasticity assumption developed by Nye
(1952). In this approach, the glacier volume estimate is based on the surface extent and average
slope of the glacier. These models provide an estimate of ice thickness but are prone to errors if
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their underlying assumptions are not fulfilled (Clarke and others,
2009). Farinotti and others (2017) applied 17 models to derive the
ice thickness of 21 test glaciers around the world.

Ramsankaran and others (2018) applied the Glabtop-2 model
with optimization of the shape factor to derive the volume of
Chhota Shigri Glacier. The majority of methods used in
Farinotti and others (2017), as well as GlabTop-2 in
Ramsankaran and others (2018), are highly sensitive to the sur-
face slope and shape factor (Rabatel and others, 2018). Rabatel
and others (2018) discussed the uncertainties caused by the sur-
face slope and demonstrated that they can be as high as 50% of
the thickness calculated by ice flux methods. Vashishth and others
(2017) applied different methods including glacier flow
mechanics, thickness–area scaling and volume–area scaling to
compute the ice thickness of Chhota Shigri Glacier. Singh and
others (2012) used the thickness-area scaling method and GPR
data, whereas Dobhal and others (1995) used residual Bouger
values to measure the thickness of Chhota Shigri Glacier. The
availability of these studies on Chhota Shigri Glacier provides
an opportunity to compare our results with a variety of models.

1.2 Artificial neural network

An ANN is a mathematical or computational model that is
inspired by the operation of biological neural networks
(Abraham, 2005; Eluyode and Akomolafe, 2013). ANNs have
already been applied in cryospheric science to understand past
and future glacier length variations (Steiner and others, 2005;
Zumbühl and others, 2008), to predict snow cover in mountain
ranges (Sauter and others, 2009, 2010; Mishra and others,
2014), to simulate meltwater runoff from glaciers (Caiping and
Yongjian, 2009), to classify glacier/snow cover surfaces (Bishop
and others, 1999; Doberva and Klein, 2009; Czyzowska-
Wisniewski and others, 2015), to detect glacier and ice-shelf mar-
gins (Baumhoer and others, 2019; Mohajerani and others, 2019)
and to simulate glacier surface mass balances (Bolibar and others,
2020). An ANN model was used by Clarke and others (2009) to
estimate the sub-glacial topography and glacier volume of the
Mount Waddington icefield, British Columbia, Canada. They
validated the ANN-estimated ice thickness with ice thickness
values obtained from a numerical ice dynamics model. In the
Himalaya, the use of ANNs to estimate glacier ice thickness and
volume estimation is rare. Haq and others (2014) applied an
ANN model to derive ice thickness and volume of Gangotri
Glacier in the central Himalaya. However, the estimated ice thick-
ness on Gangotri Glacier could not be validated due to the
unavailability of ice thickness data from the field.

1.3 ANN principles

A neural network is a collection of interconnected simple process-
ing elements called neurons. These processing elements are con-
nected with coefficients or weights, which constitute the neural
network structure and are organized in layers. The behaviour of
a neural network is determined by its architecture, transfer func-
tions and learning rule (Agatonovic-Kustrin and Beresford, 2000).
Every connection of a neural network is assigned a weight that
comes through training the ANN. Typically this weight represents
the strength of the interconnections among neurons inside the
neural network. The aim of weight initialization is to prevent
layer activation outputs from exploding or vanishing during the
course of a forward pass through a neural network. The weighted
inputs are all summed up inside the artificial neuron. The neu-
rons use transfer functions f such as transig, logsig and purelin
to derive output from the sum of weighted functions and biases.
The function logsig generates outputs between 0 and 1 as the

neuron’s net input ranges from negative to positive infinity
(Fortuna and others, 2002). Alternatively, multilayer networks
may use the tan-sigmoid transfer function, tansig. Occasionally,
the linear transfer function purelin is used in backpropagation
networks (Demuth and Beale, 2000). If the final layer of a multi-
layer network has neurons and sigmoid functions, then the out-
puts of the network will have a small range.

The training of ANN architecture can be performed using a
defined set of rules, also known as optimizers, such as the
Widrow–Hoff or gradient descent or backpropagation. The
Widrow–Hoff learning rule minimizes the mean square error
and moves the decision boundaries as far as it can from the train-
ing patterns (Demuth and Beale, 2000). The term ‘backpropaga-
tion’ refers to the way that the gradient is computed for
nonlinear multilayer networks (Demuth and Beale, 2000). It is a
generalization of the Widrow–Hoff learning rule to multiple-layer
networks and nonlinear differentiable transfer functions. There
are different types of backpropagation training algorithms such
as Levenberg–Marquardt, conjugate gradient and resilient back-
propagation (De Villiers and Barnard, 1993). The Levenberg–
Marquardt training algorithm works on loss functions that take
the form of a sum of squared errors. The loss function is com-
posed of an error and regularization. The error evaluates how a
neural network fits the dataset and the regularization is used to
prevent overfitting based on the effective complexity of the neural
network. The Levenberg–Marquardt algorithm computes the
gradient vector and the Jacobian matrix. It is an algorithm that
trains a neural network 10–100 times faster than the usual gradi-
ent descent backpropagation method (Demuth and Beale, 2000).
The reason for choosing Levenberg–Marquardt optimization in
the current study is that it is more powerful and faster than
other conventional gradient descent techniques (Hagan and
Menhaj, 1994; Kişi and Uncuoğlu, 2005).

The neural network architecture defines the network structure,
including the number of hidden layers, the number of hidden
nodes and the number of output nodes. The hidden layers provide
the network with its ability to generalize. A network with one hid-
den layer can model any continuous function (Beale and Jackson,
1990). There are no a priori fixed criteria on the architecture of
the ANN (Sheela and Deepa, 2013). A trial-and-error procedure
and network growing technique are generally applied to decide
the number of hidden layers and number of neurons in each hid-
den layer.

1.4 Objectives

In the present work, we assessed the efficiency of ANN modelling
for the estimation of ice thickness and volume of Chhota Shigri
Glacier (western Himalaya, India), where GPR ice-thickness mea-
surements are also available (Azam and others, 2012). A major
advantage of the proposed ANN model in this study is the limited
input data requirements, which include only the glacier extent
and a digital elevation model (DEM). As a first step, we developed
an ANN model for ice thickness estimation on Chhota Shigri
Glacier and then validated the output with field-derived ice thick-
ness data from five GPR transverse cross sections. In the second
step, a subset of field-derived observations of ice thickness was
used as training data. The initial and trained models were then
applied on five additional transverse cross sections and two lon-
gitudinal sections before deriving the final glacier volume.

2. Study area and data

Chhota Shigri Glacier (32.28° N, 77.58° E) is located in the
Chandra Valley of the western Himalaya (Fig. 1). This glacier
has a total length of 9 km with an area of 15.5 km2 (Azam and
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others, 2016). Chhota Shigri is one of the most documented
glaciers in the Himalayan region with studies covering its mass
balance, energy balance, ice thickness and dynamics (Wagnon
and others, 2007; Azam and others, 2012, 2014a, 2014b, 2019;
Singh and others, 2012; Vincent and others, 2013; Frey and
others, 2014; Vashishth and others, 2017; Ramsankaran and
others, 2018; Mandal and others, 2020).

2.1 Digital elevation model

High-resolution topographic surface information is a prerequisite
for accurate glacier volume estimates therefore resolution and
quality of the DEM are crucial factors. Freely available DEMs
such as Advanced Spaceborne Thermal Emission and Reflection
Radiometer and the Shuttle Radar Topography Mission (SRTM)
have a spatial resolution of 30 m. To satisfy the requirement of
high-resolution topographic information in the present study,
Cartosat-1 (2.5 m) stereopair imagery dated 3 April 2007 was
used to generate the DEM at a spatial resolution and vertical
accuracy of 10 m.

2.2 GPR observations

In October 2009, GPR measurements were conducted on Chhota
Shigri Glacier to determine the ice thicknesses on five transverse
cross sections between 4400 and 4900 m a.s.l. (cross sections 1–5
in Fig. 1) (Azam and others, 2012). The GPR thickness points
were available at 10 m steps for each cross section. Details of
the GPR measurements can be found in Azam and others (2012).

2.3 Differential global positioning system (DGPS) observations

Ground control points (GCPs) used in DEM generation and test-
ing were collected in 2009 and 2010 at Chhota Shigri Glacier.
Details of the 2009 survey, where 200 GCPs were collected during
the GPR survey, are available in Azam and others (2012). Four
additional GCPs were collected in 2010 using a Trimble R-7

DGPS operated in post-processing kinematics mode. The estimated
accuracy of the 2009 and 2010 GCPs is <1m.

2.4 Transverse and longitudinal slopes and elevations

Extending the GPR transects onto surrounding ice-free glacier
slopes, we extracted sidewall slopes (SC) and elevations (EC)
from the DEM. Longitudinal elevations (EL) and slopes (SL)
were also extracted from the DEM (Fig. 2).

3. Methodology

3.1 DEM generation

A DEM was generated from a Cartosat-1 stereo pair collected on 3
April 2007. The DEM was generated using the Leica
Photogrammetry Suite (LPS) and a subset of GCPs collected in
2009 and 2010 was used to refine the rational polynomial coeffi-
cient model. Tie points were generated both implicitly and expli-
citly for a better distribution of points over the glacier, and a
first-order polynomial triangulation was used to refine the model.

The Automatic Terrain Extraction with Dense Point Matching
(eATE) tool was used to place the subset of GCPs and generate tie
points on the stereo pair. The GCPs were used as full control
points (a full control point has x, y and z coordinates in LPS),
while the tie points were generated using an implicit image
correlation algorithm in LPS. A tie point is the image coordinate
position of an object appearing on two or more images and its x, y
and z coordinates are calculated during the aerial triangulation
process. A total of 78 tie points were generated, manually and
automatically. The triangulation was performed after adding
GCPs and tie points. The DEM was extracted with a cell size of
10 × 10 m.

A total of 160 DGPS points (October 2009) on five GPR cross
sections (1–5) and four DGPS points (October 2010) were used to
generate the DEM. A total of 40 points (eight points per profile)
were reserved and used to validate the error of the DEM. While
the Cartosat-1 DEM was generated from April 2007 imagery,
the GCPs were collected in October 2009 and October 2010.

Fig. 1. Study area shown using a Cartosat-1 DEM, developed using a Cartosat-1 stereo pair (3 April 2007). Transverse cross sections 1–5 are those where GPR data
and GCPs (Azam and others, 2012) are available. Transverse cross sections A–E are additional cross sections.
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The resulting glacier DEM was edited based on break lines and
sidewall slopes in LPS. The altitude values of the generated
Cartosat DEM (3 April 2007) showed lower values than the global
positioning system points (2009) for cross sections 1–4, however,
cross section 5 showed a slightly higher altitude (Table S1).

3.2 ANN training

Two additional sources of information were used in this work,
compared to previous ANN studies (Clarke and others, 2009;

Haq and others, 2014). The first is the additional geomorphic
assumption of inclusion of sidewall slopes in the ANN model
and the second is the availability of GPR data to assess and valid-
ate the ANN results. According to Clarke and others (2009), the
areas that are currently ice-free were formerly ice-covered and are
therefore subject to landscape erosion. Two geomorphic assump-
tions were used in the current investigation. First, there may be
some relationship between the elevations of the longitudinal sec-
tion of the de-glaciated frontal area and the glacier of the present
time (Haq and others, 2014). Slopes and elevations along the

Fig. 2. (a) Outline of Chhota Shigri Glacier shown in red on Google Earth image. Blue lines indicate the five transverse sections that were manually digitized on GPR
cross sections (1–5). Yellow lines indicate 300 m of de-glaciated valley sidewalls on either end of the glacier transects. The purple line indicates the extent between
the current snout position and the assumed previous snout position (∼1400 m from the current snout). (b) The extent between the current snout position and the
assumed previous snout position is shown at a higher zoom level by zooming in on the Google Earth image shown in (a).
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longitudinal profiles (SL and EL) were thus used as predictors in
the ANN models. The second assumption is based on the exten-
sion of valley sidewall slopes beneath the current glacier surface.
Valley slopes (SC) and elevations (EC) extended from transects
1–5 were also used as predictors in the ANN models. Clarke
and others (2009) used bedrock geometries from deglaciated val-
leys to train their ANN model and improve dynamically modelled
ice thickness.

3.3 ANN architecture

The performance of a neural network depends to a significant
extent on how well it has been trained. Initially, a single layer lin-
ear network with the Widrow–Hoff least-square learning rule
(also known as delta or least mean squared rule) was attempted.
The training and testing showed unstable results on vector data
(columns of input data). A multilayer feed-forward approach
and standard Levenberg–Marquardt backpropagation training
algorithm (Levenberg, 1944; Marquardt, 1963) were used in
Matlab 2016b.

The Levenberg–Marquardt method is an effective optimization
algorithm and is preferred over steepest descent and Gauss–
Newton methods in a wide variety of problems (Wilson and
Mantooth, 2013; Gavin, 2019). The Levenberg–Marquardt is a
combination of the two optimization methods: the gradient des-
cent method and the Gauss–Newton method. A major limitation
of the Levenberg–Marquardt algorithm is its memory require-
ment. However, in the present study, the number of data points
is low, therefore memory requirements were low.

In the ANN architecture, the design of the input and output
layers is straightforward, however, the design of hidden layers is
not. There is no straightforward way to determine good network
architecture and the number of hidden layers. It varies with the
number of training samples and the complexity of the problem.
In the current study, several combinations of layers and transfer
functions were tested on a network growing basis with a learning
rate of 0.001. It typically starts with a small network and nodes are
added until a suitably chosen measure stops decreasing (Gallant,
1986; Kwok and Yeung, 1995; Haq and others, 2014).

In this study, we use a three-layer architecture, in which the
input layer had four neurons (4x), the first active layer had
eight neurons with a tan-sigmoid (transig) transfer function
(8T) and the last layer had a transig function (1T). The final
selected ANN architecture notation was therefore 4x–8T–1T
(Fig. 3). The assessment of different ANN architectures was
based on a combined R value for training, validation and testing.
This performance criterion was used to select the network archi-
tecture and the size of the training set.

3.4 ANN models for Chhota Shigri

Two ANN models were developed in the current study to estimate
the ice thickness of Chhota Shigri Glacier. The first ANN model,
which does not use observed ice depths in training, is abbreviated
as ABT (ANN before training). The second ANN model includes
observed ice depths in training and is abbreviated as AAT (ANN

after training). The ABT model was developed using four inputs
such as slope and elevations extracted from the DEM on valley
sidewalls and longitudinal profiles (EC, SC, EL, and SL). The tar-
get or dependent values were extrapolated using equation (S1);
please see the Supplementary material.

3.5 ANN assessment

ANN models were assessed using a k-fold cross-validation tech-
nique, multiple R values, and by comparing mean and maximum
ice thicknesses. The evaluation of the developed ANN model was
attempted based on k-fold cross-validation. This k-fold cross-
validation technique was applied to split the dataset for better
generalization and to avoid the overfitting problem and provide
a stable estimate of the model error (Little and others, 2017).
The first fold is kept for testing and the model is trained on k
−1 folds. The process is repeated 10 times and each time different
fold or a different group of data points are used for validation.
Data points for training, testing and validation sets were taken
randomly from all the available transects in both models and
these points change depending on each fold.

3.5.1 Assessment statistics
The comparisons of observed and ANN estimated ice thicknesses
along transverse cross sections were based on various statistics
including multiple R-value of training, testing and, validation;
max ice thickness and mean ice thickness.

3.5.2 Ice thickness interpolation
The ANN models produced estimates of bedrock depths at ten
transverse cross sections, which were then converted into ice
thicknesses by differencing with the surface elevation. We used
kriging to interpolate the spatially irregular ice-thickness data
over the whole glacier to obtain gridded estimates of ice thickness.
Kriging is a stochastic interpolation method that offers an assess-
ment of prediction errors. At the 10 m resolution of the DEM, five
transverse cross sections (1–5), five additional transverse cross
sections (A–E), and a longitudinal section (L1) give a total num-
ber of 1449 points for the interpolation. A workflow diagram
(Fig. 4) further explains the two ANN models, AAT and ABT,
adopted in this study.

3.6 Error analysis

ANN modelled ice thickness data are continuous since they are
based on the DEM. GPR-based ice depth observations are discon-
tinuous, and data are often missing at the end of transects where
the terrain is rough and GPR signals are weak due to steep valley
walls (Azam and others, 2012). Comparisons of observed and
modelled ice thicknesses were made with datasets where (a)
only the observed values were considered and (b) missing ice
thickness observations were interpolated from nearby observa-
tions. Errors in modelled ice thickness are based on root mean
squared error (RMSE) and the mean bias error. There are four
sources of error: (1) error in GPR thickness, (2) mean average
bias of ABT and AAT, (3) error in kriging interpolation for

Fig. 3. ANN network architecture was adopted in this
study for the execution of the ANN models. Here, w
and b indicate weight and bias, respectively.

Journal of Glaciology 675

https://doi.org/10.1017/jog.2021.19 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2021.19


ABT and for AAT, and (4) error in DEM. To calculate the total
errors in the resulting ice thickness estimation and total volume
calculation, quadratic addition was applied based on the above-
mentioned four error sources (Vanlooy and others, 2014).

4. Results

4.1 ANN models

Out of 25 training runs conducted with the ABT model, three
were rejected due to low combined R-values. The performances
computed from the average of all folds for different networks
are given in Table 1. Among the 22 remaining runs, the best cor-
relation was 0.90 with a mean bias error for ice thickness of 13 m
and RMSE of 24 m (Table 1 and 2). Out of 25 training runs con-
ducted with the AAT model, which includes 20 GPR measure-
ments as inputs, four runs were rejected (Table 2). Among the
25 runs, the best correlation was 0.93, with a mean bias error of
6 m and a RMSE of 13 m. The assimilation of GPR data for
ANN network training decreased the RMSE by 11 m (24–13 m)
and the mean thickness error of the five transverse sections by
7 m (13–6 m). Levenberg–Marquardt algorithm outperformed
the gradient descent method in the current study.

4.2 Estimated ice thickness and volume

The performance of the ABT and AAT models is shown using
scatter plots (Figs 5 and 6, respectively). These plots represent
model performance based on the R-value for training, validation,
testing and overall (a combination of training, validation, and test-
ing), respectively. The solid line represents the best fit linear
regression between the outputs and targets. The targets are the
data (measured thicknesses) and the outputs are the results of
the ANN model. The ABT model gives an overall R of 0.90
whereas the AAT model gives an overall R of 0.93. Performance

Fig. 4. A workflow diagram explaining the two ANN models, AAT and ABT, adopted in this study.

Table 1. The performance of different ABT architectures is based on the
combined R-value for training, validation and testing

Architecture Combined R value

4x–8T–1L 0.77
4x–8T–1S 0.67
4x–8S–1T 0.82
4x–8S–1S (rejected run) 0.19
4x–8S–1L 0.53
4x–8T–1T 0.90
4x–8T–8T–1T 0.81
4x–8T–8T–1S 0.80
4x–8T–8S–1S 0.73
4x–8S–8S–1S 0.82
4x–8S–8T–1T 0.80
4x–8S–8S–1T 0.71
4x–8L–8S–1T (rejected run) 0.22
4x–8S–8L–1T 0.56
4x–8S–8S–1L 0.72
4x–8T–8S–1L 0.64
4x–8L–8T–1S 0.75
4x–8S–8T–1S 0.84
4x–8S–8T–1L 0.67
4x–8T–8T–1L 0.81
4x–8T–8S–1T 0.69
4x–8L–8T–1T (rejected run) 0.23

Table 2. Performance of ANN modelling with and without GPR training

Performance criterion
ABT architecture
(4x–8T–1T)

AAT architecture
(4x–8T–1T)

Total runs 25 25
Accepted runs 22 21
Rejected runs 3 4
Mean training correlation coefficient (r) 0.90 0.94
Multiple R 0.90 0.93
RMSE bed elevation (m) 24 13
Mean bias error for ice thickness (m) 13 6
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statistics were computed from the average of all folds for the 4x–
8T–1T set. The performance of the training, validation, and test
sets are similar because of the L1 regularization used. Most ice
thickness errors fall between ± 10 m (Fig. 7). The spread of errors
ranges between ± 29 m and ± 0.83 m for maximum and minimum
values, respectively.

The modelled ice-thickness estimates were 104 and 109 m for
ABT and AAT, respectively. The volume of Chhota Shigri Glacier
was estimated to be 1.61 and 1.69 km3 for ABT and AAT models,
respectively.

4.3 Ice thickness profiles

Interpolated ice thicknesses for Chhota Shigri Glacier were
obtained from the selected ABT and AAT models, and differences
between the two approaches were calculated (Fig. 8). On the
boundaries of the glacier, the ice thickness ranges from 0 to 15
m, whereas the mid area of the glacier shows ice-thickness values

ranging from 175 to 300 m. The altitudinal range between 4550
and 5000 m shows maximum ice thickness ranging from 200 to
300 m. The mean ice thickness of GPR points was 159 m whereas
the mean thickness of the AAT model was estimated to be 152 m.
The mean elevation of the DGPS survey (October 2009), mean
altitude from the Cartosat-1 DEM, and the maximum and
mean ice depth of GPR, ABT and AAT are shown in Table S1.

The ice thicknesses (bedrock topography) obtained from ABT,
AAT, GlabTop (Frey and others, 2014) and Glabtop-2
(Ramsankaran and others, 2018) models were compared with
GPR thickness measurements for all five transverse sections
(Fig. 9). The maximum ice thickness was observed at cross section
4 for both the AAT and ABT models but the minimum ice thick-
ness given by the ABT model was slightly higher than the GPR
value (Table S1). The mean surface elevation, maximum ice
depth and mean ice depth for additional cross sections A–E are
given in Table S2. A maximum ice thickness of 290 was estimated
at cross section D using the AAT model. The ANN modelled

Fig. 5. Performance of ABT for Chhota Shigri Glacier ice thickness (in metres). The four plots display the outputs of the neural network model with respect to the
targets for training, validation, and test sets of the neural network model.
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ice-thickness distribution for sections A–E is plotted in Figure 10.
The elevation vs distance along the longitudinal cross section (L1)
of Chhota Shigri surface and ice thickness vs distance obtained
using the ANN (AAT) model are shown in Figure 11.

Modelled ice thicknesses show varying levels of agreement
with the observations at all five cross sections (Fig. 9). The
AAT model showed lesser deviations towards the west side
while the deviations were greater on the east side when compared
to the GPR cross sections. The ABT model also showed greater
deviations for all sections on the east side. The reason behind
this shift may be the topographic pattern of the eastern sidewall
of the glacier, given that the transverse section also included a
portion of the glacier sidewall (300 m) in the input and training
datasets. Another reason may be related to the interpolated values
of GPR data at the sides due to the complexities of data collection.

To understand the relationship of ABT and AAT data points
with GPR data points, the Pearson R was used. The values of R
for ABT and AAT are given in Table S3. AAT performed better

than ABT for cross sections 1–5, as suggested by the R values.
ABT showed the highest correlation for cross section 3 whereas
AAT showed the best correlation for cross section 2. The differ-
ences are probably due to the fact that AAT used partial GPR
information of four points per profile randomly whereas ABT
used only extrapolated values as targets. For both cases, the lowest
correlation was observed for cross section 1. Large differences
between observed and modelled ice thicknesses at transverse sec-
tion 1 (Fig. 12), particularly at greater ice thicknesses, may be due
to variations in surface slope, which is used as a predictor in the
ANNs.

4.4 Error analysis

The overall RMSE of the DEM was estimated to be 10 m. While
the Cartosat-1 DEM was generated from April 2007 imagery,
the GCPs were collected in October 2009 and October 2010.
The mean bias error for transverse cross section altitudes between

Fig. 6. Performance of AAT for Chhota Shigri Glacier ice thickness (in metres). The four plots display the outputs of the neural network model with respect to the
targets for training, validation, and test sets of the neural network model.
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DEM and GCPs was 4.6 m (Table S1). Based on the lower RMSE
and mean bias errors, the temporal difference between DEM and
GCPs can be ignored.

Comparisons of modelled and observed ice thicknesses that
include interpolated GPR data yield RMSEs of 27 and 16 m for
ABT and AAT models, respectively. Without the interpolated
data, the RMSE decreased to 24 and 13 m for ABT and AAT
models, respectively.

The errors in GPR thickness (±15 m), mean average bias of
ABT (±13 m) and AAT (±6 m), error in kriging interpolation

(±3.5 m for ABT and ±3 m for AAT) and error in DEM (±5 m)
were calculated as quadratic addition (Vanlooy and others,
2014). The total error for glacier ice thickness estimation using
quadratic addition was ±21 m (ABT) and ±17 m (AAT).
Therefore, mean ice-thickness estimates with errors were 104 ±
21 and 109 ± 17 m for ABT and AAT, respectively. The total
error in ice thickness was converted to a total error in volume
by multiplying by the area of the glacier (15.5 km2). The result
has a total uncertainty in the ice volume of ±0.33 km3 (ABT)
and ±0.26 km3 (AAT). Therefore, the volume of the Chhota

Fig. 7. Error histogram of the ABT model with 20 bins showing the error distribution (error histograms show training, validation and testing data as blue, green and
red bars, respectively).

Fig. 8. Interpolated ice-thicknesses of Chhota Shigri Glacier, obtained from the ABT model (a) and the AAT model (b). The difference between the two approaches is
shown in (c).
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Shigri Glacier is estimated to be 1.61 ± 0.33 and 1.69 ± 0.26 km3

for ABT and AAT models, respectively. The minor differences
in the ice-thickness uncertainty between the GPR estimates
(±15 m) reported by Azam and others (2012) and the present
modelling estimates (±21 and ±17 m) indicate that the ANN
model performance is acceptable.

5. Discussion

Field-based GPR surveys are one of the best available methods for
ice-thickness measurements. However, due to rough terrain, harsh
climatic conditions and high expedition costs, GPR surveys for
ice-thickness estimates have been conducted on very few glaciers
in the Himalaya. The motivation for this study is to estimate ice

Fig. 9. Comparison of observed and modelled ice thicknesses at five cross sections
using the AAT model (green), ABT model (red), GPR measurements (black),
GlabTop2 model of Ramsankaran and others (2018) (blue), and the model of Frey
and others (2014) (brown).

Fig. 10. Modelled ice thicknesses at transects A–E (green for AAT and red for ABT),
with surface elevations from the DGPS survey (black).

Fig. 11. Curves of elevation vs distance along the longitudinal cross section (L1) of
Chhota Shigri surface (in light blue) and ice thickness vs distance obtained using
the ANN (AAT) model (dark blue) for the section L1. The glacier is shown as a light
blue fill.
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Fig. 12. Left: scatter plots of ice thicknesses obtained using the ABT model vs GPR ice thickness measurements for cross sections (1–5). Right: scatter plots of ice
thicknesses obtained using the AAT model vs GPR ice thickness measurements for cross sections (1–5).
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thickness for individual glaciers with or without GPR measure-
ments. In the absence of validation data, the performance of the
ANN model was difficult to assess in the case of Gangotri glacier
(Haq and others, 2014). Haq and others (2014) used the slope of
sidewalls that extended 500 m out from the glacier to train an
ANN, but the sidewalls were treated as a single entity.

5.1 Limitations

ANNs do not make use of glacier physics, so the modelling
requires careful selection of parameters. One of the important
issues faced during the present investigation was the selection of
an optimal number of transverse sections. Ten transverse cross
sections were used in this study, five of which were coincident
with GPR measurements of ice thickness. More cross sections
could potentially be added, but model stability and complex top-
ography at higher elevations (>5200 m a.s.l.) limit the value of
having additional cross sections.

Major limitations of ANN models include their black box
nature, the possibility of overfitting, and the empirical nature of
model development. Another shortcoming of the ANN approach
is that it is computationally intensive and hence difficult to apply
over large regions. Studies such as Frey and others (2014) and
Farinotti and others (2020) applied their approaches on a regional
scale. Regional-scale models require normalization of parameters
such as shape factor to account for varying glacier shapes and top-
ography. The present approach, calibrated for one glacier with in
situ observations, is more likely to perform well on similar glaciers
than a model trained at a regional scale.

5.2 Comparison with other studies

In this section, we compare our results with those of previously
published studies on Chhota Shigri Glacier (Table 3). Our
model has two outputs: ABT and AAT. One of the goals of the
current study is to show the capability of ANN models to simulate
ice thickness without calibration. Other studies, such as Frey and
others (2014) and Ramsankaran and others (2018), used GPR
data from Chhota Shigri Glacier to train the GlabTop and the
improved GlapTop2 models (Table 3, Table S4). The outputs
from these models were compared with those of our trained
model (AAT) to show the strength of ANN modelling. In the pre-
sent study, the mean ice thickness for the entire Chhota Shigri
Glacier is estimated to be 109 m, whereas Ramsankaran and
others (2018) estimated it to be 121 m. The ice thickness of five
transverse cross sections (1–5) is plotted in Figure 7 along with
the transverse cross sections generated by Ramsankaran and
others (2018) and Frey and others (2014) using the 10 m DEM
from Ramsankaran and others (2018). AAT and ABT showed a
better match with the GPR data (Tables S4 and S5) compared

to previous ice thickness estimates by Frey and others (2014)
and Ramsankaran and others (2018). The modelled average
ice-thickness errors ranging from 6 to 21 m for ABT and from
1 to 13 m for AAT were lower than the mean bias error for
ice-thickness ranging from 9 to 22 m estimated by
Ramsankaran and others (2018) at different transverse sections.
The mean bias error for ice-thickness was also found to be
lower than estimated by Frey and others (2014) (Table S4). The
high errors in Frey and others (2014) were probably due to the
relatively low-resolution DEM (SRTM 90m) they used and the
value of the shape factor (Ramsankaran and others, 2018). To
address the spatial resolution issue in Frey and others (2014),
we used a 10 m DEM (TandemX) developed by Ramsankaran
and others (2018) and re-estimated the ice thicknesses. It was
observed that the mean bias error for ice-thickness for transverse
cross sections was between −1 and 53 m. Additionally, the per-
formance for each transverse cross section based on the RMSE
is given in Table S5. Figure 7 shows that GlabTop results can
have 100–150 m differences with GPR measurements at some
locations. The ice volume of 1.69 ± 0.26 km3 for Chhota Shigri
Glacier derived using the AAT model in the present study showed
good agreement with the volume of 1.74 ± 0.25 km3 derived by
Ramsankaran and others (2018).

Vashisht and others (2017) used glacier flow mechanics,
thickness-area scaling and volume-area scaling methods and esti-
mated the volume of Chhota Shigri Glacier as 0.55, 1.40 and 7.15
km3, respectively. Interestingly, the estimated volume using the
volume–area scaling method was 13 times higher than the volume
estimated from glacier flow mechanics. Singh and others (2012)
used the thickness-area scaling method and GPR data and com-
puted a volume of 1.20 km3. Dobhal and others (1995) used
residual Bouger values to compute a volume of 0.64 km3.

5.3 Outlook

Worthwhile directions for future study would be to investigate the
potential of deep learning networks such as convolution neural
networks (CNNs) with more number of parameters such as sur-
face velocities (e.g. Dehecq and others, 2019) and mass balance
(e.g. Wu and others, 2019) for more number of glaciers. The
more the model is constrained with input predictors, the less
dependency on data it will have. Another future scope of the pre-
sent research will be to apply the ABT model on additional data-
sets for testing.

6. Conclusion

In this work, two ANN models were developed to estimate the
glacier ice thickness at 10 transverse cross sections and two longi-
tudinal cross sections on Chhota Shigri Glacier in western
Himalaya, India. The model results were compared with the
GPR-derived ice thicknesses on five transverse cross sections
located between 4400 and 4900 m a.s.l. on Chhota Shigri
Glacier. The results of the current investigation indicate that the
ice thickness and volume of a glacier can be estimated fairly
well using ANN models. Furthermore, an ANN model alone,
without integrating ice thickness observations, was shown to pro-
vide a good estimate of the glacier ice-thickness distribution. The
ABT estimated mean ice thickness and volume for Chhota Shigri
Glacier are 104 ± 21 m and 1.61 ± 0.33 km3, respectively, while the
AAT estimated mean ice thickness and volume for Chhota Shigri
Glacier are 109 ± 17 m and 1.69 ± 0.26 km3, respectively.

The ABT and AAT estimates of ice thickness showed good
agreement with the GPR measurements available for five cross
sections. Mean bias errors for ice thickness along the measured
profiles ranging from 6 to 21 m for ABT and from 1 to 13 m

Table 3. The volume of Chhota Shigri Glacier is derived from different methods
and studies

Methods
Volume
(km3) Reference

ANN (ABT) 1.61 ± 0.33 Current investigation
ANN (AAT) 1.69 ± 0.26 Current investigation
GlabTop-2 1.74 ± 0.25 Ramsankaran and others

(2018)
Glacier flow mechanics 0.55 Vashishth and others (2017)
Thickness-area scaling 1.40 Vashishth and others (2017)
Volume-area scaling 7.15 Vashishth and others (2017)
Thickness-area scaling and GPR
data

1.20 Singh and others (2012)

Residual Bouger values 0.64 Dobhal and others (1995)
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for AAT are lower than the average ice-thickness errors ranging
from 9 to 22 m estimated by Ramsankaran and others (2018)
for all transverse cross sections. Based on the calculated RMSE
values, ANN models trained with and without ice thickness obser-
vations provide reasonable estimates of ice thickness. The ANN
architecture used in this study requires minimal input data that
can be extracted for other locations. However, model transferability
remains an open question, and future research should be directed
towards CNNs and additional model inputs such as surface velocity
(Dehecq and others, 2019) and mass balance (e.g. Wu and others,
2019). The more the model is constrained with input predictors,
the less dependency on data it will have.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2021.19
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