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SUMMARY

Although spatio-temporal patterns of influenza spread often suggest that environmental factors

play a role, their effect on the geographical variation in the timing of annual epidemics has

not been assessed. We examined the effect of solar radiation, dew point, temperature and

geographical position on the city-specific timing of epidemics in the USA. Using paediatric

in-patient data from hospitals in 35 cities for each influenza season in the study period

2000–2005, we determined ‘epidemic timing’ by identifying the week of peak influenza activity.

For each city we calculated averages of daily climate measurements for 1 October to 31 December.

Bayesian hierarchical models were used to assess the strength of association between each

variable and epidemic timing. Of the climate variables only solar radiation was significantly

related to epidemic timing (95% CI x0.027 to x0.0032). Future studies may elucidate biological

mechanisms intrinsically linked to solar radiation that contribute to epidemic timing in temperate

regions.

Key words : Climate, geographical position, influenza, meteorological variables, solar radiation.

INTRODUCTION

Despite the year-round circulation of the influenza

virus in tropical regions [1–3], in temperate zones,

annual influenza epidemics consistently emerge in the

winter months. In the tropics, even though seasonal

changes in temperature and day length are less

pronounced and influenza epidemics are smaller,

influenza incidence still tends to peak during the rainy

season [2, 4]. The coincident timing of influenza epi-

demics with climatic changes suggests that environ-

mental factors may play a role in effecting changes in

the virus, the host or the interplay between host and

virus.

Several features of the winter experience in tem-

perate regions, such as colder outdoor temperatures,

drier indoor conditions, reduced exposure to solar

radiation and indoor crowding have been proposed

as determinants of epidemic timing [2, 5–7]. Recent
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animal studies have linked low temperatures and low

relative humidity to increased rates of aerosol but not

contact transmission of the influenza virus [5, 6, 8].

Using data from France, from 1971 to 2002, Viboud

et al. also found a higher incidence of influenza during

the cold phases of the El Niño/Southern Oscillation,

relative to the warm phases [7]. These studies con-

tribute to the growing body of evidence that point to

the role of low temperatures and humidity in facili-

tating the airborne transmission of the influenza

virus. To better understand the importance of relative

humidity and temperature in determining the timing

of influenza epidemics, Lowen et al. called for further

studies based on surveillance and meteorological data

at a fine spatial resolution [6].

In addition to temperature and relative humidity,

solar radiation may also play a role, as varying ex-

posure to sunlight is known to affect innate immunity

and may also inactivate the airborne virus [2, 9, 10].

During autumn and winter, reduced exposure to

sunlight affects immune function by altering the en-

dogenous production of specific immunomodulators

[2, 11–15]. For example, dermal production of vit-

amin D3, an important immune system regulator [16]

requires direct skin exposure to ultraviolet B radi-

ation. Thus, during the winter, levels of circulating

vitamin D3 diminish, rendering the inhabitants of

temperate regions more susceptible to infection

[2, 15]. However, another immune system regulator

and antioxidant, melatonin, increases with decreased

daylight exposure and thus may offer some protection

against influenza in northern areas with fewer day-

light hours [11–13]. Findings from a recent study

by Finkelman et al. provide some support for a nega-

tive association between solar radiation and epidemic

timing, at least at the global scale [17]. Analysing

patterns of influenza epidemic timing among 19

temperate countries, from 1997 to 2005, they found

that influenza A epidemics were significantly earlier

in low-latitude countries than in high-latitude coun-

tries.

Other studies of influenza epidemic timing in the

tropics and subtropics have revealed a relationship be-

tween climate and influenza spread [4, 18]. Chew et al.

investigated the effects of climate on the broader class

of viral respiratory infections and found a significant

positive association between influenza B incidence and

precipitation [18]. In a study describing the geographi-

cal variation in epidemic timing in Brazil, Alonso et al.

believed that the observed spatio-temporal patterns of

spread were better explained by climate (i.e. humidity,

temperature and precipitation) than by population

demographics and travel [4].

In this paper we examine the effect of latitude,

longitude, temperature, dew point and solar radiation

on the city-specific timing of peak influenza activity

throughout the USA, in order to better understand the

environmental and geographic factors that promote

influenza spread in temperate regions.

METHODS

Timing of influenza epidemics

We acquired hospitalization records for all respirat-

ory illness for each of 37 paediatric hospitals partici-

pating in the Pediatric Health Information System

(PHIS), for the study period 2000–2005 (Fig. 1).

Situated in large metropolitan areas, PHIS member

hospitals are amongst the largest and most advanced

paediatric hospitals in the USA. Since only a subset of

respiratory illness visits are a result of influenza in-

fection, we included only those visits with principal

diagnosis (ICD-9) codes most closely related to influ-

enza. More specifically, we defined an influenza case

as an in-patient visit with an ICD-9 code equal to one

of 486.00, 487.00, 487.1 or 487.8, a subset of codes

that are known to be specific markers of influenza

infection [19]. Restriction to a few influenza-

associated ICD-9 codes provides greater specificity

in identifying in-patient visits due to influenza and

not other co-circulating viruses, such as respiratory

syncytial virus (RSV). RSV incidence has been sig-

nificantly associated with climate [18, 20] and mis-

classifying RSV cases as influenza cases could impact

the results of the analysis.

The study period comprised five influenza seasons

where each influenza season was defined as the 40th

week of the calendar year to the 39th week of the

following year. For each city and each influenza sea-

son in the study period, we found the weekly totals of

influenza cases and defined the timing of the epidemic

as the week with the maximum number of influenza

cases (i.e. the ‘city-specific peak week’). We also con-

sidered, as candidates for ‘city-specific peak week’,

those weeks in which the number of visits were within

5% of the maximum number of visits. For about

70% of the 35 citiesr5 seasons =175 epidemics, we

were able to identify a single week that qualified as the

‘peak week’.

To guide the choice of city-specific peak week in

the case of multiple candidate weeks we used the
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regional WHO-NREVSS viral isolate data which

are available at the CDC website [21]. Each year,

WHO and NREVSS laboratories test a large number

of specimens for the influenza virus. Weekly counts

of positive specimens (viral isolates) are computed

for each of nine regions that together comprise the

50 states of USA and the District of Columbia. Using

these data, we determined the regional viral isolate

peak week for each influenza season. In addition to

the regional viral isolate peak weeks, we considered

the city-specific RSV peak weeks, estimated from the

series of weekly PHIS hospitalizations corresponding

to the RSV-specific ICD-9 code 466.11. In selecting

the city-specific influenza peak week our goal was to

choose the candidate week that was preceded and

followed by weeks of substantial influenza activity

and the candidate week that corresponded more

closely to the regional viral isolate peak week than

the RSV peak week. First, if there were more than

two candidates, we chose the two candidates that

were closest to the WHO-NREVSS regional viral

isolate peak week. The candidate that was finally

chosen as the city-specific peak week satisfied at least

two of the following three criteria: (1) the candidate

week was closest to the regional viral isolate peak

week, (2) the candidate week had the greatest number

of visits in a 7-week period that included the 3 weeks

preceding and following the candidate week and

(3) the candidate week was furthest from the city-

specific RSV peak week. The candidate week that

satisfied at least two of the three criteria was selected

as ‘peak week’ for that city and influenza season.

Meteorological data and potentially confounding

variables

For each city, daily average temperature and dew-

point data were compiled using observations from

the meteorological station closest to the hospital.

These data were drawn from the National Oceanic

and Atmospheric Administration (NOAA) National

Climate Data Center (NCDC) Cooperative Summary

of the Day TD3200 dataset. Daily short-wave solar

radiation estimates were extracted from 8 km resol-

ution gridded meteorological surfaces for the USA

generated by the National Aeronautics and Space

Administration (NASA) Ecological Forecasting

Laboratory using the NASA Terrestrial Observation

and Prediction System (TOPS). Incident short-wave

solar radiation surfaces were generated by applying

the DAYMET algorithm [22] which estimates incident

solar radiation as a function of diurnal temperature

range and sun-slope geometry. For each influenza

season, we calculated city-specific averages of solar

radiation, dew-point and average daily tempera-

ture measurements for the 3 months preceding the

usual time of onset of epidemics (i.e. October–

December). These daily climate variable averages

were assessed as predictors of peak week in the stat-

istical analyses.
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Fig. 1. Map of USA showing cities and states of Pediatric Health Information System hospitals.
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In addition to the climate variables, we assessed

the strength of association between three socio-

demographic variables and peak week. The first was

population size, a variable that was found to be a

potential determinant of epidemic timing in the USA

for data aggregated at the state level [23]. We also

assessed the effect of population density on timing

because increased crowding may promote faster

spread of an epidemic and result in an earlier influ-

enza peak. The last variable we considered was the

percentage of the population aged <18 years. Studies

on the age-specific timing of influenza activity have

found that paediatric groups lead adult groups in

timing of influenza activity [24, 25]. Increased rates

of transmission may occur in areas that have a greater

proportion of the population aged <18 years [26].

Data for socio-demographic variables were obtained

from the United States Census 2000 [27].

Missing data

Of the 37 hospitals, two were excluded from the

analysis. For one of the hospitals (in Milwaukee, WI)

we had insufficient meteorological data due to nu-

merous data gaps. The second hospital (in Palo Alto,

CA) had only 606 cases across the five influenza sea-

sons, resulting in a time series without discernible in-

fluenza peaks. In addition, two cities, St Louis (MO)

and Atlanta (GA) were missing solar radiation values

for the first influenza season, so these were imputed

with solar radiation measurements from nearby cities

Kansas City (MO) and Birmingham (AL)/Nashville

(TN), respectively. Two cities, New York City and

Oakland were missing in-patient counts for the first

two influenza seasons and their missing peak weeks

were automatically imputed in the Bayesian analysis.

Statistical analysis

Our goal was to assess the strength of the association

between the city-specific climate variable averages and

the city-specific peak weeks over the five influenza

seasons of the study period. The correlations in

measurements from the same city and measurements

from the same influenza season preclude a regression

analysis based on data pooled over all cities and in-

fluenza seasons. While an overall impression of the

strength of association may have been attained from

separate analyses by season, the range in the climate

variable measurements (averages) was limited for

some seasons so accuracy in parameter estimation

may have been compromised by using this approach.

In addition, greater statistical power may be achieved

with a statistical analysis that utilizes all the data at

once. Thus, we used multilevel models to determine

the individual contribution of each of the environ-

mental factors on epidemic timing.

We applied a Bayesian approach, as inference for

generalized mixed models can be particularly sensitive

to the point estimates of the variance parameters

when there is insufficient information in the data

given the complexity of the model. Bayesian hier-

archical models average over the uncertainty of the

parameters of the model rather than using point esti-

mates [28] thus, in the case of sparse data where the

point estimates of variance parameters are imprecise,

the Bayesian approach should give more reliable re-

sults. We also had to consider that latitude, tempera-

ture, solar radiation and dew point are correlated

variables. Due to our relatively small sample size and

the collinearity between the variables, we assessed the

relationship between each variable with peak week

without adjusting for the other covariates.

The Bayesian model we used included city and

influenza season random effects to account for the

correlations in multiple measurements from the same

city and influenza season. Let yi represent the peak

week of the epidemic and xi the independent variable

(i.e. climate variable, latitude or longitude). Further,

let the categorical variables j [i ] and k[i ] represent the

city and the influenza season, respectively, in which

measurement i was made. There were 35 cities and five

influenza seasons giving a total of 35r5=175 peak

week, solar radiation, temperature and dew-point

measurements. The formulation of the model is as

follows:

yi �N(a:cityj[i ]+a:seasonk[i ]+b �xi, s2
y), i=1, . . . , 175

a:cityj � N(ma:city, s
2
a:city), j=1, . . . , 35

a:seasonk � N(ma:season, s
2
a:season), k=1, . . . , 5,

whereN(m, s2) represents the normal distribution with

mean m and variance s2. The random effects for city

and season are denoted by a.city and a.season, re-

spectively. The city random effects are subject to the

identifiability constraint
P35

j=1 a:cityj=0. We chose

vague priors for the standard deviations and means of

the random effects, Uniform(0, 100) and Normal(0,

106) distributions, respectively. All analyses were con-

ducted using R and WinBUGS 1.4 software [31, 32].

WinBUGS software is particularly convenient
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because it automatically performs multiple impu-

tations for missing outcome data [32].

The potential scale reduction factor R̂ was used to

assess convergence of theMarkov ChainMonte Carlo

(MCMC) sequence [33] and test runs demonstrated

that with 30 000 iterations, R̂<1.01 for all models,

indicating that convergence was achieved. Thus, three

chains of length 30 000with different initial values were

generated, 15 000 were discarded as burn-in iterations

and the sequence was thinned, so that only every fifth

simulated draw was retained leaving a posterior sam-

ple of 9000 for parameter estimation.

RESULTS

From 1 October 2000 to 30 September 2005, there

were a total of 63 334 PHIS cases that met the case

definition. City-specific five season totals ranged from

734 (Omaha, NE) to 4844 (Houston, TX) with a mean

of 1828 cases per city. The mean of solar radiation

averages for October–December was 185.0 W/m2 and

ranged from 40.13 to 316.9 W/m2 over the five influ-

enza seasons. The mean of the temperature and dew-

point averages were 11.0 xC (range x0.43 to 24.3)

and 5.3 xC (range x6.3 to 9.7), respectively. Latitude

ranged from 25.7x to 47.7x and longitude ranged from

x122.3x to x71.1x.

Figure 2 shows peak week averaged over the five

influenza seasons plotted against latitude. In the

multilevel modelling of peak week on geographical

coordinates, we observed a positive association with

latitude (0.13 weeks per degree, 95% CI 0.013–0.24)

but not with longitude (0.0115 weeks per degree, 95%

CI x0.033 to 0.056).

In Figure 3, we present the cities with the five

earliest peak weeks in each season. Cities in Texas

tended to be earlier in all but the 2004–2005 season.

Epidemics in Texas were estimated to be about 3weeks

earlier than in other cities (x3.16 weeks, 95% CI

x4.69 to x1.64). However, relative to the Texas
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cities, the epidemics in cities at similar southern lati-

tudes in California tended to have later peaks. In fact,

cities in California were never amongst the earliest

(Fig. 3). In Figure 4, we show the series of hospital in-

patient visits for four cities, Orange (CA), Cincinnati

(OH), Houston (TX) and New Orleans (LA).

The results of the multilevel modelling, assessing

the association of each climate variable with the peak

week of influenza visits, are shown in Table 1. Solar

radiation is negatively associated with peak week

(x0.015 weeks per W/m2, 95% CI x0.027 to

x0.0032). Figure 5 displays the graph of peak week

vs. solar radiation averaged over the five influenza

seasons. We did not find a similar significant relation-

ship between peak week and temperature (x0.098

weeks/xC, 95% CI x0.21 to 0.021) and peak week

and dew point (x0.085 weeks/xC, 95% CI x0.20

to 0.031). The socio-demographic variables were not

associated with the week of peak influenza activity

(Table 1).

To assess the sensitivity of the results to the choice

of prior, we re-ran the analyses with three additional

sets of priors for the variance parameters but the

change in the results was minimal. Only average tem-

perature and average dew point appeared marginally

significant when using a gamma prior for the

precisions. We also assessed sensitivity of the results

to the time period of averaging for the climate vari-

ables. Rather than averaging weekly measurements

over 1 October to 31 December, we re-ran the analy-

ses using two alternatives: averages over 29 October

to 31 December and averages over 26 November to

31 December. These changes did not alter the signifi-

cance for any of the variables.

DISCUSSION

In this study we have shown that, for the five influenza

seasons between 2000 and 2005, cities with higher

average solar radiation values over the time period

October–December tended to have earlier influenza

epidemics. Similarly, we found that latitude was

positively associated to peak week but longitudinal

position was not. Neither temperature nor dew point

was significantly related to the week of peak influenza

activity.

In previous studies, patterns of influenza spread

have been associated with latitude, on the global

scale, and longitude, at a finer geographic resolution

in Japan and Europe [17, 34, 35]. Although we found

a relationship between latitude and timing of peak

influenza activity, this association may be explained,

to some extent, by our finding of a negative associ-

ation between solar radiation and peak timing.

Although our objective was to determine whether the

spatial variation in the timing of peak influenza ac-

tivity could be related to the geographical variation in

solar radiation, temperature and dew point, we note

that these results do not support many of the current

hypotheses that attempt to explain the winter timing

of influenza epidemics. For example, if the timing of

influenza epidemics were strongly related to indoor

crowding, drier indoor conditions, colder outdoor

temperatures, ultraviolet inactivation of the virus or

reduced levels of circulating vitamin D3, we would

expect to see earlier epidemics in the northern cities of

the USA. Even at the global scale, Finkelman et al.

observed that countries closer to the equator had

earlier epidemics than countries that were further

from the equator, a finding that also goes against

commonly held beliefs regarding the determinants of

the winter timing of annual influenza epidemics [17].

A study by Viboud et al. revealed a higher incidence

of influenza during the cold phases of the El Niño/

Southern Oscillation, relative to the warm phases [7].

Other evidence in support of the role of temperature

and relative humidity comes from animal studies in

which lower temperatures and humidity were linked
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to higher rates of aerosol (but not contact) trans-

mission of the influenza virus [5, 6, 8]. Although our

study focused on the spatio-temporal variation of

epidemic timing (i.e. not incidence) within an influ-

enza season, we did not find a significant relationship

with temperature or dew point and the observed sig-

nificant relationships with solar radiation and latitude

would imply that, if there were a significant relation-

ship, we would find higher temperatures and dew

point associated with earlier epidemics.

While the overall spatio-temporal trends of peak

influenza activity give evidence of the role of solar

radiation and latitude as predictors of epidemic

timing, the specific patterns in the geographical vari-

ation of peak influenza activity deserve further atten-

tion. Viboud et al. used state-specific counts of excess

mortality due to pneumonia and influenza to examine

the timing of influenza epidemics for the 48 contigu-

ous states of the USA (and the District of Columbia)

for the study period 1972 to 2002 and found that
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Table 1. Relationship between climate, geographical and socio-demographic variables and timing of epidemic

Variable
Regression
coefficient S.D. 95% credible interval

Solar radiation (W/m2) x0.015 0.0060 x0.027 to x0.0032

x0.031 to x0.00004 (99% CI)
Latitude 0.13 0.057 0.013 to 0.24
Longitude 0.0115 0.023 x0.033 to 0.056

Dew point (xC) x0.085 0.059 x0.20 to 0.031
Average daily temp. (xC) x0.098 0.060 x0.21 to 0.021
% of population <18 yr x0.074 0.15 x0.36 to 0.21
Population size

(per 10 000)

0.005 0.024 x0.041 to 0.052

Population density
(per 100 000rsquare mile of area)

0.82 0.71 x0.58 to 2.28
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influenza epidemics most often started in the state of

California and the more populous states had a greater

tendency towards synchrony in the timing of epi-

demics [23]. In our study, we found an association

with latitude but this observed association may have

been partly driven by the early epidemics in a few

south-eastern cities (e.g. cities in eastern Texas were

earlier by an average of 3 weeks).

Unlike other studies, in which air travel, connec-

tions to Asia and Australia and population size have

been offered as determinants of influenza spread

[23, 36], we did not find an association between city

population size or density and epidemic timing and

the cities with the greatest share of overseas visitors,

namely New York City and Los Angeles [37], did not

have earlier epidemics. While it is true that these con-

clusions are based on only 5 years of data, lifestyle and

air travel have changed in the last 30 years and, as a

result, the important determinants of influenza spread

may also have changed somewhat during that period.

Although the results concerning the relationship

between solar radiation and epidemic timing are

robust, given that observations from the same city

and observations from the same year are correlated,

this study was limited by a relatively small sample size

of 35 cities, each with just five seasons of in-patient

visit data. Furthermore, we had a greater number of

cities in the more humid eastern region of the country

and those cities in western USA were mostly situated

in the south. The inclusion of a greater number of

cities in the northern extremes of latitude and in the

more arid western regions may have revealed a more

pronounced effect of latitude and may have enabled

the detection of a significant association with tem-

perature and dew point. In addition, a longer period

of study may have permitted an examination of the

interaction between the environmental factors and the

influenza season’s predominant strain.

In our analyses, we did not adjust for multiple

comparisons, but our main study objective involved

an assessment of the association of only five variables

with epidemic timing, thus the expected number of

false positives is <1. Moreover, solar radiation was

significant at the 0.01 level and with a threshold

for significance set at 0.01 for each test, the signifi-

cance level for the family of five tests is <0.05 (i.e.

5r0.01).

Epidemiological studies of influenza are often lim-

ited by a broad case definition and the lack of viral

confirmation for cases. Influenza-like illness en-

compasses many respiratory illnesses, including RSV

and influenza. Children (i.e. aged <18 years), in
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particular, have different clinical presentations which

may lead to misclassification. To avoid misclassifica-

tion and confusing RSV peak weeks for influenza

peak weeks, we included only in-patient visits with

ICD-9 codes belonging to a subset of codes that have

been shown to be specific for influenza [19]. In ad-

dition, when there were several candidates for peak

week, we used the CDC regional viral isolate peaks

and city-specific RSV peaks (estimated from the PHIS

data) to guide the choice of peak that would best

represent the true influenza peak. In children aged

<5 years, RSV accounts for a greater proportion of

respiratory infection than does influenza. However,

the contribution of RSV and influenza is about equal

in children aged 5–14 years [38]. Thus, it is plausible

that restricting the case definition to children agedo5

years will lead to more accurate identification of in-

fluenza cases. Unfortunately, only about one third of

the cases fitting our influenza case definition were

aged o5 years. Consequently, the series of weekly

counts of cases in this age group was particularly

noisy for hospitals with smaller total counts and epi-

demic peaks were not easily identified. Rather than

basing our analyses on children aged o5 years, we

validated a subset of our peak-week measurements

identified from the all-ages series with those from the

o5 years series. To do this, we determined the peak

weeks for each season for eight hospitals with larger

total counts and using a multilevel model with a di-

chotomous independent variable (i.e. ‘all-ages ’=0,

‘o5 years ’=1) we did not find a significant difference

between the 8 hospitalr5 season=40 peak-week

measurements from the two datasets, giving greater

reassurance that we are indeed identifying influenza

and not RSV peak weeks. Even so, healthcare utiliz-

ation data encompasses a complex behavioural com-

ponent and as these data were not collected for the

specific purpose of this research, the results are subject

to the standard limitation of analysing administrative

data.

We chose to average meteorological variable

measurements over the 3-month period of October–

December and considered two other time periods for

averaging in a sensitivity analysis but averages over

shorter periods may be revealing. Further, future re-

search should investigate the effects of other environ-

mental factors, such as precipitation and diurnal

temperature range, as previous studies have found

evidence of their effect on influenza spread [18, 39].

Although solar radiation was found to be significantly

related to peak timing, the relationship between these

variables can be further refined. In particular, future

research could provide more detailed insight into

possible threshold effects of these meteorological

variables on the peak timing of epidemics.

Peak week of the epidemic was used as the marker

of epidemic timing in our study because it is one of the

most easily identified features of the distribution of

incident cases in a given season. Although we used the

week corresponding to the crude peak, when there

was not a single, well-defined peak, estimates of the

peak week from time-series analytical methods or es-

timates of the mean week may have better captured

the week corresponding to the centre of the epidemic.

Onset and end of the epidemic may be more difficult

to discern, particularly for data at a fine geographical

resolution where the series of counts of influenza cases

are noisy. If more stable series of counts can be

formed, for example, by combining in-patient data

from multiple hospitals in a city, identification of on-

set and end of the epidemic may be more accurately

estimated and markers of spread based on these may

be considered. For example, a composite measure of

magnitude and duration may reveal interesting pat-

terns in influenza spread.

In this study, using data at a fine spatial resolution,

we observed a significant positive relationship be-

tween latitude and epidemic timing, indicating that, in

the USA, cities at lower latitudes tend to have earlier

epidemics relative to cities at higher latitudes. This

complements the findings of Finkelman et al. that

revealed a positive relationship between latitude and

epidemic timing on the global scale [17]. In addition,

the significant inverse relationship between solar

radiation and epidemic timing potentially offers a

biological basis for the observed significance of lati-

tudinal position. Future studies may help to elucidate

the possible biological mechanisms underlying solar

radiation that may contribute to the spatio-temporal

patterns of influenza spread in temperate regions.
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