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Abstract. In this paper we study quasilinear second order boundary value
problems with multivalued right hand side and Dirichlet boundary conditions. We
prove three existence theorems. The first two deal with the “convex” and “non-
convex”’ problems respectively, while the third establishes the existence of extremal
solutions. For the first two the proof is based on the theory of nonlinear operators
of monotone type, while the proof of the third uses a fixed point argument.
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1. Introduction. In this paper we study quasilinear, second order differential
inclusions in R" with Dirichlet boundary conditions. Problems of this kind for
scalar ordinary differential equations were studied by Boccardo-Drabek-Giachetti-
Kucera [3] and Pino-Elgueta-Manasevich [14], using degree theoretic techniques.
Here in addition to the vectorial and multivalued character of the problem, we also
propose a different approach based on the theory of multivalued operators of
monotone type. Moreover, in contrast to the above mentioned works, here the multi-
valued perturbation term F depends also on the derivative of the unknown function.

After the presentation of some auxiliary results in section 2, in section 3 we
prove two existence theorems. The first is for the “‘convex’ problem (i.e. we assume
that the multivalued term F(z, x, y) is convex valued) and the second is for the
“nonconvex” problem (i.e. we no longer require that F(¢, x, y) be convex valued). In
section 4, we replace F(t¢, x,y) by its extreme points ext F(¢, x, y) and look for
“extremal solutions”. Under some stronger continuity conditions on F, we prove
that such solutions exist. In contrast to section 3, our method of proof of the result
in section 4, is based on a fixed point argument which uses Schauder’s fixed point
theorem. It appears that our result is the first existence theorem for extremal solu-
tions for quasilinear multivalued boundary value problems.

Our results here extend the semilinear works (p = 2) of Frigon-Granas [8],
Kravvaritis-Papageorgiou [11], Marano [12] and Pruszko [15] (Theorems 4.5, 4.6
and 4.7). The multivalued problems studied here arise naturally in many applied
situations of interest, like control systems with a priori feedback, deterministic sys-
tems with uncertainties which are modelled with multifunctions and problems with
discontinuous right hand side. This is the case in many problems of mathematical
physics and mechanics.

2. Preliminaries. Let 7 = [0, b] and let Py(RY) = {4 C R" : 4 is nonempty,
compact (and convex)}. A multifunction F: T — Pr(RY) is said to be “measurable”,
if for every v € RY, the R, -valued function ¢ — d(v, F(¢)) = inf[|v — x| : x € F(0)] is
measurable. If on T we consider the Lebesgue o-field £(T'), then the above definition
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of measurability is equivalent to saying that GrF={(t,x) € T x R" : x € F(1)}
€ L(T) x B(RY), where B(R") is the Borel o-field of RY (graph measurability). For
1 <p<oowesetSh={feL’(T,R"): f(t) € F(t) a.e. on T}. It is easy to see that if
F:T— 2RN\{(/)} is graph measurable, then S7. is nonempty if and only if
t — inf[|x| : x € F(¢)] € L’(T). Moreover the set S%. is decomposable; i.e. if
(f1, /2, A) € S x Sk x L(T), then x4f1 + xacf> € Sh.

If Xisa metric space, let PAX) = {4 C X : 4 is nonempty and closed}. On PAX)
we can define a generalized metric, known in the literature as the ‘“Hausdorff
metric”’, by

h(A, B) = max[sup(d(a, B) : a € A), sup(d(b, A) : b € B)]

where d(a, B) = inf[d(a, b) : b € Bl and d(b, A) = inf[d(b, a) : a € A]. It is well known
that if X is complete, then so is (P(X), #). A multifunction G : X — PAX) is said to
be “h-continuous”, if it is continuous from X into the metric space (PA(X), /).

Let V, Y be Hausdorff topological spaces. A multifunction G : V' — 2V\{#} is
said to be upper semicontinuous (usc) (resp. lower semicontinuous (Isc)), if for every
C C Y nonempty closed, the set F(C)={ve V:Fy)NC #£@} (resp. FF(C)=
{veV:F(v) S C})is closed in V. If Y is regular and G: VV— PAY) is usc, then
GrG={(v,y) e Vx Y:ye G()}isclosed in V' x Y with the product topology. The
converse is true if G(-) is locally compact; i.e. for every v € V' there exists U a
neighborhood of v, such that G(U) is compact in Y. Also if V, Y are metric spaces,
then the above definition of lower semicontinuity of G : V' — P(Y), is equivalent to
saying that for all y e V, v— dy(y, G(v)) is upper semicontinuous. Also it is
equivalent to saying that if v, - v in V as n— oo, then G(v) C limG(v,) =
{y e Y:limdy(y,G(v,)) =0} ={y € Y:y=Ilimy,, y, € G(v,),n > 1}. For details we
refer to Klein-Thompson [10].

Next let us recall some definitions and results about multivalued maps of
monotone type which we shall need in the sequel. The basic reference is the paper of
Browder-Hess [6]. Let X be a reflexive Banach space.

DEFINITION. A multivalued map 4 : X — 2% is said to be pseudomonotone if

(a) forevery x € X, A(x)is a nonempty, bounded closed and convex subset of X*;

(b) A(-) is upper semicontinuous from each finite dimensional subspace V" of X
into X* furnished with the weak topology;

(© if {xu}>1 € X, x, X x and if X} € A(x,), n>1, is a sequence such that
lim(x*, x, — x) < 0, then to each element y € X, there exists x*(y) € A(x)
such that lim(x}, x, —») > (x*(»), x — »).

Another closely related notion is as follows.

DEFINITION. A multivalued map 4 : X — 2% is said to be generalized pseudo-
monotone if for any sequence {x,},»; X and ‘a corresponding sequence
{xi}=1 © X*, x; € A(x,), with Xx, S X in X, x5 5 x* in X* and such that
M(x;:, X, —x) <0, then x* € A(x) and (x}, x,,) — (x X).

A pseudomonotone map is generalized pseudomonotone. The converse is true if
A(-) 1s bounded and for every x € X, A(x) is nonempty, closed and convex in X*. Note
that every maximal monotone operator 4 : X — 2% is generalized pseudomonotone.

In section 4, we shall use another norm on the classical Banach space L' (T, RY),
defined by
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1] = sup[” f ) ds

This norm is known as the “weak norm” on the space L'(T,R") and the space
L'(T,R") furnished with this norm, will be denoted by LI(T, R™). Convergence of a
sequence in this weak norm is closely related to the Weak convergence of the
sequence. The next lemma (which can be found in Kravvaritis-Papageorgiou [11])
illustrates this.

0<t1 <t < b}, fe L/(T,RM).

11w

LEMMA. If {u,, u},,>1 CI2(T,RY) where 1< p< 00, |lu]l, < M < oo and u, — u

ll, <
as n — oo, then u, — w in L(T,R") as n — oo.

Finally in our subsequent considerations we shall need the following basic
inequality: (ala’~ — b|b|P~2)(a — b) > 2>P|a — b|? for all a,h € R and p > 2.

3. Existence theorems. Let 7 = [0, b]. The multivalued Dirichlet problem under
consideration is the following:

{—(HX/(I)HPzx/(l))/—i—F(t, (1), X(1)) > h(t) ae. on T, 0

x(0)=x(b) =0, p=>2.

DEFINITION. By a solution of problem (1), we mean a function x € C'(7, R")
which satisfies the Dirichlet boundary conditions, r — [x'(1)]"" X¥/(¢) is absolutely
continuous on 7 and there exists g € LI(T, RY) G+5=1).8(0) € F(t, x(1), X (1) a.e.
on T and —(||~’ (t)”p X'(1)) + g(t) = h(t) a.e. on T (recall that by Lebesgue’s theo-
rem an absolutely continuous function is differentiable almost everywhere).

In this section we prove two existence theorems for (1), using an approach
which is based on the theory of pseudomonotone operators. The first existence the-
orem assumes that F{(z, x, y) has convex values, while the second existence theorem
deals with the “nonconvex” problem. We start with the “convex’ result. For this
purpose our hypotheses on the multifunction F are as follows.

H(F);: F: T x RY x RY — P, (R") is a multifunction such that

(i) for every x,y € R, t — F(t, x, ) is measurable;

(i) for almost all t € T, GrF{(t, -, -) is closed;

(iii) for almost all # € T and all x, v e RN |F(t, x,y)| = sup{|v] : v e F(t, x, p)} <
yi(t, 1xD) + ya(e, x|y "~ where suplyi(z, |xl) : Ix] < 7] < &,(1) ae. on T,
&1, € LY(T) and sup[y(z, |x]) : IIXII <rl =& (1) ae onT, & € L¥(T); and

(iv) for almost all 7 € T, all x,y € R and all v € F(t, x, y), we have (v, X)gy =
—c|x|”—B]|y| —a(t), where ¢, >0, r <p, ae L'(T) and ¢ < 9" with 6,
being the first cigenvalue of the elgenvalue problem (||x’(l)||p X(1) =
Oﬂx(t)”p x(t) a.e. on T, x(0) = x(b) =

THEOREM 1. If hypotheses H(F), hold and h € LY(T, R"), then problem (1) has a
nonempty solution set which is compact in C(T, RM).
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Proof. Let A : W(l)”’(T, RY) - W~14(T,R") be the nonlinear operator defined
by

b
<A(x), y>= fo “x/(t)Hp_z(x’(t), Y (O)gydt,  x,y € WyI(T,RY).

Here by <. -> we denote the duality brackets for the pair (Wé”7 (T, RY),
w=La(T, RY)). We claim that A(-) is strictly monotone and continuous. Indeed for
x,y € Wy'(T, RY), we have

b
<A(x)—Ay),x —y>= /0 IO (0), ¥ (1) = ¥ (1)t
b
— [ YOI 0/, X () = ¥ ()
0

b
> /0 (IIX’(t)H”HIy’(z)H”—||x’(z)||”*1”yf(t)“
~ I¥ol @) d.

Note that Hx’(-)HIH,

“ e LY(T). Via Holder’s inequality, we obtain

<A@) = A@).x = y> = ¥+ =11 =1
=11 (11, = 1571,) = 11 (1, = 171,)
= (W=D ) (11,101,

Using the basic inequality mentioned at the end of section 2, we have
b
<A(x) — AQ), x —y>> c/ [|X'O] = ') dt for some ¢ > 0. )
0

If <A(x) — A(p), x — p>= 0, then ||x'(1)|| = |»/(?)|| a.e. on T. Hence using this fact in
the equality

b
<A() = AQ). x = y> = [ [¥OP 60, 5 0) = Y (v di
0

b
- /0 O 20/ 0),x (1) = ¥ (1) di = 0

b
we obtain Hx/(t)||p72||x’(l) —y’(t)“zdt = 0. From this last equality it follows that

0
|x'(1)] =0 ae. on T or |x(1)—y'(1)|| =0 ae. on T. In the first case, we have
X'(t)=)(t)=0 a.e. on T and in the second case x'(z) =)'(¢) a.e. on T. Since

X,y € Wlp(T RY), we have x(t)_/x(s)ds_/y(s)ds_y(t) for all t € T. Now
0

0
x =y and this proves the strict monoton1c1ty of the map A(:). To prove the con-
tinuity of A(-), let x, — x in W (T, RM); then if by |-| we denote the norm of
wyP(T, RY), and by |-, the norm of W~"4(T, RY), we have
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[ 4G = A,

sup[< A(x,) — A(x), y>: |[y| = 1]
i / -2, ’ =2 /
- sup[/o <||xn(;)||1’ X, (1) — || ()| x(z),y(z))RNdz: Iy < 1}

[ e ey

A

(Holder’s inequality).

Invoking the extended Lebesgue convergence theorem (see Ash [1], Theorem
7.5.2, p. 295), we have ||A(x,) — A(x)||,— 0 as n — oco. A(-) is as claimed strictly
monotone and continuous, with domain all of Wl P(T,RY). Thus A(-) is maximal
monotone and also pseudomonotone (see Browder Hess [6, proposition 8, p. 266]).

Next let G : Wy”(T, RY) — 2L(TRY) pe the multifunction defined by

G(x) = Sh «ywy = U/ € LUT, RY) : fir) € F(t, x(1), X'(1)) a.e. on T}.

From Lemma 3.3 of Kandilakis-Papageorgiou [9], we know that G(-) has non-
empty, closed, convex values, is usc into L4(T, R") furnished with the weak topology
(denoted by LI(T, RY),) and is bounded.

Then let H(x) = A(x) 4+ G(x). We claim that x — H(x) is pseudomonotone from
Wy (T, RY) into 2" TR\ (g}, Note that H(-) has nonempty, closed and convex
values and is bounded. To show that H(-) is pscudomonotone, it suffices to prove
that it is generahzed pseudomonotone To this end let {(xn, vs)},=1 € GrH and
assume that x, — x in Wy?(T,R"), v, = v in W=14(T,R") and Tim <v,, x, — x>
< 0. We have v, _A(wc,,)—kg,1 with g, € G(x,), n > 1. Note that, by virtue of
hypothesis H(F), (iii), we have

|gn(D)] < vi(e, M) + (e, Ml)Hx;(t)Hp_l a.e.on T, (3)

where M| = sup|x,l< oo (recall that W(])‘p (T,RY) embeds continuously in

n>1
C(T,RM)). From (3) and hypothesis H(F), (iii) it follows that {g,},~; € LI(T, RY) is
bounded and so by passing to a subsequence if necessary, we may assume that
o = g in LY(T,R") as n — oo. Recalling that W(l)’p(T, R") embeds compactly in
L’(T, RY) (see Brezis [5]), we have that x,, — x in L’(T, R"). We have

b
<gn, Xy — X>= / (gn(2), x4(t) — x(£))gvdt — 0 as n — oo.
0

Since lim < v, x, — x>< 0, it follows that

lim <A(xy), xp —x>=<0.

But we have already seen that A(+) is pseudomonotone and hence generalized pseudo-
monotone. Now A(x,) — A(x) in W1 ‘/(T RN) and < A(x,), x,>— < A(x), x> as
n— oo. But note that <A(x,),x,>= ||x,|’, n>1, and <A(x),x>= I ||’] We
have ||x Hp—) IXl, as n— 0. On the other hand we know that x/ > x' in
LP(T, RY) (since x, - x in Wy”(T, RY)). Since L/(T, RN) has the Kadec-Klee prop-
erty, we infer that x/, — x’ in LI’(T RY). Now x, — x in W1 (T, RY) and thus, by
passing to a subsequence if necessary, we may also assume that x,(t) — X'(t) a.e. on
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T and x,(t) — x(¢) for all t € T. Invoking Theorem 3.1 of Papageorgiou [13], we
obtain

g(1) € conv lim{g,(1)},>, € convlimF (1, x,(1), x,(1)) € F(t, x(1), xX'(1)) a.e.on T

the last inclusion following from hypothesis H(F), (ii). Finally we have v = A(x) + g,
with g € G(x) and <v,, x, >— <V, x> as n — o0o. Therefore H(-) is pseudomonotone.

Next we shall show that H(-) is coercive. For g € G(x) and v = A(x) + g € H(x)
we have

<y, x> =<A(x), x>+ <g, x>

> ||x/||Z—C|IXII§—/3IIXII’;—||a||1 (see hypothesis H(F); (iv)).

Recall that |x],< %||x’|| , forall x € W(l)’p (T, RY) (see Boccardo et al. [3]). Thus
we have

<vox>z [0 — 2 | [o—Blxl—lal, (B = 6. “
1

By hypothesis H(F), (iv), I — 5 > 0. Recalling that [x'], is an equivalent norm
for W(l)”’(T, RY), from (4) we infer at once that H(-) is coercive. But a bounded,
coercive, pseudomonotone operator is surjective (see Browder-Hess [6], Theorem 3).
Therefore we can find x € W(l)’p (T, RY) and g € G(x) such that

<A(x),y>+4 <g y>=<h,y> forall y e Wy"(T,R")

b b
= [ |I¥o)| 72(x/(l), V(@O)pvdt = | (h(2) — g(t), y(£)gndt for all y € W(l)*f’(T, RM).
0 0
®)

From (5) it follows that |x'(-)|"~>x'(-) € W"4(T, RY) and so 1 — | ¥/(5)[" ¥ (¢)
is absolutely continuous on 7. Since the function u — ¢,(u) = lul?~2u is strictly
increasing, we have that x’ € C(7, R") and so x € C'(T, R"). Moreover, if by (-, Ipq
we denote the duality brackets for the pair (L?(T, RY), LI(T, R")), from (5) we have
(A(x), y),, = (h—g.»),, for all y € Wy”(T,RY). Since W;”(T.R") is dense in
LP(T,R"), we deduce that

!

{ —(||X’(t)||p_2x/(t)) +g(f) = h(r) a.e.on T,
x(0) = x(b) = 0.

with g(r) € F(t, x(¢), X'(¢)) a.e. on T. Hence x(-) is a solution of (1).

We claim that the solution set of (1) is bounded in W(l)’p (T, RY). Indeed as above
using hypothesis H(F); (iv) and the fact |x],< g—llllx’llp, for all x € W(l)’p(T, RY), we
have

(1= )1 E—Bixt;-al, »

=
11, o
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from which it follows at once that the solution set of (1) is bounded in Wl (T, RM).
Since WOP (T, RY) embeds compactly in C(T,R") (see Brezis [5]), we see that the
solution set is relatively compact in C(7,R"). In fact arguing as above, via the
pseudomonotonicity of the operator A(-) and the Kadec-Klee property of L?(T, R"), it
follows easily that the solution set of (1) is C(7, R"Y)-closed; hence C(T, R")-compact.

By suitably modifying the above proof, we can also have an existence theorem
for the nonconvex problem. The hypotheses on the multifunction F(¢, x, y) are the
following.

H(F),: F: T x RY x RY — P;(R") is a multifunction such that

(1) (¢,x,y) — F(t, x,y) is graph measurable;
(i) for almost all t € T, (x,y) — F(t, x, p) is Isc;
(iii) for almost all r € T and all x, y € RY, |F(1, x, y)| = sup[|v] : v € F(¢t, x, )] <
i, 1xD) + ya(t, IxD||y[| where suplyi(z, Ix]) : x| < 1] < &,(1) ae. on T,
&1, € LYT) and sup[y:(¢, [x]) = x|l < r] < &:(2) a.e. on T, &, € L>(T); and
(iv) for almost all te 7, all x,y e RY and all ve F(t,x,y), (v, X)gy >
—c| x| — ,BHy” —a(t), where ¢, >0, r<p, ae L'(T) and ¢ < 9" with 6,
being the first eigenvalue of the eigenvalue problem —(||'(r)|"” Y1) =
ol|x(n)|”~ *X(1) a.e. on T, x(0) = x(b) = 0.

THEOREM 2. If hypotheses H(F), hold and h € LY(T, R"), then problem (1) has at
least one solution.

Proof. Let G : Wy"(T, RY) — P{L%(T, R™)) be defined by

Gx)=S

L oy = € LUT.RY) 1 fln) € F(1, x(1), X'(1)) a.e. on T}.

From Lemma 4 of Kandilakis-Papageorgiou [9], we know that G(-) is Isc,
bounded and has decomposable values. Apply Theorem 3 of Bressan-Colombo [4],
to obtain r ”(T R"Y) — L4(T,R") a continuous map such that r(x) € G(x) for
all x € I/Vl ”(T RN) Arguing as in the proof of Theorem 2, we can show that
X — A(x)+}(x) is bounded, pseudomonotone and coercive, hence is surjective.
Therefore we can find x € W(l)‘p (T, RY) such that

<A(x),y> + <r(x),y>=<h,y> forall ye W(l)’p(T, RY).
From the proof of Theorem 2, we know that the above equality implies that x(-)

is a solution of (1).

4. Extremal solutions. In this section, we turn our attention to the problem of
existence of extremal solutions. More specifically, we consider the following quasi-
linear multivalued Dirichlet problem:

I (IO ¥ @) +ext Fu, x(0), ¥ (@) 3 h(t) ae. on T, ©
x(0) = x(b) = 0.
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Here by ext F(t, x, y) we denote the extreme points of the set F(¢, x, y). Note that
ext F(¢, x, y) need not be closed and (x, y) — ext F(¢, x, y) need not have any con-
tinuity properties, even if F(z, -, -) is regular enough. So the resolution of problem (6)
cannot be derived as a special case of Theorems 2 or 3. We need a new approach. In
fact our method here will be based on a fixed point argument which uses Schauder’s
fixed point theorem, instead of the theory of operators of monotone type. This
allows us to drop the one sided growth condition H(F), (iv). However we have to
restrict a little our growth condition on x and also strengthen the continuity
hypothesis on F(, -, -). In the literature there is only one other result on the existence
of extremal solutions for second order multivalued Dirichlet problems. It is due to
Kravvaritis-Papageorgiou [11] and concerns the semilinear problem (p = 2). Their
method of proof is different and uses the Green’s function of the operator
(=x", H)(T, R")). For extremal solutions of first order Cauchy problems in Banach
spaces we refer to the elegant work of DeBlasi—Pianigiani [8].

The precise hypotheses on the multifunction F(¢, x, y), are the following.

H(F);: F: T x RY x RY — P (R") is a multifunction such that
(i) for all x,y € RY, t - F(t, x, y) is measurable;
(ii) for almost all t € T, (x,y) — F(¢, x, y) is h-continuous;
(iii) for almost all 7 € Tanld all x,y € RY, |F(t, x, y)| = sup[|v] : v € F(t, x,¥)] <
a(t) + clxlP'+B|y|". witha € LUT), ¢, = 0 and &+ £ < 1.
1

THEOREM 3. If hypotheses H(F); hold and h € LY(T, R™), then problem (6) has at
least one solution.

Proof. We shall start by deriving some a priori bounds for |x'|, and |x| . when

x(-) is a solution of (6). To this end let x(-) € W(l)’p(T, R") be such a solution. We
have

! —(Hx’(z)||P’2x/(z))/+g(z) — k(1) ac. on T,
x(0) = x(b) = 0.

where g € LY(T,RY), g(t) € F(t, x(t), X'(¢)) a.e. on T. Taking the inner product with
x(#) and then integrating over T = [0, b], we obtain
b b 1
X" de = | (h(e) — g(0), x(D)gvdt < g = h]| Ix1,= - |lg — A [
0 0 q 0, q )4
= ¥l < 5 le =l
P g q
1 - .
<& (1l +elxt~ "+ [+, ) (see hypothesis H(P) (iiD)

N AYN =P
. (1 _6?_9) 1" < 5 Q1.

Since by hypothesis H(F); (iii) 57 +£ < 1, from the above inequality we obtain that
1
there exists M; >0 such that |x'],< M; for all solutions x(-) of (6). Since
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Wl P(T,RY) embeds continuously in C(T,R"), we can find y >0 such that
||x||oo§ yIx'l, for all x € W(l)p(T RY). So there exists M, > 0 such that |x].,< M>
for all solutions x(-) of (6). Also directly from the inclusion we see that
{||x’||1’_2x’} c W4(T,R"Y) is bounded and independent of x. Hence it is bounded in
C(T, R") independent of x and we can find M3 > 0 such that ||x'(¢)|| < M5 for all
¢ € T and all solutions x(-) of (6). Having obtained these bounds, we see that in what

follows we may replace F(t, x, y) by F(¢, x, y) = F(t, pum,(x), pa,(»)), where for every
if <M
M > 0, py denotes the M-radial retraction on RY; ie. py(x) = {% i ::i” ; M

Then we see that |I?(t, X, y)| =sup[|v] :v e I?(t, x, ] < a(t) + (:M‘z'f1 + ,BM‘;*1 =
¥(t) a.e. on T, with € LY(T).

Let V = {ue LYT,RY) : |u(r)| < w(r) ae.on Ty and let n: V — Wy”(T, RY) be
the map which to each u € V" assigns the unique solution of the boundary value
problem

! —(||x’(t)“p 2 ’(z)) — u(t) + h(r) ae. on T}
x(0)=x(b) =0

Taking the inner product with x(¢) and then integrating over T = [0, b], we obtain

1
Hx/His e+ Al xll, < o lu+ h”t]”x/“p
1
’ 1 p—1
== [ Gty | = ase

Let M = max{M, +b/1)M2,M4} and set K = B(0, M) = the closed M-ball in
WP (T, RY). Note that K is a bounded, closed, convex subset of W,”(T, R"), hence
is w compact. Since W1 P(T,R"Y) embeds compactly in C(T, RN) K is relatively
compact in C(T,RM). Moreover since the embedding is weakly continuous, K is
weakly compact, convex in C(7, RN ), therefore it is closed in C(7, RY), hence com-
pact (in fact note that the weak topology on each norm bounded subset of
W(l)”’(T, RY) is induced by the metric of C(T, RM)).
Let Gy : K — P (L'(T, R")) be defined by

Gi(x)=h— S‘a o = h—{fe L\(T,R"): fir) € F(t, x(1), X' (1)) a.c. on T}.
- x(- ,,\‘/ .
Apply Theorem 5.1 of Tolstonogov [16] to produce g; : K — L1 (T, RY) continuous,
such that g1(x) € ext G1(x) forall x € K. Recall that L! (7, RY) denotes the Banach space

f||=sup|:ff(s)ds 0<z1<z2<bi|

and on K we consider the C(7, RY)-topology which as we already mentioned coin-
cides with the weak W1 (T, RV)- topology From Benamara [2] we know that
extGy(x) = ext(h— S1 o) == NF( oy Ve extend gi(-) on all of

1”(T RN) by setting gl gl o pk, where pg is the metric pI‘O_]eCtIOH on K in the
space W (T, RM). It is well-known that pg(-) is continuous. So g : é’”(T, R"Y) —»

N 1
L (T,R") is continuous and we have gi(x) € h — SWF( PO PR Recall from

the proof of Theorem 2 that A4 : W(l)”(T, RY) - w~14(T, R") is maximal monotone,

LY(T, RY) equipped with the “weak norm” |
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strictly monotone and since <A(x), x>= [X'|7, it is also coercive. Thus A(-) is
surjective. Then A~' : W=14(T,RY) — wyP(T,RY) is well-defined and clearly is
continuous. Since |F(¢,x,y)| < ¥(f) a.e. on T and ¢ € LY(T), we have that
21(x) € LY(T, RY) for every x € W(l)’p(T, RY). Since LY(T,R"Y) = L’(T, R")* embeds
compactly in W~14(T, RY) = W(l)‘p(T, RY)* using the lemma from section 2, we have
that g o4~ ': W4T RY)— wL4T,RY) is continuous. Note that
@1 oA NYW 4T, RY) =g (W, (T, RV)) =g, (K) which is compact in W~"4(T, R"),
since it is weakly compact in L(T,R") and the latter embeds compactly in
w-L4(T,RY). Thus we can apply Schauder’s fixed point theorem and obtain
v € WH4(T, RY) such that v =g;(47'(v)). Let x = 4~'(v) € W,”(T, R"). Then we
have

AxX)=g1(x) e h— S ~
ext F(-,px(¥)(-),px(x)'(-))

and from the choice of M > 0 and the definition of K, we have x € K. Hence

AX)=gi(x)eh—S' ~ :
ext F(-,x(+),x'(-))

Hence there exists f € S such that
ext F(-,.x(-),X'("))

<A(x),y>=<h—f,y> forall y € W(l)‘p(T, RY)

b b
= /0 [ @0, ¥ (1)t = fo (h() = 1), y(@)dt for all y € Wy(T.RY).

Then as we did in the proof of Theorem 1, we deduce that x(-) is a solution of (6).
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