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Abstract

We consider the following model that describes the spread ofn types of epidemics which
are interdependent on each other:

/
Jl

« , • ( ' ) = / g i ( t , s ) f , ( s , i n ( s ) , u 2 ( s ) , . . . , u n ( s ) ) d s , l e R , l < i < » .
Jl-T

Our aim is to establish criteria such that the above system has one or multiple constant-sign
periodic solutions (w|, i<2,..., un), that is, for each 1 < i < n, «, is periodic and 0,M, > 0
where 6, e {1,-1) is fixed. Examples are also included to illustrate the results obtained.

2000 Mathematics subject classification: 45G10, 47H10.
Keywords and phrases: periodic solutions, integral equations, epidemics, fixed point theo-
rems.

1. Introduction

In this paper we shall consider the following system of integral equations that describes

the spread ofn types of epidemics which are interdependent on each other.

«,•(') = f gi(t,s)f,(s,uds),u2(s),...,un(s))ds, r e R , 1 < i < n. (Ml)

Here, for 1 < i < n, we let u,{t) represent the proportion of the population infected

with type i disease at time / , f(t, ut(t), u2(t), ..., un(t)) denotes the proportion of

the population newly infected with type i disease per unit time, #,(/, s) is a certain per
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unit time environmental factor associated with type i disease at time t, and T e R+ is
the length of time an individual remains infectious with type i disease.

Throughout we shall denote u = (uu u2, ..., «„). We say that u is a solution
of constant sign of (Ml) if for each 1 < / < n, we have OtUi(t) > 0 for / € K,
where #, e (1 , -1) is fixed. Let 0 < co < oo. A solution u of (Ml) is said to
be co-periodic if w, is a>-periodic for each 1 < i < n. More precisely, we mean
u 6 (Aw(W))n = / \ U ( K ) x AJR) x ••• x AW(R) (n t i m e s ) w h e r e

= [y e BC(R) | y(t) = y(t + co) for all / € K}

and BC{W) is the space of bounded and continuous functions on K with values in
A simplified model of (Ml) when n — 1 and #,(/, s) = 1, namely

-LyU)= f(s,y(s))ds, r e [ r , o o ) (M2)
Jl-z

was first introduced in 1976 by Cooke and Kaplan [9] and Smith [19]. Using Kras-
nosel'skii's fixed point theorem, it is shown in [9] that (M2) has a nontrivial periodic
solution provided the effective contact rate a(t) = lim^o f(t, y)/y exceeds a certain
threshold level. On the other hand, Nussbaum [17] and Smith [19] have verified the
existence of a nontrivial periodic solution when r exceeds some threshold value. In
the eighties, Leggett and Williams [15,20] employed their own fixed point theorems
to obtain existence criteria for (M2). Their criteria complement the threshold-type
results in [9,17,19].

In the present work, we have generalised the well-known (M2) to the system (Ml)
which not only models the spread of interdependent epidemics but also incorporates
environmental factors in the modelling, and therefore is more robust for real-world
applications. Further, by employing a variety of fixed point theorems we shall establish
new existence results for constant-sign periodic solutions, which, when reduced to
a special case, improve and generalise those in [9, 12,15]. As a side remark, much
work has been carried out on the related system of the form

« , - ( 0 = / g i ( t , s ) f i ( s , u l ( s ) , u 2 ( s ) , . . . , u n ( s ) ) d s , f 6 [ 0 , 1 ] , l < / < n .
J o

The reader may refer to |2-7 | which are motivated by the vast amount of literature on
the existence of positive solutions [1, 8, 10,11,16,18].

The paper is organised as follows. In Section 2, we state some well-known results
in the literature which will be used to obtain the main theorems. Existence results for
(M1) are developed in Section 3. We also include examples to illustrate the importance
of the results obtained.
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2. Preliminaries

We require the definition of a Caratheodory function.

DEFINITION 2.1. A function / : / x W ->• R is a Caratheodory function if the
following conditions hold:

(a) the map t i-> f{t, u) is measurable for all u e l " ;
(b) the map u H> f(t, u) is continuous for almost all t € / .

The next three theorems are fixed point theorems; they are the main tools used in
later sections. Theorem 2.2 is usually called Krasnosel'skii's fixed point theorem in a
cone, Theorem 2.3 is known as the Leray-Schauder alternative, and Theorem 2.4 is
from Leggett and Williams [14].

THEOREM 2.2 ([13]). Let B = (B, \\ • ||) be a Banach space, and let C C B be a
cone in B. Assume Q\, £22 ore open bounded subsets ofB with 0 € £2|, £2| C £22, ond
let S : C fl (£22\£2|) —> C be a continuous and completely continuous operator such
that either

(a) ||Su|| < ||u||, u e C n dtou and \\Su\\ > ||u||, u € C D 3fi2, or
(b) || Su || > ||u||, u 6 C n 3fi,, am/ ||5u|| < ||u||, u eCD 9Q2.

Then S has a fixed point in C D

THEOREM 2.3 ([18]). Let B be a Banach space with E C B closed and convex.
Assume U is a relatively open subset of E with 0 e U and S : U —> E is a continuous
and compact map. Then either

(a) 5 has a fixed point in U, or
(b) there exists u G dil and A. e (0, 1) such that u = XSu.

THEOREM 2.4 ([14]). Let B = (B, || • ||) be a Banach space, C C B a cone
in B, rx > 0, r2 > 0, rt ^ r2 with R = max{r|,r2} and r = min{ri,r2}. Define
C, = {u € C \ \\u\\ < r,} and

C(uQ) = [u € C I there exists X > 0 such that u > Xutt]

= [u e C I there exists X > 0 such that u — ku0 6 C).

Let S : CR —> C be a continuous and compact map such that

(a) there exists u0 € C\{0} with Su £ u (equivalently u — Su £ C) for u e
dCr2nC(u0), and

(b) ||Su|| < \\u\\forusdCri.

Then S has at least one fixed point u 6 C with r < \\u\\ < R.
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3. Existence Results for (Ml)

Criteria for the existence of one or more constant-sign periodic solutions of model
(Ml) are presented in this section. These results will be developed via various fixed
point theorems.

To begin, let 0 < co < oo and let the Banach space B = (AW(K))" be equipped
with the norm |ML = maxi<,<n sup,e(Oa)] |M,(OI = maxi<,<n |M,|W, where we let |M,|W =

/elO.^KCOl, 1 < ' < « •
Define the operator S : B -»• (C(R))n by

= (5iM(0.52M(0.-...SnM(0), / € R, (3.1)

where

= [ gi(t,s)fi(s,u(s))ds, te®L,\<i<n. (3.2)
J

Clearly, a fixed point of the operator 5 is a solution of the system (Ml).
With 0, e {1, - 1 } , 1 < / < n fixed, define

| [O.oo), 6, = l,
[0, oo), = <

|(-OO.0], e, = - i ,

K = {M e B I 0/u,-(O > 0 , / e K , 1 < / < n)

and

K = [u € K | GjUjit) > 0 for some j e { 1 , . . . , n] and some t €

Our first result uses Krasnosel'skii's fixed point theorem (Theorem 2.2).

THEOREM 3.1. Let 1 < p < oo, q be such that \/p + l/q = 1, 0 < co < oo and
let 0,• € (1 , — 1), 1 < i < n be fixed. Assume the following hold for each 1 < i < n:

g',(s) = gi(t, s) e L"[0, to] for each t e [0, co]; (3.3)

the map t \-* g\ is continuous from [0, a;] to Lq[0, co]; (3.4)

gi(t, s) > 0 for all t e [0, co] anda.e. s € [0, to]; (3.5)

gi(t,s+co) = gi(t, s) for all t e Randa.e.s e R; (3.6)

g,(r +co, s) = gi(t, s) for all t G Randa.e.s e R; (3.7)

/• : [0, ai] x R" -» R w a Caratheodory fimction; (3.8)

0i/-(f, «) > Ofora.e. t e [0, a;] and all u € K; (3.9)

fi(t + co,u) = fi(t,u)fora.e. t e Randall u € K; (3.10)
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for each r > 0, there exists fi'r G Lp[0, co\ such that |K, | < r,
1 < j < n, implies \fi(t,uuu2, ..., un)\ < fi'r(t) for a.e. (3.11)
t 6 [0, io]\

there exists a function xj/i : Y\"j=i^y °°)j ~+ [0, oo) continuous and
'nondecreasing' in the sense that for each 1 < j < n, if\uj\ < \vj\,
then fiiuu ..., uJ_],uj, uj+i, . . . , « „ ) < ^ . - (" i . • • • - « ; - i . "/> «;+i . ,3 1 2 )

. . . , «„), a constant p,, 0 < p, < 1, anc? a function b,• : OS —• [0, 00),

>,- 6 Lp[0, <u], fe,(? + w ) = bi(f) force, t e O
^//(f, «) < bi(t)i/i(u)fora.e. t € [0, w] and all u e

I there exists a continuous function 0, : (0, 1) —> (0, 00) such that for
\any0 < m < 1 andu 6 [0, oo)", we have ^,(m«) > <f>j(m)\lri(u);

K2J= inf / ft(r,j)&,-(*)d*>0; (3.14)
'€[0.0)1 J,_z

\there exists 0 < M, < 1 vv/f/i A/, < Pi(K2j/K\j)<pi(M0), where
I AT,,,- = sup,e[0(u) //_r g,-(f, 5)6,(5) ds and Mo = min,<;-<n M, e (0, 1).

Moreover, suppose

there exists a > 0 with max ^/ (a . « ot)K\ , < a (3.16)

and

> 0, fi ^ a, so that for each z € (1, 2 , . . . , n], there
exists jz 6 {1, 2, . . . , n) such that for any u e [0, oo)n, we have
ifjXu) > akk{uk) for each 1 < k < n, where ahk : [0, 00) ->• [0, 00)
is continuous, aj.k(x) > 0 if x > 0, and ft < Pj.aj.z(Mof})K2j..

Then (Ml) has at least one constant-sign solution u 6 (AM(K))" satisfying

(a) 0 < o r < \ u \ w < ft a n d 0 j M , ( / ) > M i a f o r a l l t € DS a n d s o m e i € [ I , ... , n ] , if
a < P;
(b) 0 < fi < |M|W < a and QjU, (t) > M,fi for all t € OS and some i e { 1 , . . . , n], if

P < a.

PROOF. We shall employ Theorem 2.2. Define a cone C in B as

C = { « € f l | 9iUj(t) > 0 and OiU^t) > M/IM.-L for \ <i <n, t e [0, a>]\

= {u € B I 6>,H,(0 > 0 and 6>,«,(r) > M, |M,L for 1 < / < n, t e OS}, (3.18)

where M, is defined in (3.15). Note that C c. K.
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First, we shall show that S maps C into (/4W(K))\ that is, that

S, : C ^ Aa(K), l<i<n. (3.19)

Let u e C. Then, using (3.6), (3.7) and (3.10), we get for t e R and 1 < / < n,

SiU(t+co)= / gi(t +w,s)fi(s,u(s))ds
Jt+Ul-T

= gj(t+ oo,x + co)fi(x+co,u(x + co))dx
Jl-T

f
= I giU + co, x + co)fi(x + co, u(x))dx

J,-z
= / gi(t,x)f,(x,u(x))dx = SiU(t). (3.20)

We shall next show that 5,-M e C[0, <D], 1 < / < n. Since u € B c (BC(K))°, there
exists r > 0 with |M|W < r. Therefore (3.11) guarantees, for each 1 < / < n, the
existence of \x\ € L''(0, co], such that |//(^, M(^)) | < ^r(s), a.e. s € [0, OJ]. This,
together with (3.10), implies that there exists rj'r e Lp[—r, co], 1 < i < n, with

H ( * ) ) I < » ? J ( J ) , a.e.5 6 [ - r , w ] . (3.21)

(Alternatively we could assume without loss of generality that fi'r(t + co) = fu.'r(t) for
a.e. / 6 K and take r)'r = fi'r.) Now, for tt, t2 6 [0, co] with t2 > tt and t2- x < r,, we
have for each 1 < / < n,

- 5 , u ( / 2 ),) , ( 2 )

= / gi(ti,s)fi(s,u(s))ds- I gi(i2,s)fi(s,u(s))ds
Jl\—T Jl2~T

gi(tl,s)fi(s,u(s))ds+ / [«,-(/I,J)-g,(r2, *)]//(*,
. - r J12 — T

- / gi(t2.s)fi(s,u(s))ds

a n d s o

— T
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a'2 \ Uq / ri2 \ UP

. ' )

Using (3.21), it then follows that

\S,u(ti) - S,u(t2)\

O
r-W-T \ ' /9 / r-tt—z

\g'i(s)\"ds) / [
- r / \Ji,-z

Onw \ l / 9 / / » u ; \Up

-T
 8l S 8' J \J-r nr S J

+ sup ( / |gj(s)|'rfs) ( / [ni
r(s)]pds) . (3.22)

(e[0.cu) \Jo / XJi, /
We also note that (3.3) and (3.6) guarantee that

g'i e L"[-x, co] for t 6 [0, co]. (3.23)

In view of (3.4) and (3.23), it is clear from (3.22) that |5 ,M(/ , ) - S,«(/2)l -> 0 as
t{ —> t2. Hence

Siu € C[0,co], 1 < / <n. (3.24)

Further, noting (3.23) and (3.21), we have for t € [0, co] and 1 < i < n,

u<i

\S,u(t)\
/

I / rto

Thus

SiU is bounded, 1 < i < n. (3.25)

Having established (3.20), (3.24) and (3.25), we have completed the proof of (3.19).
Next, we shall verify that

5 : C -»• (AM(^))n is continuous. (3.26)

Let {um\, u e C ({«m} is a sequence) with «"' ->• M. Since M"', H 6 B C
there exists r > 0 with |M"'|<U. I W L 5 f - Therefore, as in a previous argument, (3.10)
and (3.11) lead to the existence of r]'r e Lp[—x,co], 1 < i < n, such that (3.21) and
(3.21)|u=u, hold. Hence

\f,(s, «"(*)) - f,(s, u(S))\ < 2r?;(5), a.e. 5 e [ - r , to] (3.27)
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and also from (3.8) and (3.10) we have

\fi(s, um(s)) - fi(s, u(s))\ - • 0 pointwise for a.e. s e [-r,a>]. (3.28)

Now, for t € [0, co] and 1 < / < n, we find

\S,um(f)-SiU{t)\

< I \gi(t,s)lfi(s,um(s))-Ms,u(s))]\ds
Jl-T

(J \Ms,um(s))-Ms,u(sWds\

\gf(s)\"ds) I \fi(s,um(s))-fi(s,u(s))\>'ds)
- T / \J-T

s)

where we have used (3.23), (3.27) and (3.28). It follows that

\Sum - SuL = max |S,«m - 5,-ML = max sup \S,um(t) - 5,-M(01 : ^ > 0.
m—•oo

Hence we have proved (3.26).
Next, we shall show that

S : C -^ (Aw(\&))n is completely continuous. (3.29)

Let £2 be a bounded set in C, that is, there exists r > 0 such that \u\w < r for all
u e n. We shall prove that 5,£2, 1 < i < n, is relatively compact in AW(R). Let
[um] be a sequence in £2. Then, for each 1 < / < n, {S,wm} is a sequence in 5,£2.
Now, using once again a previous argument, (3.10) and (3.11) lead to the existence of
n'r € Lp[—r, co], 1 < / < n, such that (3.21)|u=um holds. Hence, we get for / € [0, co]
and 1 < / < n,

at \ Wq / ni \i/p

\g',(s)\" dsj (I \fi(s,um(s))\"ds\
< sup (I \g'{s)\«ds\ "If Wr(s)Vds)

ve|().,u| \ J - T / \J-z /

< CO,

where we have also used (3.23). Thus {5,M"'J is a uniformly bounded sequence in
C[0, co]. An argument similar to that in (3.22) guarantees that {S,um} is equicontinuous
on [0, co]. The Arzela-Ascoli theorem guarantees an SjU e C[0, u>] and a subsequence
[Siii1"1} of (5,Mm) which converges uniformly on [0, co] to 5,-M. Since 5,Mn"(r + co) =
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S,-M""(O, by letting k ->• oo we have S,w(r + co) = S,-M(O- Thus S,u e AW(K) and
S,«"" ->• SjU in A ^ K ) . So 5, : C -> A^DS) is completely continuous, 1 < i < n.
This completes the proof of (3.29).

We also need to show that

S :C -* C. (3.30)

Let u € C. We note that for a fixed / € [0, co], any s € [t — r,t] can be written as
s + zoo = sw, where z is some integer and s^ € [0, co]. Therefore, in view of (3.5),
(3.6), (3.9), (3.10) and (3.12), we get for t e [0, co], a.e. s e [t - r, t] and 1 < i < n,

g,(t,s) = gl(t,sa)>0, (3.31)

e,Ms, «(s)) = diMs.,, u(s)) > 0, (3.32)

0,Ms, u(s)) = OJ,^, u(s)) < bi(sa)Mu(s)) = biisWiMs)) (3.33)

and

d,Ms, u(s)) = ej,^, u(s)) > pMsJiriMs)) = Pib,(s)Mu(s)), (3.34)

where we have also used the fact that bj(x + co) — bj(x) for a.e. x G K. Then, noting
(3.31) and (3.32), it is clear that

9iSiU(t) = j gi(t,s)9ifi(s,u(s))ds > 0, r e [0, co], 1 < i < n. (3.35)
Jt-T

Now, using (3.12), (3.31), (3.33) and (3.35), we find for t e [0, co] and 1 < / < n,

Siu«)\=6iSiu(t)< f ft(/,s)6,(5)
J I — r

\Si

( , \U2L, . - . , I«BL)^1.,-.

This yields

15,-KL < ^ u ^ / ( | « i U | M 2 L , . . . . I « . L ) . ! < ' < « • (3.36)

On the other hand, since u e C, we have

|ii,-(0| = 0iUi(t) > M , | M , L > A/ol«,-L, ( S U , 1 < i < «, (3.37)

where Mo = min,<;<n Mr Therefore (3.13)-(3.15), (3.31) and (3.34)-(3.37) give for
/ 6 [0, co] and ! < / < « ,

>Pi I
Jl-
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j(s)ds, M 0 | M 2 L , . . . . MoWnL) / gi(t,s)bj
Jl-z

M I L , | M 2 L •••- K L ) / gi(t,s)bj(s)ds
Jl-z

5(-«| ( U-^- > M,\S,u\u.
^ 1 . 1

Together with (3.35), we have shown that 5M € C and hence (3.30) is proved.
Let

Qa = [u e B | \u\a < a] and fi^|«efl| \u\w < /3}. (3.38)

We shall now show that

|5M|W < |ML for u e C D 9^a (3.39)

and

|5«L > |wL for M € C n 3 ^ . (3.40)

To verify (3.39), let M 6 C n 3fia . Then |M|W = a. For f 6 [0, co], using (3.12),
(3.31), (3.33) and (3.35) we find, for \ < i < n,

\S,u(t)\ < 1n(\u\w, | « L , . . . , | « L ) / ft-a.^-
Jl-T

which, together with (3.16), leads to

\Su\w = m a x |5 , -M| O J < m a x ^ ( 0 1 , a, .. .,a)Ku < a = \u\m. (3.41)

Thus (3.39) is proved.
Next, let M e C D 3 ^ . Then \u\w = fi = | M - L for some z € {1, 2, . . . , « } .

For / € [0, a)], using (3.17), (3.31), (3.34), (3.35) and (3.37), we get for some
./c € { 1 , 2 n),

\S j;u{t)\ > ph I gj:(/, s)bj;(sWJ:(u(
Jl-T

, M,,|M2L, •• •, MoWnL) / gjXt,s)bj:(s)ds
Jl-T

> Pi.aJ:-(Mt)\uz\w)K2J: = phah.{M{)P)K2.h > 0 = \u\w.

Thus

\Su\,,, > l5y.HU > I«L (3.42)
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and (3.40) is true.
Now Theorem 2.2 guarantees that 5 has a fixed point u with u e C n (fio\fl^)

if P < a, whereas u e C D (Qp\Qa) if a < p. Hence, equivalently (Ml) has a
constant-sign solution u e (/4(U(K))n with min{a, /?} < \u\m < max{a, P). Note that
\u\w 56 a and \u\a ^ p. To see this, suppose \u\w = a or \u\w = p. Then, since
M = 5M we have, noting (3.41) and (3.42),

<* = I"L = |S«L - m a x iriiot,a,... ,a)K\, < a = \u\w
\<i<n

or P = \u\a = \Su\w > |5y.M|w > IM^ = y3, which are contradictions. Hence

min{a, P) < \u\a < max{a, P).

Finally, \u\w = !«,!„ for some i € {1, 2 , . . . , n}. Since u € C, we have, for ( 6 l ,
0/11,-G) > M,|«,|w = M,-|«L > Af, min{a, /3}. D

REMARK 3.2. In Theorem 3.1, it is possible to replace (3.3), (3.4), (3.6)-(3.8) and
(3.11) with the following:

g'i(s) = gi(t, s) 6 L'[0, a>] for each t € [0, co]; (3.43)

the map / *-*• g] is continuous from [0, co] to L'[0, IO\, (3.44)

I giO, s) > 0 for all / € [0, co] and a.e. s e [t - r, / ] ,

g,-(/ + co, s + co) = gi(t, s) for all ? € DS and a.e. s 6 K ;

/• : [0, co] x K" ->• K is continuous. (3.46)

As in [7, Section 3], we need only notice that (3.43)-(3.46) imply that S : C -»• C is
continuous and completely continuous.

Our next result gives the existence of multiple constant-sign periodic solutions.

THEOREM 3.3. Let 1 < p <oo,q be such that \/p+ \/q = 1, 0 < co < oo and let
0,- € {1, - 1 } , 1 < J < n, be fixed. Assume that (3.3H3.15) hold for each \ < i < n.
Let (3.16) be satisfied for a = ctt, i = \,...,k,and (3.17) be satisfied for p = pt,
t = \,...,m.

(a) Ifm = k + 1 and 0 < £, < a , < • • • < pk < ak < p k + i , then (Ml) has (at
least) 2k constant-sign solutions u',..., u2k e (Aw(R))n such that

0 < Pi < | u ' L < a , < | M 2 L < Pi < ••• < ctk < \u2k\a, < pk+\.

(b) Ifm = k and 0 < /3, < a, < • • • < pk < ak, then (Ml) has (at least) 2k - 1
constant-sign solutions u\ ..., u2k~{ 6 (/\tu(K))" such that

0 < Pi < | I I ' L < a i < I " 2 L < ft < ••• < Pk < \u2k~'
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(c) Ifk = m + 1 and 0 < at < f}t < • • • < am < /3m < am+l, then (Ml) has (at
least) 2m constant-sign solutions u1, ..., u2m e (AW(R))" such that

0 < a, < | « ' L < £ , < \u2\w < a2 < • • • < 0m < \u2m\w <am+i.

(d) Ifk = m and 0 < a , < /?, < • • • < or* < fik, then ( M l ) has (at least) 2k — 1

constant-sign solutions « ' , . . . , u2k~y € ( /^(IR))" 5«c/i that

0 < a, < | M ' L < ^ | < | M 2 L < a 2 < • • • < or* < | K 2 * ~ ' L < ^ .

EXAMPLE 1. Consider the nonlinear system of integral equations

«,-(0= /" giU, s)9ihi(s)[\u{(s)\y + \u2(s)\y + • • • + \un(sW]ds, (3.47)

I £ I , 1 < i < n, where 0 < y < 1 and 0,- € { —1, 1}, 1 < i < n, are fixed. For each
I < i <n, assume (3.3)-(3.7) hold,

I there exists co > 0 with ht(t + co) = hj(t) for a.e. / € K,

hi is nonnegative and /J, € Lp[0, w]

and

inf I gi(t,s)hj(s)ds > 0. (3.49)
/e[().«-i y , _ r

Then (3.47) has at least one constant-sign solution u e (Aa,(K))" such that

10 < min{a, fi\ < \u\w < maxfot, fi) and

OkUk(t) > Mk min{a, ^ } for all / e R and some i t e ( l , . . . , n ) ,

where

Y/<l~Y)

M, = - ^ ( min - ^ €(0,1), 1 < » < / i (3.51)

with

^2. /= inf f gi(t,s)hi(s)ds, Ku= sup f g,(t, s)hi(s)ds (3.52)

and or, )3 are positive numbers satisfying

/ \I/(I-K) / \ l /d-X)

a > I n max /f, . I a n d $ < Mf'"~y) ( m i n K 2 j ) , (3.53)
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where Mo = mini<y<n A/, e (0, 1).
To see that the above is true, we shall apply Theorem 3.1 with

f,(t, II) = 0 , M [ ]
A- = l , bi = h i , M u ) = \ u { Y + \u2\y + --- + \ u n \ y , (3.54)

4>i{m) — mY and O/.*(JC) = JC"', 1 < /', j z , k < n.

Note that (3.8)—(3-14) are clearly satisfied. Next, the inequality in condition (3.15) is
reduced to M, < (K2J/KU)MQ, 1 < / < n, which will be satisfied if we set

M, = — Ml, \ <i <n. (3.55)

It follows immediately that Mo = mini<y<n Mj = minl<j<n(K2J/K^^MQ or

/n = ( min —^

Substituting (3.56) in (3.55) yields (3.51).
Further, (3.16) holds since noting (3.54) we find

l/d-y)
Mo = I min '-i^- \ . (3.56)

max il/j (a, a,..., a) Kt , = nay max K, •. < aYa Y = a,
l<j<n \<j<"

where we have also used (3.53).
Finally, (3.17) is fulfilled since in view of (3.53) and (3.54) we have

J. = (Mop)yK2J. > {Mop)Y min K2J

We now conclude from Theorem 3.1 that the system (3.47) has at least one constant-
sign solution M G (/\W(K))" satisfying (3.50M3.53).

The next result uses the nonlinear alternative (Theorem 2.3) to show the existence
of a periodic solution (which need not be of constant sign).

THEOREM 3.4. Let 1 < p < oo, q be such that \/p + \/q = 1 and 0 < w < oo.
For each \ < i < n, assume that (3.3), (3.4), (3.6)-(3.8) and (3.11) hold and

fi(t + co, u) = fi(t, u) fora.e. t G K and u e W. (3.57)

Suppose there exists a constant c, independent ofk, such that

\uL£c (3.58)
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for any solution u e (A^K))" of the system

Ui(t) = k I gi(t, s)fi(s, u(s))ds, t e R, 1 < i < n, (3.59),
Jl-Z

where A. e (0, 1). Then, ( M l ) has at least one solution u € (AW(K))" with \u\M < c.

PROOF. We shall apply Theorem 2.3. Let E = B = ({Aa(W))n, \ • \J and
U = [u e B | |«|w < c}. Clearly, a solution of (3.59), is a fixed point of the
equation u = kSu. As seen in the proof of Theorem 3.1, (3.3), (3.4), (3.6M3.8),
(3.11) and (3.57) guarantee that 5 : B -*• B is continuous and completely continuous.
In view of (3.58), we cannot have conclusion (b) of Theorem 2.3, hence conclusion (a)
of Theorem 2.3 must hold, that is, 5 has a fixed point in U, or equivalently the system
(Ml) has a solution u € U with \u\w < c. •

Using Theorem 3.4, we shall obtain the existence of a constant-sign periodic
solution in the next result.

THEOREM 3.5. Let \ < p < oo, q be such that l/p + \/q — 1, 0 < u> < oo and
let 6, € [I, - 1} , 1 < i < n, be fixed. For each 1 < i < n, assume that (3.3)-(3.9),
(3.11)W (3.57)

there exists a function TJ/J : J~["=1[0, CNo)y —> [0, oo) continu-
ous and 'nondecreasing' in the sense that for each 1 < j <
n, if Wj\ < \vj\, then ^ / ( " i . •• •. " ; - i , «;. ">+i- • • •. ««) 5
i/r,(Mi Uj-.\,Vj,itj+l,...,un), and a function bl• : K —>

[0, oo), b, e L''[0,co], bi(t + co) = bt(t) for a.e. t € K, with
Oifi(t,u) <bi(t)\J/i(u)fora.e.t G [0, co] and all u € K.

Moreover, suppose

ithere exists a > 0 with maX|<j<n ij/jia, a,..., a)K\ j < a, where
\ K s p f ; ( t ) b ( ) d

Then, (Ml) has at least one constant-sign solution u e ( /^(K))" with \u\w < a.

PROOF. We shall employ Theorem 3.4. To begin, we consider the system

« , ( O = f fb(t,s)Ms, u(s))ds, l e R , 1 < i < n, (3.62)

where /• : K x OS" -> 1 is defined by

UuU2 »„) = / - ( / ,0 i |M| | ,02 l«2 | , . . . ,0« |M f l | ) , 1 < l < » • (3.63)
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We shall prove that (3.62) has a solution. For this, we consider the system

«,-(0 = A. / gi(t,s)Ms, u(s))ds, t € R, 1 < j < n, (3.64),
Jt-x

where X e (0, 1). Let u e (Aa,(K))" be any solution of (3.64)x. If we can show that

\uU£a, (3.65)

then by Theorem 3.4 it follows that (3.62) has a solution.
Now, using (3.5), (3.9), the fact that (<9,|H,|, 02 |K2 | , . . . , 6n\un\) e K, (3.31), (3.32)

and (3.63) we get for t e [0, a>] and 1 < i < n,

dtUjit) = A. / gi(t, s)9ifi(s, ui(s), u2(s) un(s))ds
Jl-T

= x! gi(t,s)diMs,el\uds)ie2\u2(s)\,...,en\un(s)\)ds>o,
Jt-T

which means that

k(OI = e,u,(t), t € [0, to], 1 < i < n. (3.66)

An application of (3.33),(3.60) and (3.66) yields for / € [0, co] and 1 < i < n,

\ui(t)\ = eiUi(t) < / gl(t,s)9,M5,dl\ux(s)\,...,0n\un(s)\)ds

Ji-x

< f *,(^^)iM0,|K,(5)|,...,0(1|H(
Jt-T

<^,-( |M|« I«L) / gi(t,s)b,(s)ds
Jt — T

This immediately leads to

\u,L < V,(I«L, • • •, \uUKu, 1 < i < n. (3.67)

Now \u\w = \uz\w for some z € {1, 2, ...,n}. Then it follows from (3.67) that

(3.68)

Noting (3.61) and (3.68), we conclude that \u\w ^ a. Hence (3.65) is proved.
It now follows from Theorem 3.4 that the system (3.62) has a solution u* =

(«;, « ; , . . . , < ) € ( /UK))" with ||u*|| < a, and

«,*(') = f gi(t.s)Ms, u'(s))ds, t € R, 1 < i < n.
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Using a similar argument as above, together with u* € (A^K))", it can be easily seen
that

In? (01 = e,u*(t), ( € R , 1 < i < n, (3.69)

and

\u*l£a. (3.70)

Therefore w* is of constant sign and IM*^ < a. Further, using (3.63) and (3.69), we
have for t e K and 1 < / < n,

«,-(0 = I giif, s)Ms, u*(s)) ds = I gi(t, s)Ms, 0 ,K(*) | , . . . , en\u*n(s)\) ds
Jt—T Jt-T

= I g,(t,s)fi(s,dyl(s),...,eyn(S))ds
Jl-T

= f giO,s)fi(s,u*l(s),...,u*(s))ds.
Jt-T

Hence «* is in fact a solution of (Ml). The proof is now complete. •

In Theorem 3.5, it is possible for |M|W to be zero. However, we can combine
Theorem 3.5 with Theorem 3.1 to obtain the existence of multiple nontrivial constant-
sign periodic solutions, stated as the next result.

THEOREM 3.6. Let 1 < p < oo, q be such that \/p + \/q = 1, 0 < co < oo and
letOi e {1 , -1} , 1 < / < n, be fixed. Assume that (3.3)-(3.15) and (3.57) hold for
each 1 < i < n. Let (3.16) be satisfied for a = at, I = 1, 2 , . . . , k, and (3.17) be
satisfied for p = fie, I = 1,2 m.

(a) If m = k + I and 0 < fix < a, < ••• < /3k < ak < fik+h then (Ml) has (at
least) 2k constant-sign solutions M1, . . . , ulk e (/^(K))" such that

0 < /3i < | M ' L < a f i < I « 2 L < f t < ••• < a k < | M 2 * U < 0 k + l .

(b) //"m = * and 0 < /3, < a, < • • • < & < a*, tfien (Ml) fazs (a/ teas?) 2 :̂ - 1
constant-sign solutions u\ ..., u2k~l € (/^(K))" such that

0 < f r < I I I ' L < a , < | « 2 L < h < - - - < P k < W 2 k ~ ] l <c*k.

(c) / / * = MI + 1 and 0 < a, < y3, < • • • < ctm < {)„, < am+{, then (Ml) has (at
least) 2m + 1 constant-sign solutions u°, ...,u2m € (Aa,(IR))n such that

0 < | M ° L < «i < I« 'L < /8, < |M 2 L < a2 < • • • < (im < \u2m\w < om + 1.
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(d) If k = m and 0 < a, < Bx < • • • < ak < Bk, then (Ml) has (at least) 2k
constant-sign solutions u°,..., «2*~' e (A^R))" such that

0 < |«°L < a, < |M'U < Pi < I«2L < <*2 < • • • < otk < | H 2 * - ' L < Bk.

PROOF. In (a) and (b), we just apply Theorem 3.1 repeatedly. In (c) and (d),
Theorem 3.5 is used to obtain the existence of u° e (Att)(K))'1 with 0 < ||M°|| < a,;
the results then follow by repeated use of Theorem 3.1. •

Our next result makes use of Leggett and Williams' fixed point theorem (Theo-
rem 2.4).

THEOREM 3.7. Let 1 < p < oo, q be such that \/p + \/q = 1, 0 < co < oo and
let % e [1,-1], I <i <n, be fixed. Assume that (3.3M3.11) and (3.60) hold for
each 1 < i < n. Moreover, suppose

3je{l,...,n}suchthat K2 j = inf / gj(t, s)bj(s)ds > 0; (3.71)
/e[0.<ol Jt_z

for the same j as in (3.71), there exists r > 0 with r <
(j>j(r, ...,r)K2j, where (pj : f l L i t 0 ' 0 0 ) ' ""*" [°. °°) is continu-
ous, </>)(« i , . . . , un)/\uj\ is 'nonincreasing' in the sense that for each
l<k<n,ifO< \uk\ < \vk\ < r, then 4>j(ult...,un)/\uj\ > ° 1 2 )

4>j(Vu---,Vn)/\Vjl and bj{t)(f>j(,u) < 9jfj(t,u) for a.e. t € [0, co]
and all u e K

and

{there exists R ( ^ r) with R > maxi<j<,^(/? /f)^i, i t where
\ Ku = sup,e|0(ul //_r gi(t, s)bt(s) ds. ' ~ ( 3 - 7 3 )

Then (Ml) has at least one constant-sign solution u e (AW(K))" with

min(r, R] < \u\w < max{/-, R] and \u\a£R. (3.74)

PROOF. Let B = ((Aw(0S))n, | • L) and

C = {u € B | for each 1 < i < n, 0,M,(O > 0 for / e [0, <D\\

= {u e B | for each 1 < i < n, diU^t) > 0 for t g R}.

Also, let M0 = (8, 6n). Then

C(M 0 ) = | u e C | there exists X > 0 with u(t) - ku0 € C for t € [0, a)]

= [u € C | for each 1 < i < n, 0,«,(/) > 0 for t € [0, co]}.
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As seen in the proof of Theorem 3.1, conditions (3.3)-(3.11) guarantee that S : C -+ C
is continuous and completely continuous. To apply Theorem 2.4, we shall first show
that

\Su\w<\u\afoTuedCR. (3.75)

Let u € dCR. Then \u\w = R. Using (3.33) and (3.60), we find for t e [0, to] and
1 < i < n,

\S,u(0\ = OiSMt) < f giit^WiisWibtisVds
Jl-T

< V;(I«.L, • • •, K L ) / g,{t, s)bi(s)ds < ir,(R,..., R)KU.
Jt-X

This yields, together with (3.73),

|SwL = max |5,-ML < max fi(R R)K{, < /? = \u\M (3.76)
\<i<n l£'Sn

and hence (3.75) is proved.
Next, we shall verify that

5M £ u, that is, u- Su £ C, for u € 8Cr D C(u0). (3.77)

Let u e 8Cr n C(u0). Then

\u\a = r and r > 6>,«,(/) > 0, / € [0, co], 1 < / < n. (3.78)

By a similar argument as in getting (3.31)-(3.34) from (3.72) we have the following
for u e C, t e [0, a>], a.e. s e[t — z,t] and some y e {1, 2 , . . . , « } (the 5awe y as in
(3.71)):

9jfj(s, u(s)) = OjfjiSa, u(s)) > bjiSuWjiuis)) = bj{s)<t>j(u{s)). (3.79)

Thus, for t e [0, to] and the same j as in (3.71), using (3.78) and (3.79) we get

0jSju(t)> f gj(t,s)bj(s)4>j(u(s)),ds
*/ / — r

= / gj(t, s)bj(s) ' U S Ojitj(s) ds

> ^ • ( r ' - - " r ) / gj(t,s)bj(s)9jUj(s)ds. (3.80)
r Jl-z
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Let tOj e [0, co] be such that inf,6[Ocu] 9jUj(t) = 9jUj(tQj) > 0. Then it follows from
(3.72) and (3.80) that for t e [0, co],

f
Jl-

gj(t,s)bj(s)ds

Thus in particular we have 6jSjU(tOj) > 9jUj(tOj), and so (3.77) is proved.
It now follows from Theorem 2.4 that system (Ml) has a constant-sign solution

u e ( /^(K))" with min{r, R] < \u\w < max{r, /?}. Note that \u\a £ R. In fact, if
\u\w = R, then from (3.76) we have \u\a — \Su\M < R = |«|m which is a contradiction.
This completes the proof. •

REMARK 3.8. If the inequality in (3.73) is changed to

R > max Vo-(/?,..., R)KU,
1<!<7!

then (3.74) is correspondingly changed to min{r, R] < \u\a < max{/-, R}.

REMARK 3.9. Theorem 3.7 improves the results obtained in [9].

A repeated application of Theorem 3.7 yields the existence of multiple solutions as
follows.

THEOREM 3.10. Let I < p < oo, q be such that l/p + l/q = 1,0 < u> < oo and
letOj € {1, - 1 } , 1 < i < n, be fixed. Assume that (3.3M3.11) and (3.60) hold for
each \ <i < n, and (3.71) holds. Let (3.72) be satisfied for r = rt, I = 1, 2, . . . , k,
and (3.73) be satisfied for R = Rt, I = \,2,...,m.

(a) Ifm = k + 1 and 0 < Ri < rx < • • • < Rk < rk < Rk+l, then (Ml) has (at
least) 2k constant-sign solutions u],..., u2k € (A(U(K))n such that

0 < /?, < | K ' L <r,< |M2L < R2 < ••• <rk < \u2k\w < R
k+I.

(b) Ifm = k and 0 < /?, < r, < • • • < Rk < rk, then (Ml) has (at least) 2k - 1
constant-sign solutions u\ ..., u2k~[ 6 (/^(K))" such that

0 < Rt < | I I ' L <rx < \u2\w < R2 <••• < Rk < | M " ~ ' U < rk.

(c) Ifk = m + 1 and 0 < r, < Rt < • • • < rm < Rm < rm+l, then ( M l ) has (at

least) 2m constant-sign solutions « ' , . . . , M2"1 6 (Acu(K))n such that

0 < r , < \ul\w < Rt < | M 2 L <r2 < • • • < Rm < | M 2 " ' L < rm+l.
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(d) If k = m and 0 < r, < / ? , < • • • < rk < Rk, then ( M l ) has (at least) 2k - 1
constant-sign solutions « ' , . . . , w2*"1 € (Aa)(K))'1 such that

0 < r , < | M ' L < /?, < |«2U < r 2 < - - - < r4 < |M 2 *" 'L < fit-

EXAMPLE 2. Consider the nonlinear system of integral equations

]rf5, (3.81)

t € R , 1 < / < n ; w h e r e y > 0 , 0 < 8 < 1, j e { 1 , 2 , . . . , n ] a n d 0 , e { - 1 , 1 } ,
1 < i < n, are fixed. For each 1 < i < n, assume (3.3H3.7) and (3.48) hold, and
also

inf / gj(t,s)hj(s)ds > 0. (3.82)

Then (3.81) has at least one constant-sign solution u € (A(U(K))n such that

m\n{r, R] < \u\w < max{r, R] and \u\w£R, (3.83)

where r and R are positive numbers satisfying

r < j inf / gj(t, s)hj(s)ds \ (3.84)

and

nRY-\ + Rs-\ < j max K \ (3 85)

Ku•, - sup / gi(t,s)hi(s)ds, \<i<n. (3.86)
/e[0.H Ji-T

To see that the above is true, we shall apply Theorem 3.7 with

fj(t, u) = 9jhi(t) \ \ u \ \ Y -\ + \un\
Y 4- \UJ\S] ,

b , = h h frUO^Uitf + --- + \un\
Y + \uj\5, l < i < n (3.87)

<(>j(u) = \Uj\S.

Note that (3.8M3.11) and (3.60) are clearly satisfied. Next, in view of (3.82) and
(3.87), condition (3.71) is satisfied with the fixed j in (3.81). For this fixed j , it
is obvious that <pj(u)/\uj\ = 1/|H;| '~J is nonincreasing. Moreover, the inequality
r < 4>j(r, ..., r)K2j in (3.72) reduces to

with

4>j(r,r r)
= inf / gj(t,s)hj(s)ds

/ —T
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which is equivalent to (3.84). Hence condition (3.72) is fulfilled. Finally, the inequality
in (3.73) is reduced to R > (nRY + #*)(max,<,.<„ KU) which leads to (3.85).

It now follows from Theorem 3.7 that system (3.81) has at least one constant-sign
solution u € (AJR))n satisfying (3.83)-(3.86).

Our next result also employs Leggett and Williams' fixed point theorem (Theo-
rem 2.4).

THEOREM 3.11. Let 1 < p < oo, q be such that \/p + \/q = 1, 0 < co < oo and
let d,: e {1, -1) , 1 < i < n, be fixed. Assume that (3.3M3.11) and (3.60) hold for
each 1 < i < n. Moreover, suppose

there exists some j G {1,2, ..., n] such that gj(t,s) > aj(s) for all
t € [0, co] anda.e. s € [0, co], where aj e Lq[0, co], aj is nonnegative, (3.88)
andaj(t + co) = aj(t)for a.e. t e K,

for the same j as in (3.88), there exists r > 0 and a continuous
function <f>j : n"=i[°- °°)i ~* [0, oo); where (pj(uu ... ,un)/\uj\
is 'nonincreasing' in the sense that for each 1 < k < n, if (3.89)
0 < l"*l < \Vk\ 5 r, then <pj(uu ..., Mn)/|«;| > 0 , (ui , . . . , un)/|u;|,
with bj(t)(pj(u) < Ojfj(t, u) for a.e. t e [0, co] and all u e K,
for the same j and r as in (3.89), we have

( 3 . 9 0 )

where N is the smallest positive integer such that co/N < r/2 and
/,. = [(/ - l)co/N, ico/N], i = 0, 1 , . . . , N,

and also (3.73) holds. Then(M\) has at least one constant-sign solution u e (/\a)(K))n

with min{r, /?} < |«U < max{r, /?} and \u\w ^ R.

PROOF. Let B, C and u0 be defined as in the proof of Theorem 3.7. Then the same
arguments give (3.75).

Next, we shall show that (3.77) is true. Let u e dCr n C(u0). Then (3.78) follows.
Further, from (3.89) we obtain (3.79) for u e C, t e [0, co], a.e. s € [t - r, t] and
some j 6 {1,. . . ,«} (the same j as in (3.88)). Thus for / e [0, co] and the same j as
in (3.88), using (3.78), (3.79), (3.88) and (3.89) we find

,s)bj(s)(f>j(u(s))ds

f <Pj(u(s))
I aj(s)bj(s)— djUj(s)ds

;,_r
 jK jK 6jUj(s) ' A
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aj(s)bj(s)6jUjis)ds ( 3 9 1 )

We claim that there exists a tOj e [0, co] with

aj(s)bj(s)9jUj(s)ds > 8jU(to,j). (3.92)

If our claim is true, then it follows from (3.91) that

OjSjU(t0j) > <t)i(r'---'r) f ' aj(s)bj(s)9jUj
r Jiaj--!

and therefore (3.77) holds. Using a similar argument as in the proof of Theorem 3.7,
we then apply Theorem 2.4 to obtain the result.

It remains to prove our claim. Suppose (3.92) is false. Then

9jUj(t) > ^ ( r ' r r) I aj(s)bj(s)9jUj(s)ds for all t e [0, co]. (3.93)
r Jl-T

Note that if t € /, for some / 6 {1 A'}, then /,_i c.[t — x, t] since co/N < r /2 .
This together with (3.93) gives for i € { 1 , . . . , N},

I aj(t)bj(t)ejUj(t)dt
J i,

> ^ ( r ' - - - ' r ) f aj{t)bj{t) [ aj(s)bj(s)ejUj(s)dsdt
r Jli Jl-T

> <i>i(r'--<r) f aj(t)bj(t) f aj(s)bj(s)9jUj(s)dsdt

= 0 j ( / " ' r ' " r ) (J aj(t)bj(t)dt\ (j aj(s)bj(s)9juj(s)ds\ .

Applying the above repeatedly yields

f aj«)bj(t)6jUj(t)dt

> (*i{r' — <r)\ (f\J aj(t)bj(l)dt\ (j aj(s)bj(s)9juj(s)ds\

= (*&> — ' r ) \ (f\j aj(l)bj(t)dt\ (J aj(s)bj(s)9jUj(s)ds\ . (3.94)
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If fltiaj(t)bj(t)6jUj(t)dt > 0, then (3.94) leads to

S££^)"(n/"'<')*'w*
which contradicts (3.90). On the other hand, if fltiaj(t)bj(t)OjUj(t)dt = 0, then
since OjUj(t) > 0 for t € [0, co], we must have aj(t)bj(t) = 0 for a.e. / € IN. This
again contradicts (3.90). Hence we have shown that our claim (3.92) is true. The
proof is now complete. •

REMARK 3.12. Remark 3.8 also holds for Theorem 3.11.

REMARK 3.13. Theorem 3.11 extends the results obtained in [15].

Our final result generalises Theorem 3.11 to give the existence of multiple constant-
sign periodic solutions.

THEOREM 3.14. Let 1 < p < oo, q be such that \/p + \/q = 1, 0 < co < oo
and let 6>, e {1, — 1}, 1 < / < n, be fixed. Assume that (3.3H3.11) and (3.60)
hold for each I < i < n, and (3.88) holds. Let (3.89) and (3.90) be satisfied for
r = rt,e = l,2,...,k, and (3.73) be satisfied for R = Rt, I = 1, 2, . . . , m. Then
conclusions (a)-(d) of Theorem 3.10 hold.

REMARK 3.15. Similar to Remark 3.2, in Theorems 3.3-3.14 we can replace con-
ditions (3.3), (3.4), (3.6M3.8) and (3.11) with (3.43)-(3.46).
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