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ON MOSCO CONVERGENCE OF CONVEX SETS

GERALD BEER

We present a natural topology compatible with the Mosco convergence of sequences of
closed convex sets in a reflexive space, and characterise the topology in terms of the
continuity of the distance between convex sets and fixed weakly compact ones. When
the space is separable, the topology is Polish. As an application, we show that in this
context, most closed convex sets are almost Chebyshev, a result that fails for the stronger
Hausdorff metric topology.

1. INTRODUCTION

About twenty years ago Mosco [28] introduced a fundamental notation of con-
vergence for sequences of closed convex sets in a reflexive space, now called Mosco
convergence, widely applicable to convex optimisation, the solution of variational in-
equalities, and to the theory of optimal control. Specifically, a sequence {Cn) of closed
convex sets in a reflexive space X is declared Mosco convergent to a closed convex set
C provided:

(i) at each x in C there exists a sequence (xn) convergent strongly to x
such that for each n, xn 6 C'n , and

(ii) whenever (n(k)) is an increasing sequence of positive integers and xn^j £
Cn(k) f° r each k, then the weak convergence of (xn(/t)) to x implies
x G C.

The most celebrated result on Mosco convergence is concerned with the convergence
of sequences of convex functions (as identified with their epigraphs) on a reflexive space.
A sequence of lower semicontinuous proper convex functions (/„) on X is declared
Mosco convergent to a convex function / provided (epi / n ) converges in the above
sense to epi / . Locally, this means at each x in X:

(i) there exists a sequence {xn) convergent strongly to x for which
lim/n(:cn) = f(x), and

(ii) whenever (xn) converges weakly to x, then l iminf / n (z n ) > f(x) [28,

Lemma 1.10]
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With this notion of convergence, the Young-Fenchel transform, that is, the conjugate
operator, is "continuous": if (/„) is Mosco convergent to / , then {f£) is Mosco con-
vergent to /* ([22, 20]).

More recently, Mosco convergence has reared its head at the foundations of func-
tional analysis [7]. If X is reflexive, then the norm convergence of a sequence (yn) in
X* to a nonzero limit y £ X* is equivalent to the Mosco convergence of the sequence
of level sets ({x S X \ (yn, x) = a}) to {x £ X: (y, x) = a}, for each real a . This
is somewhat surprising, for Mosco convergence may be described without reference to
norms or distance at all.

In his monograph on variational convergence [2], At touch displayed a topology
compatible with Mosco convergence of convex functions, and showed that the topology
is Polish (second countable and completely metrisable) when the reflexive space is, in
addition, separable. An induced topology on convex sets is then obtained, identifying
a set with its indicator function (Mosco convergence of a sequence of closed convex sets
is equivalent to the Mosco convergence of their indicator functions). The approach of
Attouch is highly indirect, resting on the equivalence between Mosco convergence of
sequences of functions and the pointwise convergence of their Moreau-Yosida approxi-
mates, under a suitable renorming of the space.

The purpose of this article is provide a direct and much simpler description of the
topology of Mosco convergence for convex sets, that seems more tractible for handling
questions of a geometrical nature. As a particular application, we show that with respect
to this topology, most convex sets in a separable reflexive space are almost Chebyshev,
a result that fails when the stronger HausdorfF metric topology is used instead.

At this time, the most complete reference on Mosco convergence of setsis the thesis

of Sonntag [32]. The reader may also consult [2, 30, 34] and of course, the papers of

Mosco himself.

2. NOTATION AND TERMINOLOGY

In the sequel, all spaces X are real normed linear spaces. We distinguish the

following classes of subsets of X ;

C(X) = the closed convex nonempty subsets of X

K(X) = the weakly compact nonempty subsets of X

O(X) — the strongly open nonempty subsets of X

CL{X) = the strongly closed nonempty subsets of X

We denote the closed unit ball of X by U and the origin of X by 0. If
{x, xi, X2, • • •} C X and (xn) converges strongly (respectively weakly) to x , we write

(respectively x = w — limxn). If A £ CL(X) and if B € CL(X), we set
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d(A, B) = i n f { | | a - 6|| | a G A, b G B}, forgiving the abuse d(x, A) for d({x}, A).
If A' is reflexive and x G X and C G C(X), then x has at least one nearest point
in C. The set of nearest points to x in C is called the metric projection of x onto
C, and will be denoted by P(x, C). A set C is called Chebyshev [20] (respectively
almost Chebyshev [19]) if {x G X | P ( K , C) is a singleton} is all of X (respectively is
a dense and Gg subset of X). If X is strictly convex, then each element of C(X) is
Chebyshev.

For background, it is perhaps worthwhile to list the basic topologies on C(X).
All of them are considered (in a more general setting) either explicitly or implicitly in
a recent unifying paper of Francaviglia, Levi, and Lechicki [18]. If A G C(X) and
B G C(X), then the Hausdorff distance H between the two sets is given by

H{A, B) = inf{a | A + ctU D B and B + all D A}.

Hausdorff distance so defined yields an infinite valued complete metric on C(X) ([9,
24]). We denote the associated topology by TH . It is well-known that Hausdorff metric
convergence of a net of sets is equivalent to the uniform convergence of their distance
functions; more precisely,

H(A,B) = \\d(.,A)-d(.,B)\\00.

A therefore weaker notion of convergence for net of sets is pointwise convergence of their
distance functions. It is known that this convergence is compatible with a completely
regular topology T\y on C(X), called the Wijsman topology, which is metrisable when
X is separable ([18, 26]).

We now turn to the standard "hit and miss" topologies in the literature. For each
nonempty subset E of X , we define collections of closed convex sets E+ and E~ by
the formulas

E+ = {C G C(X) | C C E} and E~ = {C G C(X) | C n E ± 0}.

The topologist's favourite topology of this genre is the Unite or Vietoris topology ([24,
27]) Ty , which includes as a subbase all sets of the form V~ and V+ where V G O(X) .
Thus, a basic open neighbourhood of a convex set C consists of all convex sets that
hit each member of a prescribed finite list of open sets, and which miss (fail to hit) a
prescribed closed set. For the purposes of analysis, this topology is extremely patholog-
ical. The Fell topology rp [16], also called the the topology of closed convergence [24]
or the topology of set convergence [2], has as a subbase all sets of the form V~ where
V G O(X) and (Kc) where K is (strongly) compact. The Fell topology seems to be
well-behaved only when X is finite dimensional; in this case it is Polish (this follows
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from [24, Theorem 4.5.5] and the fact that a Gs subset of a completely metrisable
space is completely metrisable; see more directly the comments preceding Lemma 4.1
of [6]). By the hall topology TB [4], we mean the topology with a subbase consisting
of all sets of the form V~ where V G 0(X) and (Bc)+ where B is closed ball. We
note that O(X) may be replaced by the collection of open balls in the description of a
subbase for Tg, justifying the terminology. It is well known that rp = TW = T~B when
X is finite dimensional (see, for example, Theorem 2.3 of [4]).

Finally, we may consider convergence of convex sets to mean pointwise convergence
of their support functions ([12, 31]). In finite dimensions, this is neither stronger nor
weaker than convergence with respect to the Fell (— Wijsman = ball) topology (see, for
example, [31, p.29].

3. T H E MOSCO TOPOLOGY

DEFINITION: Let X be a Banach space. The Mosco topology TM on C(X) is
the topology generated by all sets of the form V~ whereV £ O(X) and (A'c)+ with
K e K{X).

It is easy to see that the Mosco topology is just the supremum of the Fell topologies
on C(X) induced by the strong and weak topologies on X (thus the Mosco topology
coincides with the Fell topology if and only if X is finite dimensional). We first show
that the Mosco topology is worthy of its name.

THEOREM 3.1. Let X be a Banach space, and let C, Clt C2, C3t... be a sequence

of closed nonempty convex subsets of X. Then (Cn) is Mosco convergent to C if and

only if (Cn) is T^-convergent to C.

PROOF: Suppose (C,,) is Mosco convergent to C. It suffices to show:

(i) if C € V~ with V open, then Cn € V~ eventually, and
(ii) if Cn G K~ for infinitely many n with K weakly compact, then C 6 K~ .

To prove (i), suppose x 6 CC\V ; since there exists a sequence (zn) strongly convergent
to x with xn € Cn for each n, we see that Cn meets V eventually.

To prove (ii), let n(l), n(2),. . . be an increasing sequence of positive integers such
that for each k, Cn(k) meets K. Choose xn(fc) in the intersection; by Eberlein's
Theorem [33, p.178], (x^)) n a s a subsequence weakly convergent to a point of K.
But by condition (ii) in the definition of Mosco convergence, we have x £ C. Thus,
C G K~ .

Conversely, suppose (Cn) is TM -convergent to C. Verification of condition (i) in
the definition of Mosco convergence being routine, we turn to condition (ii). Suppose
x — w — liminfn) where a;n(fc) G Cn(fc) for each k G Z+. If x £ C held, then we
could strongly separate x from C by a continuous linear functional, whence by weak

https://doi.org/10.1017/S0004972700027519 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027519


[5] On Mosco convergence 243

convergence, there exists an index kg such that for each k ^ fco, xn(k) ^ C- As a

result, (Cn) meets the weakly compact set {x} U {zn(fc) | fc ̂  fc0} frequently, whereas

C misses the set. This is incompatible with the TM-convergence of {Cn) to C. Thus,

x £ C , and condition (ii) in the definition of Mosco convergence is verified. |

We now characterise the Mosco topology as a weak topology. We need the following

well-known facts, which follow immediately from the weak compactness of closed balls

in a reflexive space and the weak lower seniicontiiiuity of the norm.

LEMMA 3.2. Let X be reflexive space, let C £ C(X) and let K £ A'(A"). Then:

(a) there exist c £ C and x £ K with d(C, K) = \\c - x\\ ;

(b) if K and C are disjoint, then d(C, K) > 0 ;

(c) for each a > 0 , the parallel body K + ctU is weakly compact.

THEOREM 3.3. Let X be a reflexive space. The Mosco topology is the weakest

topology on C(X) such that for each K £ K(X), A —* d(K, A) is a continuous

functional on C(X).

PROOF: We first show each such functional is r^f-continuous; it then follows that

each is r-continuous whenever TM Q T. Fix K € K(X) and define 6: C(X) —> R

by £(^4) = d(K, A). Let (C'\) be a net iu C(X) TM-convergent to a closed convex

set C. Choose by Lemma 3.2 (a) x G K and c G C with ||x - c\\ — d(K, C). For

each e > 0, (C\) meets c + ell eventually; so, limsup5(C,\) < ^(C)- To show that

6(C) ^ liminf S(C'x), let a > liminf 6(C\) be arbitrary. By Lemma 3.2 (c), K + aU is

weakly compact, and since it meets {C\) frequently, it must meet C by the definition

°f Tjvf-convergence. As a result, 6(C) ^ a .

It remains to show that if each such functional is r-continuous for a topology r

on C(X), then r D rM. To this end, let C G C(X) be fixed and let (C\) be a net

in C(X) r-convergent to C We show that the net is T;v/-convergeiit to C. First,

suppose C £ V~ where V is open. Pick c £ C and £ > 0 such that c + ell C V; by

the r-continuity of A —• d(c, A) at A = C, for all A sufficiently large, we have

d(c, Cx) = \d(c, Cx) - d{c, C)\ < e.

But this means that, eventually, C\ £ V~ . Now suppose C £ (Kc)+ where K £

K(X). By Lemma 3.2 (b), d(K, C) > 0; so, again by r-continuity of A -> d(K, A),

we have, eventually, d(K, C\) > 0. This means that, eventually, C\ £ (Kc)+ . |

THEOREM 3.4. Let X be reflexive. Then the Mosco topology on C(X) is Haus-

dorff and completely regular.

PROOF: Let A and B be distinct members of C(X). Without loss of generality,

we may assume that A PI BQ is nonempty. Pick a £ A (1 Bc and let V = {x \
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\\x - a|| < (.5)d(a, B)} and K = {x | ||.r - a|| < (.b)d(a, B)}. Then V~ and (A"c)+

are disjoint r^-neighbourhoods of A and B, respectively. For complete regularity,

we use Theorem 3.3. Fix C G C(X) and let ft be a r^-neighbourhood of C. Since

(Ec)+ n (Fc)+ = ((E U F)c)+ , t h e r e exis ts {Vi , V2,..., Vn} C O ( X ) a n d K G

such that

c G f ] v.- n (Jic)+ c ft.
i= l

Without loss of generality, we may assume that {Vlt V2, . . . , Vn, K} are pairwise dis-
joint. Choose c; G C n Vi, for i = 1 , . . . , n . By Lemma 3.2 (b), d(C, A") > 0; so there
exists a > 0 such that (K + all) n C = 0 and for each z, q + a t / C Vj. For each
i G {1, 2, . . . . n} define 9i: (C{X), TM) -» i? by 5,-(A) = max{0, 1 - a " 1 ^ ^ , A)},
and define h: (C(X), TM) -> i? by /i(A) = min{l, a " 1 ^ /^ , yl)} . By Theorem 3.3, all
of these functions are Tjvf-continuous, and their product maps C to one, C(X) — ft to
zero, and C(X) to [0, 1]. |

We now compare TM with the topologies mentioned in the introduction.

THEOREM 3.5. Let X be reflexive. On C(X) , we have:

(a) TF C TW = TB C T M ;

(b) T M C T H ;

(c) r M C TV •

PROOF: (a). The inclusion rp C TW C Tg without reflexivity or convexity are
known ([18, Propositions 2.1 and 2.3] and [4, p.84]), and the inclusion Tg C TM is
obvious, because closed balls are weakly compact. It remains to prove that Tg C
Tw • Suppose (C\) is Wijsman convergent to C. Then for each p in X, we have
lira sup d(p, C\) < d(p, C), which is equivalent to saying that whenever C meets an
open set V, then (C\) meets V eventually. It remains to show that if C fails to
meet a ball p+ <xU, then {C\) fails to meet the ball eventually. By Lemma 3.2(b) we
have d(p, C) > a. By Wijsman convergence, we have liminf<£(p, C\) ^ d(p, C)\ so
there exists an index Ao such that if A ^ Ao , then d{p, C\) > o . This means that for
A SJ AO , we have C\ G ((p + aU)c)+ .

(b) We show that each subbasic open set in the Mosco topology is Tfj-open. Suppose
C e V~ where V is open. Pick c G C and e > 0 such that c + eU C V. Clearly
if H(C, A) < e , then 4 e F " . Next suppose that C G (ATC)+ where K is weakly
compact. By Lemma 3.2(b), d(C, K) > 0, and if H(C, A) < d(C, K), then A'nA = 0,
that is Ae(Kc)+.

(c) This is immediate from K(X) C CL(X). |
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Sequential versions of the inclusions TF C TW , TM C TH and n v C TM for convex
sets in a reflexive space can be found in [3] and in [32], and it is well-known that the
first two inclusions may be proper (see, for example, [3, Examples 1 and 5] and [32,
p.1.32]. On the other hand, that the inclusion T\y C TM may be proper was only
recently discovered by me [7]. We remark that in a nonreflexive space, rjy and TM
may in fact be noncomparable (see [3, Example 2] and [32, p.II.25]). We choose not to
dwell on pathology here.

THEOREM 3.6. Let X be reflexive. Then (C(X), rM) is path-connected.

PROOF: It is known (see, for example, [5]) that if A and B are bounded elements
of C(X), then the straight line path g: [0, 1] -» (C(X), rH) defined by

is continuous. Thus, the path remains continuous if we replace TR by the weaker rM .
Thus, it remains to show that each unbounded element C of C(X) can be joined by
TA/-continuous path to some bounded element of C(X). We may assume without loss
of generality that C contains the origin 0, for if c £ C and E = C — c, then it easy
to check that / : [0, 1] —+ {C(X), rjv/) defined by f(a) — ac + E is a continuous path
from E to C.

Assuming now that 9 £ C, we produce a TM-continuous path from C C\U to C.
Define h: [0, 1] - (C'(X), rM> by

f [fl-ar'PlnC if a <1
H(a) = { [ K ' J

\ C if a = l.

We show that the inverse image of each subbasic open set is open. First suppose that
V is open in X and h(a0) £ V~ . Since h is increasing with respect to set inclusion,
if a > a0 , then h(a) £ V~ . Thus, if a0 = 0, then h(a) € V~ for all a. If a0 = 1,
then for some a.\ < 1, we have h(ai) 6 V~ , whence h(ct) £ V~ for all larger a. The
possibility 0 < «0 < 1 remains. Choose c 6 /i(ao)0 V. If c = 6, then for all a we have
h(a) S V~ . Otherwise, since V is open and 0 S C there exists (3 £ (0, 1) for which
0c eCHV. Now 0\\c\\ < \\c\\ < (1-Qo)" 1 , whence a0 > {0 | | c | | r V ||c|| - 1). If
a > OSHclir'^llcH-l), then (1 - a)"1 > 0 \\c\\, and we have 0c£h{a)nV. Thus,
h(a) £ V~ , and the inverse image of V~ is open in all cases.

It is easier to show that the inverse image of (Kc)+ is open whenever K is weakly
compact. Suppose h(a0) £ (Kc)+. Since h is increasing, h(a) £ (A' c )+ for each
a < a0 . We may thus assume that a0 < 1. It remains to produce e > 0 such that
whenever a £ (a 0 , a0 + e), then h(a) £ (Kc)+ . If no such e exists, then for each
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n £ Z + , we can find an G (a o ,Q O +l /n ) with h(an) G K~ . Now {li(an)nJf |
n G Z+} is a family of weakly compact sets with the finite intersection property, and
thus has nonempty intersection. But each point in the intersection lies in /i(c*o) n K >
contradicting h(cto) G (-fc) • Thus, an appropriate e can be found, and the inverse
image or (Kc)+ is open. We conclude that h is a r^-continuous path from C n U to
C , and the proof of path connectedness of the hyperspace is complete. |

4. {C(X), TM) is POLISH WHEN X is SEPARABLE

Although our approach to the Polish metrisability of Mosco convergence when X
is separable and reflexive is somewhat different from that of Attouch, they share a
common thread: ultimately, they both depend on the powerful renorming theorem of
John and Zizler ([21, 15, p.185]). Recall that a Banach space is called locally uniformly
convex if for each XQ of norm 1, whenever (a;,,) is a sequence of vectors of norm 1
satisfying limn_,oo \\xn + xo\\ = 2, then lima;n = x0 [15].

JOHN-ZlZLER RENORMING THEOREM. Let X be a reflexive Banach space. Tlien
X admits an equivalent norm such that both X and X* (with the dual norm) are
locally uniformly convex.

Actually, the result applies to a more inclusive class of spaces, the weakly compactly
generated ones. Of curse, the result is a strengthening of the Kadec-Klee renorming
theorem for spaces with separable dual. As a first step, we determine when (C(X), TM)
is first countable.

LEMMA 4.1. Let X be a. reflexive space. Then (C(X), TM) is first countable if
and only if X is separable.

PROOF: For sufficiency, let E be a countable dense subset of A' and let Q+ be the
positive rationals. Evidently, the topology generated by {V~ | V G O(X)} is equally
well generated by {(x + a(int U))~ \ x G E and a £ Q + } . Now fix C £ C(X). It
remains to show that the topology generated by {{Kc) \ K £ K(X)} has a countable
local base at C . Since X is separable, Cc is Lindelof so that the closed convex set C is
a countable intersection of closed halfspaces [20, p.7]. From this, there exists a collection
of open halfspaces {Hi | I £ Z+} each containing C whose closures have interesction
C. By the weak compactness of K, there exists a finite subset F of Z+ such that
K C U{Hf | i G F}. Choose a G Q+ with K C all. Then aU n (U{#f | i £ F}) is a
weakly compact set disjoint from C that contains K. This shows that all sets of the
form

https://doi.org/10.1017/S0004972700027519 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027519


[9] On Mosco convergence 247

where F C Z + is finite and a 6 Q + determine a local base at C for the topology

generated by {(Kc)+ | K £ K{X)}.

For necessity, suppose X is nonseparable. We show that first countability of TM

fails at the closed convex set C = X . Suppose to the contrary that TM had a countable

local base at C. Then it would have one of the form {fl(n, k) \ n £ Z+ and k £ 1+}

where for each n and k ,

m(n)

il{n,k) = n{x|||x-Pn£||<l/fc}-

and m(n) and {pni>Pn2; • • •, Pnm(n)} depend on n but not on k. Let W be the

closure of the subspace generated by {pni | ti £ Z+ and i < m(n)}. Since X is

assumed nonseparable, W ^ X, and there exists p £ X with W D (p+{7) = 0.

Clearly, {x \ \\x — p\\ < 1}~ is a neighbourhood of C containing no fi(n,fc). |

One consequence of Lemnia 4.1 is that sequences determine the Mosco topology if

and only if X is separable.

LEMMA 4.2. Let X be a separable space. Then {C(X), TM} is separable.

PROOF: If E is a countable dense subset of X , then the polytopes with vertices

in E are TM-dense in C{X). |

Since the Mosco topology depends only on the topology of X and not on the

particular norm chosen, we are free to renorm the space. If we renorm it so that X

and X* are both locally uniformly convex, then Mosco convergence of sequences is

equivalent to a number of other properties, as Sonntag [32, p.II.24] has shown. The

following result was first obtained by Attouch [1], for Hilbert spaces.

SONNTAG-ATTOUCH THEOREM. Let X be a reflexive space such that both X

and X* are locally uniformly convex. Let C, Cj, C2, . . . be a sequence in C(X). The

following are equivalent:

(a) (Cn) is Mosco convergent to C ;

(b) (Cn) is Wisjman convergent to C, that is, for each x £ X , we have

d(x,C)=limd{x,Cn);

(c) for each x £ X, P(x, C) = hmP(x, Cn) .

Statement (c) makes sense in that a locally uniformly convex space is strictly

convex [15, p.31-32], so that the metric projection is single-valued. Actually, Sonntag

obtained his result with less than local uniform convexity. Precisely, he assumed that

both X and X* are strictly convex, and that in both spaces, weak convergence plus

convergence of norms forces strong convergence (Holmes [20] calls a space with these
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two properties an E-space). A proof based on Moreau-Yosida approximation can be
found in [2]. We note that contition (b), in conjunction with Theorem 3.5, says that in
a separable reflexive locally uniformly convex space, we have TM = Tg — TW . Since TW
is metrisable when X is separable ([18, 26]), TM is second countable and metrisable
when X is separable and reflexive. To establish complete metrisability, we use condition
(c), which is formally much stronger than (b).

THEOREM 4.3. Let X be a separable reflexive space. Then (C(X), TM) is a. Polish

space.

PROOF: By the John-Zizler renorming theorem, we may assume that each ele-
ment of C(X) is Chebyshev, and the Mosco convergence of sequences in C(X) can
be described as in the Sonntag—Attouch Theorem. Let {xk \ k £ Z+} be a countable
dense subset of X . For each k 6 Z"1", we define a pseudometric pk on C'(X) by
Pk( A, D) = m i n { l , \\P{xk, A) - P(xk, B)\\} . Now, we write

p(A, £) =
k=i

To see that p is a metric on C(X), note that if A (1 Bc is nonempty, then there
exists Xk with d(xk, A) < d(xk, B), whence P(xk, A) ^ P(xk, B). By Theorem 3.1
and the equivalence of conditions (a) and (c) in the Sonntag-Attouch Theorem, it is
clear that 7>j-convergence of sequences forces their ^-convergence. On the other hand,
Ump(C, Cn) = 0 ensures that for each Xfc , we have d(xk, C) = \imd(xk, Cn); so, by the
equicontinuity of distance functions, for each x £ X, we have d(x, C) = \imd(x, Cn).

Since (C(X), TM) is first countable, p is a compatible metric for the hyperspace. It
remains to prove completeness.

Let (C'n) be a p-Cauchy sequence in C(X). Then for each k € Z+ , the sequence
(P(.T/(., €„)) is a Cauchy sequence in X, which by completeness of X , must converge
to some point Cfc . Let C be the (norm) closure of {c*. | k £ Z + } . We first show that C
is convex. Let cj G C and c2 G C be arbitrary. We show that for each A £ (0, 1), that
x = Aci + (1 — A)c2 lies in C. It suffices to show that for each e > 0, the ball x + eU
meets C . For this, we need only show that x + (e/i)U meets Cn eventually, for, if we
choose Xk in x + (e/4)U, then P(xk, Cn) must he in x + eU for all n sufficiently large.
By the construction of C, (Cn) meets both Ci + (e/4)C/ and C2 +(e/4)U eventually.
Since each Cn is convex, it follows that (Cn) also meets x + (e/4)U eventually. This
establishes the convexity of C .

That (C'n) is T^-couvergent to C now follows easily. For each k € Z+ we have

d(xk, C) = d{xk,{Ci | i 6 Z+)} = lim \\xk - P(xk, Cn)\\
n—foo

= lim d(xk, Cn).
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By the equicontinuity of distance functions, we have d(x, C) = limd(x, Cn) for each x

in X, and we are done by Theorem 3.1 and the equivalence of conditions (a) and (b)

in the Sonntag—Attouch Theorem. I

5. MOST CLOSED CONVEX SETS ARE ALMOST CHEBYSHEV

By a multifuction F from a topological space T to a topological space X , we

mean a function from T to CL(X). A multifunction is called upper seniicontinuous

([24, 25]) if for each open subset V of X, the set {t £ T | F(t) C V} is open in T.

Locally, this means at each t £ T, whenever V is a neighbourhood of F(t) and (t\)

is a net in T convergent to t, then, eventually, F(t\) C V. If, in addition, the values

of F are compact subsets of X , we call F an usco map [10]. If X is a Banach space

equipped with its weak topology, then an usco map into X so topologised will be called

weakly usco.

Let C be a fixed closed convex subset of reflexive space X. It is well-known

[23] that the metric projection x —> P(x, C) is weakly usco with respect to the norm

topology on X (see, for example, [8] or [13, Theorem 3] for strongly usco counterex-

amples). Of course, we may view the metric projection as a multifunction with domain

X x C(X). If we equip a reflexive Banacli space X with the norm topology and C(X)

with TJJ , the metric projection remains weakly usco on the product.

THEOREM 5.1. Let X be a reflexive Banach space. If C{X) is equipped with

the Mosco topology and X has the norm topology, then the metric projection P on

X x C(X) is weakly usco.

PROOF: The values of the metric projection are closed and norm bounded convex

sets and thus are weakly compact. Suppose the metric projection fails to be upper

semicontinuous at some (x0, C). Then there exists a weakly open set W contain-

ing P(xo, C) and a net {(x\, CA))A€A convergent to (xo, C) such that for each A,

P(x\, C\) n Wc = 0. Choose for each A £ A a point cx in P(xx, CA) DWC . By Theo-

rem 3.5, (C'x) is Wisjman convergent to C , and since lim ||a:,\ — a;0|| = 0, it follows that

for some /J, E A, the set {c\ \ A ^ fj,} is bounded. Suppose that {c\ \ A ^ /J,} C all.

By reflexivity, the ball all is weakly compact, whence (c\) has a weak cluster point

z in aU. Suppose now that z <fc C. By the separation theorem, there exists y £ X*

and j3 £ R with sup{(j/, c) | c £ C} < j3 < (y, z). Consider this weakly compact set:

A" = all PI {x | (y, x) ^ 0}. Since {x | (y, x) > /?} is a weak neighbourhood of z, the

set K meets (C'\) frequently, whereas K H C = 0. This violates C = TM — liniC^,

and we conclude that z £ C must hold. By the weak lower semicontinuity of the

norm and the Wijsman convergence of {C\) to C, it is easy to see that z £ P(xo, C).

On the other hand, each weak cluster point of (CA) must He in Wc , contradicting

P(xo, C) C W. Thus, P is weakly upper semicontinuous at x0 . |
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We note that the metric projection must be weakly usco on X x C(X), whenever
C'(X) is equipped with a topology containing the Mosco topology. It turns out that
when X is finite dimensional, then the Mosco topology is the weakest such topology
[6]!

It follows immediately from Theorem 4.3 that when X is separable and reflexive,
the space X x C(X) is a Polish space, provided C(X) is equipped with the Mosco
topology. Since the product is a Baire space, the statement the metric projection

is single-valued at most points of the product is at least meaningful, in the sense of
Baire category. Of course, it also makes sense when C(X) is topologised by Hausdorff
distance, but with respect to this topology, the statement may be false, even when X

is finite dimensional: if X = Rn is equiipped with the box norm, and if C is a closed
halfspace, and x £ C, then P fails to be single-valued in a neighbourhood of (x, C)

[11]. We intend to show that the itahcised staatement is true for the Mosco topology.
The key ingredient is a continuity theorem of Christensen [10], which may be viewed
as a variant of the classical Kuratowski-Fort Theorem [17]. We first need a definition.

DEFINITION: Let T be a topological space and let X be a normed linear space.
A multifunction F from T to X is called almost lower semicontinuous (a.l.s.c.) at t
in T if there exists XQ £ F(t) such that for each e > 0, there exists a neighbourhood
Ve of t such that for each z G Vc , we have F(z) n (x0 + eU) ^ 0.

Although this property was formally considered first by Christensen [10], for
compact-valued multifunctions, it agrees with a weaker property introduced by Deutsch
and Kenderov that is fundamental in the approximation of convex-valued multifunc-
tions by continuous single-valued functions [14]. Clearly, almost lower semicontinuity
is weaker than ordinary lower semicontinuity for multifunctions (see, for example, [24]
or [25]).

For simplicity, we choose to state a weakened form of the result of Christensen
[10]; it actually holds for a much wider class of domains, including the Cech complete
spaces.

C'HRISTENSEN'S THEOREM. Let T be a complete metric space and let X be a

Banach space. Suppose F is a weakly usco map from T to X . Then there exists a

dense and Gs subset G of T such that F is a.l.s.c. at each t £ G.

We apply Christensen's theorem in conjunction with the following lemma.

LEMMA 5.2. Let X be a normed linear space, and let C be a polytope in X. Let
c be a element of C of minimal norm. Then for each a £ (0, 1), the point ac is the
unique element of conv ({ac} U c) of minimal norm.

PROOF: The assertion is true if c = 0. Otherwise, choose y € A'* separating
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\\c\\U from C such that

sup{(3/, x) | ||*|| < ||c||} = ||c|| = inf{<y, x) | x e C}.

By this choice of y, we have (y, c) = ||c|| and ||y|| = 1. Fix a 6 (0, 1), and suppose x
is an element of conv ({ac} U c) other than ac itself. There exist points C\, C2, ..., cn

in C and nonnegative scalars f3 ̂  1 and /?i, /?2, • • •, /?n such that a; = /3(ac) + 23/?iCi
and /? + £ & = 1. If 0 = 0, then a £ C and ||x|| > ||c|| > a \\c\\ = \\ac\\. Otherwise,
set c0 = (3c + J2 fiici • Since x — Co — (3(1 — a)c and since Co € C , we have

11*11 = h\\ • 11*11 > (y, *> = (y, =o) - /?(i - «)<</, c)
>||c||-(l-a)||c||

= a \\c\\ = \\ac\\.

This proves that ac is the unique element of minimal norm. |

THEOREM 5.3. Let X be a separable reflexive space. If C(X) is equipped with

the Mosco topology, then there exists a dense and Gg subset G of X x C(X) such

that for each (x, C) in G, the metric projection of x onto C is a singleton.

PROOF: By Theorem 5.1, the metric projection P from X x C(X) into X is
weakly usco; so, by Christeiisen's Theorem there exists a dense and Gg subset G of
the product such that at each (x, C) € G, P is a.l.s.c. We show that at each point of
G, the metric projection is single-valued. Fix (x, C) in G. Suppose P{x, C) is not
a singleton. Let xo 6 P(x, C) be as in the definition of almost lower semicontinuity.
Let x\ be a different point of P{x, C), and set e = ||a:i — Xo|| / 2 . By almost lower
semicontinuity, there exist open subsets Vj, Vj, . . . , Vn of X and a weakly compact
subset K of X such that

is a neighbourhood of C, and whenever z is sufficiently close to x and A 6 C(X) lies in
this neighbourhood, then P(z, A)n(x0 + ell) ^ 0. Pick c; G CnV; for i = 1, 2, . . . , n
and let B = conv ({xi, Cj, c2, . . . , cn}) . Now if a is chosen sufficiently close to zero,
then

B a = c o n v ( { a x + ( 1 - a)xlt cu c2, •••, cn})

fails to meet K, and \\ax + (1 — a)x\ — XQ\\ > e. By Lemma 5.2, we have P(x, Ba) =
{ax + (1 — a)x]} , so that P(x, Ba) fails to meet x0 + eU • This violates almost lower
semicontinuity, and we conclude that P(x, C) is indeed a singleton for each (x, C) €
G. I

https://doi.org/10.1017/S0004972700027519 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027519


252 G. Beer [14]

THEOREM 5.4. Let X be a separable reflexive space. Then there is a dense and
Gs subset of (C(X),TM) each element of which is almost Chebyshev.

PROOF: This is an immediate consequence of Theorem 5.3 and the Kuratowski-
Ulam Theorem [25, p.247]. |

In [6], I showed that if X is finite dimensional, then most closed convex sets are
actually Chebyshev with respect to T>J . In particular, the closed and bounded strictly
convex sets form a dense and Gg collection of Chebyshev subsets of C(X). By Lemma
4.2, the polytopes are dense in C(X) when X is infinite dimensional; so, we might
expect the same result to hold in a separable reflexive space. Unfortunately, the closed
and bounded convex sets form a set of first category with respect to TM when X is
infinite dimensional. To see this, let An = {C 6 C(X) \ C C nU}. Suppose C € An

hits each of the open sets V1, V2, . . . , Vm and misses the weakly compact set A". We
can strongly separate each x £ K from C; so, by the weak compactness of A", C is
contained in a finite intersection of closed halfspaces disjoint from A". Thus, there is an
unbounded closed convex set that meets each V; and misses K, and we conclude that
each An has empty interior. Now from the representation An = ({x \ \\x\\ > n}~)°,
we see that, each An is TM-closed. Thus, UAr,, the collection of closed and bounded
convex sets, is a countable union of nowhere dense sets.
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