A CHARACTERIZATION OF GROUP RINGS
AS A SPECIAL CLASS OF HOPF ALGEBRAS

Shuichi Takahashi
(received September 28, 1964)
By a group ring we mean in this paper a ring defined by a
finite group G and an integral domain K :
A = KG,

such that A contains G and is freely generated by G over K,
so that

K-rank of A = the order of G.

The ring A = KG has a co-multiplication
Y
A—> A® A
defined by

vi = axx) = T ax(x ® x)
x€ G x€ G

so that A is a Hopf algebra.

Let B=A = Hom (A,K) be the dual K-module of A.

Then the co-multiplication y induces a multiplication Q\ in B.
It is easy to verify that B, under §, is a commutative strongly
semi-simple K-algebra in the following sense:

= , .S K
B =B O @ B_ B,

as algebras over K, and each homomorphism
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x; s B—> B, =K
is represented by an invertible element x_ € A :
° 1
A A
a) = d(x.).
Xi( ) ( i)

The aim of this paper is to show, conversely, that a Hopf
algebra whose co-multiplication is commutative and strongly
semi-simple is, in fact, a group ring of a suitable finite group G.

Techniques of the proof are taken from those of the Tannaka
duality theorem for compact groupéi), and, in fact, the above
characterization can be seen as a dual formulation of this duality
theorem. ¥)

2) . . .

1. Hopf algebras . Let K be a commutative ring with
the identity 1. A K-module A is called a Hopf algebra if
there are four K-linear operations

p: A @KA————-% A

v A — A@KA
€ K —— A
6 : A —> K

called multiplication, co-multiplication, augmentation and
co-augmentation, respectively, such that following diagrams
are all commutative:

1
) In particular J. L. Kelley, Duality for compact groups,
Proc. N.A.S. 49 (1963) pp. 457-458.

The author would like to thank Professor Geoffrey Fox and
the referee for their valuable suggestions.

We follow the presentation of S. MacLane, Homology, 1963,
pp- 197-198.
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1Qp
A A A —> A = = <
®1< ®x A@K K@KA A A@Kh

(1 @1 n @1 I J1®e
A@KA T> A , A@KA?ATAC’DKA
Y Y Y
A— > A ® KA A‘®KA<-—A—>A @KA
(2) v) L 1©y  @1] | [1@s
A@KA ®1>A®KA®KA, K@KA=A=A®KK
. 5®6
K > A A@KA > K@KK
(3) u by ol I
K®_K >A® _ A, A > K
K e K 6
Y®Y 1®+®1
A@KA——————> A@KAC’DKA ®KA-———> A@KA @KA @KA
(4) u\l/ \l/u@u
A >A®KA ,
Y
where

T(a1® az) za ®a

Diagrams (1) say that A is an algebra by the multiplication
p, with the identity:
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ua®e) = ple®@a) = a.

Diagrams (2) say that A is a co-algebra by the
co-multiplication vy, with the co-identity 6.

Diagrams (3) say that the co-multiplication y operates
on the identity e as vy-e =e®e, and the multiplication p
operates on the co-identity as & p = 6®6 .

Finally, diagrams (4) say that the multiplication p is a
homomorphism of the co-algebra (A,y), and the co-multiplication
is a homomorphism of the algebra (A, p).

2. Strong semi-simplicity. Suppose K is an integral

domain3), and A is a finitely generated free K-module. Then

A
B = A = Hom_(A,K)
K
is also a finitely generated K-module and the co-multiplication
yiA—— A@KA
induces a multiplication ? on B:
W3, @3,)(a) = (3,®3,)(ya), &,.,3,¢B, acA.
Further, the co-identity 6 defines a map g :K—— B
A
§-afla) = a-6ae K
A
and 6-1€ B 1is the identity of B.

Suppose B is an absolutely semi-simple commutative
K-algebra under §:

BB, ®...®B , B.¥ K.
1 n i

Then the following conditions are equivalent.

Always commutative with the identity 1.
468
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Si) For allae B = HomK(A.K), 2 #0, there exists

x€ A suchthat x is p-invertible,
vx = x@x, and A(x) # 0.
S,) Each {-homomorphism y_ : B =B, XK is
1 1

representable by a p-invertible element xi € A:y.(b) =b(x).
i i

Proof of Si) = SZ) . I yx=x®x, then the map

B3b = y(b) =b(x) is a Q-homomorphism. In fact,

x(?<b1®b2)) Q(b1®b2)(x) = (b1®b2)(yx) =

(b1® b ) (x®x) = b, (x) b, (x) = x(b ) x(b,) .

be the decomposition of the identity 8-1 of B into idempotents
according to the decomposition

B—Bi®"'®Bn’ B. =K.

i
Then for any Q-homomorphism x:B =K,

1= x(8-1) = x(e,) + ... +xle)

A 2
x(§le @e ) = xle)” = x(e)

x(Je@e)) = xle) xle;) =0, i4j.

So there exists one and only one i such that

X(ei)=i» X(ej)=0: j#i;
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i.e., x coincides with

x.:B*Bi:K.

1

Now, by Si)' ei # 0 implies existence of a p-invertible x,
with yx=x(Xx, such that ei(x) #0; i.e., the Q—homomorphism

x determined by x has the property:

X(ei) = ei(x) #0.

2 2
Since x(ei) :X'(ei) =X(ei)' X(ei) # 0 implies X(ei) =1 so that
X =X In other words, X; is represented by a p-invertible
element xe€ A.
Proof of SZ) > Si) . If 3= ae #0, then there is
_ i

1
an i suchthat o #0. Now, let x be a p-invertible element
1 1

in A such that
b) = b .
x;(b) = b(x)
Then
a(x,) = ee(x) =a # 0.
1 11 1 1
We can show also that
vx, = xi@ X, .

In fact,

(e®e Nyx) = Y(e®e )x.)
Tk T ok 0 all the other

1 j=i=k
(e.®e Hx.®x) = e (x)e (x) =
T kAT ;i ki 0 all the other
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= K
(eJ.@ e Jyx.) (eJ.@ek)(xiO x.)
and ej@ €. from a K-free basis of B ®KB' so that
yxi = xi® xi .

3. Main theorem. Let K be an integral domain, and
A a finitely generated K-algebra. Then A is the group ring
of a finite group G over K, if and only if, A has a
co-multiplication, so that it is a Hopf algebra (§1), and its
dual algebra A =B is commutative and strongly semi-simple

(§2).

Proof of the necessity. Let G be a finite groupand A
the group ring over K. Then

A3 T ax~—m> I o (x®x)e A®_A
X x K
x€e G x€ G

is a co-multiplication. Let e € G be the identity; then
e : K> A

is defined by
e1 =ee GCA.

Let d= X xe€¢A; then 6§: A - K is defined by
x€e G

a-d = (6a)-d.
Consider the dual algebra A =B. One sees easily that

A = Hom_ (A, K) =< C(G,K),

where C(G, K) is the set of all K-valued functions over G,
by the mapping
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A3y3~—m> A(x) ¢ C(G,K) .

Consider the dual multiplication § on A:

VE,@3,)x) = @3, (yx) = 4, @3,(x@x) = &, (x)3,(x) .

i.e., the multiplication induced on C(G,K) by <, under the
above isomorphism, is pointwise multiplication:

(f-g)ix) = f(x)g(x), =xe€¢G, f{, ge C(G,K),

so that

B =A % C(G,K)= B,®... ®B_, B K

is cormmutative and absolutely semi-simple. Moreover, each
.:B =B . 3K
'Xl 1
is given by the homomorphism:

C(G,K) 3 f ~—m Xi(f) = f(xi) , xii G
i.e., represented by a p-invertible element xi €A .

Proof of the sufficiency. Now A is a Hopf algebra
whose dual algebra is commutative and strongly semi-simple.
Let

G = {x€¢ A | x is p-invertible and yx =x@x}.
We are going to show that G is a finite group and A is the

group ring of G over K. We divide the proof into ¢ =ral
steps.

I) Let B= Bi@... ® Bn’ Bi:K, and let

#G . denote the number of elements in G. Then #G =n.
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Proof. By §2, there are exactly n K-algebra homo-
morphkisms xi : B - K, and each x€ G determines such a

homomorphism:
x(3) = 3(x) ,
so #G<n. But B is strongly semi-simple, so each
X; : B - Bi = K is represented by a u-invertible element x_,
1

which by §2, satisfies
X = X
Y i i® xi

i.e., xie G. Hence #G=n.

II) A = Kx +... +Kx , x € G
1 n i

as K-modules.

Proof. By hypothesis, B =I:(.e1 + ...+ Ken is a free

K-module of rank n, and, by I)

1 i=j
x.(e.)) = e (x,) = 1<i, j<n
tJ It 0 i#j

where X3 is the y-homomorphism of B in K, determined

by X, Hence the K-dual module

B = Hom (B,K) = Ky, +... +Ky_
is a free K-module of rank n. Consider the K-homomorphism
$: A -+ B defined by
n n
=T ax)= T ay., a € K.
i=t 'Y i=

$ is well defined, because zaix, =0 implies
. 1
1
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n
e(ZT ax) = aj=0 forall j=1,2,...,n.

Visg V7

By definition, & is onto. But & 1is also injective, in fact,

"B
_Q
>
"

0 implies T a. x.(e) =2, =0
1 i v J

for all j=1,2,...,n. Hence §: A X8 isan isomorphism of
K-modules and

A= Kx +...+Kx .
1 n

III) The identity e=e.1 of A isin G and it is also the
identity of G.

Proof. By definition e is p-invertible, and
ve = yeel = (@)1 P@1) = e1Petl = ePe

by the diagrams (3) of Hopf algebras (§1). So ee¢ G. By
definition, for all xe¢ G CA,

pe®@x) = p(x@e) = x.
IV) x€ G, ye€ G imply x-y=p(x®y)eG.

Proof. x invertible and y invertible imply x-y
invertible. By diagrams of §1

(x-y) = yp(x®y) = ORI TN Y@ VI x®@y)
r@pI® T O 1)(yx® vy)

OO TONxPxP y®y)
POy x®y) = px@y)@ u(xDy)

xy®@x-y,

so that x-y € G.
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V) xe¢ G implies x.ieG.

Proof. Let G={x1=e, x ..,xn}. By IV), xe¢ G

2"
and x, € G imply x-x, € G, so there is j =j(i) such that

x- xi = xj . But x€ G is by definition invertible, so xi # xj
implies x- xi # x-x. . Hence there exists xi € G such that

x-x =e and x'Al =x, € G.
i i

This finishes the proof of sufficiency. In fact, by III),
IV), V), G is a finite group in A under p-multiplication, and
by II) A is generated freely by G over K.

Université de Montréal
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