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ABSTRACT
The quadratic constitutive relation was proposed as an extension of minimal complexity to
linear eddy-viscosity models in order to improve mean flow predictions by better estimating
turbulent stress distributions. However, the successes of this modification have been relatively
modest and are limited to improved calculations of flow along streamwise corners, which are
influenced by weak secondary vortices. This paper revisits the quadratic constitutive relation
in an attempt to explain its capabilities and deficiencies. The success in streamwise corner
flows cannot be entirely explained by significant improvements in turbulent stress estimates
in general, but is instead due to better prediction of the particular turbulent stress combi-
nations which appear in the mean streamwise vorticity equation. As a consequence of this
investigation, a new formulation of turbulent stress modification is proposed, which appears to
better predict the turbulent stress distributions for a variety of flows: channel flow, equilibrium
boundary layers, pipe flow, separated boundary layers and square duct flow.
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NOMENCLATURE

ccr1, ccr2 constant coefficients in conventional QCR

ccr3, ccr4 additional constant coefficients in extended QCR

c̃cr3 effective additional constant coefficient (= ccr3 − ccr4)

DNS direct numerical simulation

h half-height of channel/duct

k turbulent kinetic energy

LES large-eddy simulation

LEVM linear eddy-viscosity model

p pressure

P production of turbulent kinetic energy

QCR quadratic constitutive relation

r radius of pipe

RANS Reynolds-averaged Navier–Stokes

Reτ friction Reynolds number

Reθ Reynolds number based on boundary-layer momentum thickness

Sij stress tensor

S∗
ij traceless stress tensor

xi = {x, y, z} streamwise, wall-normal and spanwise spatial coordinate

ub bulk streamwise velocity

ui = {u, v, w} mean velocity in the {x, y, z} direction

ui
′ =

{
u

′
, v

′
, w

′}
turbulent velocity fluctuation in the {x, y, z} direction

uτ friction velocity

y+ wall-normal coordinate in wall units

Greek symbol
δ boundary-layer thickness

δij Kronecker delta

δref flow thickness: channel half-height, boundary-layer thickness, pipe

radius

ε dissipation of turbulent kinetic energy

μt eddy viscosity

ρ density

σ̃ij rescaled estimate of the turbulent stress tensor
(= τ̃ij/μt

)
τij turbulent stress tensor

τ̃ij turbulent stress tensor estimated using an eddy-viscosity model

ωi =
{
ωx, ωy, ωz

}
mean vorticity component in the {x, y, z} direction

	ij vorticity tensor, with respect to an inertial reference frame
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1.0 INTRODUCTION
Despite the availability of high-fidelity computational approaches, such as large-eddy simula-
tions (LES) and direct numerical simulations (DNS), the prohibitive cost of these approaches
means that, for design purposes, Reynolds-averaged Navier–Stokes (RANS) methods remain
ubiquitous in the aerospace industry. Practical applications in this industry often feature
complex geometries, such as wing–body junctions and turbine blade–hub junctions, where
anisotropies in the turbulent stress distributions are known to influence the mean flow(1). In
such applications, accurate calculations of the turbulent stresses are therefore paramount in
order to reliably predict the overall flow field.

RANS computations do not obtain the turbulent stresses directly but instead use a pre-
scribed turbulence model to estimate the eddy viscosity, μt, from the mean flow data. An
‘eddy-viscosity model’ is then used to evaluate an approximation the turbulent stresses from
μt. Linear eddy-viscosity models (LEVMs) have remained popular due to their simplicity
and low computational cost, as compared to more involved closure models, despite providing
somewhat inaccurate turbulent stress estimates. For example, LEVMs result in a simple dis-
tribution of normal turbulent stresses, u′u′ = v′v′ = w′w′. This can be particularly problematic
in the complex geometries often encountered in practical applications, where normal stress
anisotropy is expected to influence the mean flow. As a result, LEVMs are unable to reliably
predict the flow in jets, streamwise corners or separated boundary layers(2).

One approach to extend the capabilities of LEVMs with only a mild increase in complexity
is to consider terms that are quadratic in the mean stress and vorticity tensors, when evaluating
the turbulent stress tensor. Spalart developed this type of quadratic eddy-viscosity model,
termed the quadratic constitutive relation (QCR), which still relates the eddy viscosity with
the turbulent stresses using only properties of the mean flow rather than any variables specific
to the turbulence model in use(3,4).

The key success of QCR has been the prediction of the flow in geometries featuring stream-
wise corners. Here, experiments and direct numerical simulations show the presence of a
counter-rotating vortex pair. Whilst RANS computations using linear eddy-viscosity models
do not capture these vortices, QCR is able to successfully predict the presence of a vortex pair
in the corner flow(4,5). The improvement in flow prediction has been shown to result in a better
estimate of corner separation(6), including shock-induced separation in transonic and super-
sonic flows(7). However, even these predictions are limited in their accuracy(6,7). Furthermore,
when the constant ccr1 (which, in practice, is treated like a tuning parameter) exceeds the rec-
ommended value of 0.3, Leger et al. have noted the appearance of additional non-physical
vortices(8).

More generally, with the exception of the successful prediction of large streamwise vortices
in Couette flow(9), the improvement in the computation of other complex flow fields has been
somewhat modest. Of course, a perfect prediction of turbulent stresses for all types of flow is
not attainable using an approach with a small number of calibration constants. However, the
limited success in mean flow prediction suggests that the inclusion of QCR terms does not
significantly improve estimates of turbulent stresses. In order to investigate the capabilities
and limitations of QCR, this paper considers an extension with additional quadratic terms not
included in the original definitions.

The aim of the analysis is to investigate the capabilities of three eddy-viscosity models:
an LEVM, conventional QCR and the proposed extension to QCR. RANS computations
of a flow problem require a prescribed turbulence model and so the corresponding results
would be dependent on the chosen turbulence model. Instead, the procedure adopted in this
paper directly tests the eddy-viscosity models themselves. To do so, the impact of different
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Table 1
Direct numerical simulations of incompressible flows analysed in this paper.
Reτ is the friction Reynolds number, and Reθ is the Reynolds number based

on boundary-layer momentum thickness

Geometry Authors Reynolds number

Channel Bernardini, Pirozzoli, Orlandi(10) Reτ = 180 – 4,100
Channel Hoyas, Jiménez(11) Reτ = 2,000
Boundary layer Sillero, Jiménez, Moser(12) Reθ = 6,650
Boundary layer Schlatter, Örlü et al.(13) Reθ = 2,500
Boundary layer (a) Schlatter, Li et al.(14) Reθ = 4,300
Pipe El Khoury, Schlatter et al.(15) Reτ = 1,000
Separated boundary layer Coleman, Rumsey, Spalart(16): case A Reθ = 1,500
Square duct Pirozzoli, Modesti et al.(17) Reτ = 1,100

(a)This study was performed using well-resolved large-eddy simulations.

eddy-viscosity models on turbulent stress anisotropy is assessed by using accurate values of
mean velocity and turbulent stresses from direct numerical simulations (DNS).

For several flow fields, published DNS velocity statistics are used to determine the distri-
bution of μt that would best relate the relevant turbulent stresses to the mean flow. This can be
considered as the best-case scenario for an hypothetical RANS simulation using a ‘perfect’
turbulence model for that particular flow, even if such a model does not exist in reality. From
the DNS-obtained eddy viscosity, the turbulent stresses are predicted for each eddy-viscosity
model under investigation and are then compared with the ‘correct’ stresses reported by DNS.
This comparison provides an evaluation of how well the turbulent stresses, which can have a
significant impact on the mean flow, are predicted by the various eddy-viscosity models.

The particular DNS data sets used in this study are all incompressible flows at moderate
Reynolds numbers, as detailed in Table 1. These flow fields include canonical cases — chan-
nel flow(10,11), boundary layers(12–14) and pipe flow(15) — as well as more complex flows, such
as the separated boundary layers(16) and square duct flow(17). The profiles from these differ-
ent flow families exhibit quite distinct turbulent stress distributions, especially away from the
wall(18), allowing a wide range of flow cases to be studied.

Note that since RANS simulations may not exactly compute the correct mean flow, the
adopted procedure does not quite equate to an assessment of how well an actual RANS cal-
culation would predict the turbulent stresses. However, the validity of this process improves
with increased accuracy of RANS simulations and the fundamental aim of RANS is to pro-
duce the correct mean flow, so this approach can still be considered instructive. Furthermore,
the DNS-based analysis has the significant advantage that it is independent of any turbulence
model and so provides a direct test of the eddy-viscosity models themselves.

2.0 THE QUADRATIC CONSTITUTIVE RELATION (QCR)
Linear eddy-viscosity models estimate the time-averaged turbulent stress tensor, τij = −ρu′

iu
′
j,

using the Boussinesq assumption:

τ̃ij = 2μtS
∗
ij −

2

3
ρkδij, · · · (1)
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where τ̃ij is the estimated turbulent stress tensor and μt is the eddy viscosity. In this equation,
the traceless stress tensor S∗

ij = Sij − 1/3∂uk/∂xk δij, with δij denoting the Kronecker delta,
and Sij = 1/2

(
∂ui/∂xj + ∂uj/∂xi

)
. The mean velocity components ui = {u, v, w} correspond

to the spatial coordinates xi = {x, y, z} in the streamwise, wall-normal and spanwise directions,
respectively. The density is given by ρ, and k corresponds to the turbulent kinetic energy. Note
that the second term, 2/3ρkδij, is neglected in one-equation turbulence models, which have
instead:

τ̃ij = 2μtS
∗
ij. · · · (2)

There are three iterations of the quadratic constitutive relation, developed by Spalart. The
original statement of the relation, QCR-2000(3), is defined by:

τ̃ij = 2μtS
∗
ij −

4ccr1μt√
SklSkl + 	kl	kl

[
	ikS∗

kj − S∗
ik	kj

]
, · · · (3)

where the vorticity tensor 	ij = 1/2
(
∂ui/∂xj − ∂uj/∂xi

)
or, in applications with rotation or

curvature, would be defined with respect to an inertial reference frame(19). Note that since
this modification uses only mean-flow properties, it can be applied to any single-equation or
multi-equation turbulence model that is based on a linear eddy-viscosity model. For turbu-
lence models that provide the turbulent kinetic energy, k, the additional term 2/3ρkδij can be
included in the eddy-viscosity relation:

τ̃ij = 2μtS
∗
ij −

4ccr1μt√
SklSkl + 	kl	kl

[
	ikS∗

kj − S∗
ik	kj

]
− 2

3
ρkδij. · · · (4)

An extension to this framework, QCR-2013(4), was proposed for turbulence models that do
not provide k. This formulation includes an additional term:

τ̃ij = 2μtS
∗
ij −

4ccr1μt√
SklSkl + 	kl	kl

[
	ikS∗

kj − S∗
ik	kj

]
− ccr2μt

[√
2S∗

klS
∗
kl

]
δij. · · · (5)

The constants ccr1 and ccr2 were proposed as 0.3 and 2.5, respectively, after calibra-
tion in the outer part of an equilibrium turbulent boundary layer(4). The additional term,
ccr2μt

[√
2S∗

klS
∗
kl

]
δij, approximately accounts for the 2/3ρkδij term in the Boussinesq equation

(Equation (1)), which had been omitted in Equations (2) and (3).
Note that this term contributes ∂/∂xj

(
ccr2μt

[√
2S∗

klS
∗
kl

]
δij

) = ∂/∂xi

(
ccr2μt

[√
2S∗

klS
∗
kl

])
to

the momentum equation. This is simply a gradient in the xi direction and so takes the same
form as the pressure gradient term, ∂p/∂xi. Therefore, even if this term was not explicitly
included, its effect would be implicitly incorporated in the pressure distribution, and so the
term does not affect the mean velocity distribution. As a result, the inclusion of this particular
term is not intended to directly improve prediction of the mean velocity field but instead
allows the distribution of pressure and normal turbulent stresses to better match the true
values.

Similarly, the additional term in Equation (5) also provides a means to extend the linear
eddy-viscosity model for one-equation models (Equation (2)) by introducing an estimated,
non-zero turbulent kinetic energy:

τ̃ij = 2μtS
∗
ij − ccr2μt

[√
2S∗

klS
∗
kl

]
δij. · · · (6)
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A recent version of the model, termed QCR-2020, has been proposed by Rumsey et al.(20).
In this formulation, the constants, ccr1 and ccr2, are no longer assumed to be spatially uni-
form but are replaced with equivalent coefficients containing wall-normal dependency, which
vary from one value at the walls to a different one near the boundary-layer edge. Given the
relative infancy of the QCR-2020 extension and its inherent added complexity, this paper
instead focuses on QCR-2013, which has constant coefficient values and whose effect has
been studied extensively(5–8).

3.0 AN EXTENSION TO THE QUADRATIC
CONSTITUTIVE RELATION

The modest success of QCR in most flow fields suggests that the turbulent stress predictions
need to be further improved. One possible approach is to revisit the expansion developed by
Gatski and Speziale(21), whose first two terms correspond to the linear term (Equation (2)) and
to the QCR-2000 quadratic term (Equation (3)). To improve the estimate of turbulent stresses,
it may therefore be beneficial to include additional terms in the eddy-viscosity model from
the expansion.

In fact, it is not necessary to immediately extend the eddy-viscosity model to cubic terms
because there are two additional terms, not included in QCR-2013, which are quadratic in S
and 	 and which satisfy the fundamental contraction (ui

′ui
′ = k) and symmetry (u′

iu
′
j = u′

ju
′
i)

properties(22,23). If it is assumed that the scaling with μt, S and 	 of all these terms is the
same as for the quadratic term in QCR-2013, we obtain:

τ̃ij = 2μtS
∗
ij −

4ccr1μt√
SklSkl + 	kl	kl

[
	ikS∗

kj − S∗
ik	kj

]
︸ ︷︷ ︸

A

−ccr2μt

[√
2S∗

klS
∗
kl

]
δij

− 4ccr3μt√
SklSkl + 	kl	kl

[
S∗

ikS∗
kj −

1

3
S∗

klS
∗
klδij

]
︸ ︷︷ ︸

B

· · · (7)

+ 4ccr4μt√
SklSkl + 	kl	kl

[
	ik	kj + 1

3
	kl	klδij

]
︸ ︷︷ ︸

C

.

For a parallel mean shear flow, u (y), where v = w = 0, the two new terms (B and C) are
different to the original QCR-2000 quadratic term (A) but are identical to each other:

A : − 4ccr1μt√
SklSkl + 	kl	kl

[
	ikS∗

kj − S∗
ik	kj

]
= −2ccr1μt

∂u

∂y

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦ , · · · (8)

B : − 4ccr3μt√
SklSkl + 	kl	kl

[
S∗

ikS∗
kj −

1

3
S∗

klS
∗
klδij

]
= −1

3
ccr3μt

∂u

∂y

⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦ , · · · (9)

C : + 4ccr4μt√
SklSkl + 	kl	kl

[
	ik	kj + 1

3
	kl	klδij

]
= −1

3
ccr4μt

∂u

∂y

⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦ . · · · (10)
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The conventional QCR term (A) was chosen because it increases u′u′ and decreases v′v′ such
that u′u′ > w′w′ > v′v′, which is known to hold for parallel mean shear flows u (y), such as
boundary layers(22). However, the other quadratic terms (B and C) are of the same order in the
expansion about S and 	, so these terms might be expected to have an influence of similar
magnitude as term A.

In general, as well as evaluating to identical expressions for a parallel mean shear flow,
terms B and C also tend to the same expression as each other for any fully developed flow
where u � v, w. Whilst a long-term aim is to discriminate between these two terms, for now
the problem is therefore simplified by considering instead:

τ̃ij = 2μtS
∗
ij −

4ccr1μt√
SklSkl + 	kl	kl

[
	ikS∗

kj − S∗
ik	kj

]
− ccr2μt

[√
2S∗

klS
∗
kl

]
δij

− 4c̃cr3μt√
SklSkl + 	kl	kl

[
S∗

ikS∗
kj −

1

3
S∗

klS
∗
klδij

]
, · · · (11)

with c̃cr3 = ccr3 − ccr4. Further simplification is achieved by assuming that ccr1, ccr2 and c̃cr3

are constant in space, rather than a function of the production-dissipation ratio, P/ε, or indeed
some other relevant non-dimensional quantity.

In order to calibrate the coefficients (ccr1, ccr2, c̃cr3), the DNS data from the parallel shear
flows in Table 1 are used. These consist of channel flows(10,11), boundary layers(12–14) and pipe
flows(15). For these parallel shear flows, the only turbulent stress component that affects the
mean velocity, u (y), is the shear stress, τxy. It is therefore possible to use the DNS data to
determine the distribution of μt that would correctly relate the shear stress to the mean flow
in a RANS simulation. In order to relate the mean flow to the turbulent stresses, the method
of Spalart et al. is invoked(24):

μt = τijSij

2SklSkl
= τxy

∂u/∂y
. · · · (12)

The extracted distribution of μt can then be used to determine the unknown calibration coef-
ficients, ccr1, ccr2 and c̃cr3. By evaluating the diagonal terms of Equation (11) for a parallel
mean shear flow, we obtain:⎡

⎣τxx

τyy

τzz

⎤
⎦ = −μt

∂u

∂y

⎡
⎣ 2 1 1/3

−2 1 1/3
0 1 −2/3

⎤
⎦

⎡
⎣ccr1

ccr2

c̃cr3

⎤
⎦ , · · · (13)

where τxx, τyy and τzz correspond to the true normal stresses, which are extracted from DNS.
Equation (13) is then inverted to find the values of ccr1, ccr2 and c̃cr3 which give the correct
normal stresses at each point,

⎡
⎣ccr1

ccr2

c̃cr3

⎤
⎦ = − 1

μt
∂u
∂y

⎡
⎣ 2 1 1/3

−2 1 1/3
0 1 −2/3

⎤
⎦−1 ⎡

⎣τxx

τyy

τzz

⎤
⎦ . · · · (14)

This matrix equation directly determines the constants from the true mean flow and turbu-
lent stresses, which are known from DNS. Equation (14) is then solved at each point for the
canonical parallel shear flows described above.
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(a) (b) (c)

y / d ref

ccr1 ccr2 c̃cr3

0 1 2
0

0.5

1

0 1 20 2 4

channel
b.layer
pipe

Figure 1. Calibration of (a) ccr1, (b) ccr2 and (c) c̃cr3 along the wall-normal direction, scaled by the flow
thickness, δref. Flowfields: channel flow (–)(10,11); boundary layers (- -)(12,13,14); pipe flow (-·-)(15).

The values of the coefficients as a function of the wall-normal coordinate, y, are shown in
Fig. 1 for the three different parallel mean shear flows. For channel flow and boundary layers,
this figure includes data from more than one simulation, as listed in Table 1, in order to rep-
resent flows at different Reynolds numbers. Inspection of Fig. 1 suggests that the calibrated
coefficients appear to be fairly uniform across much of the flow and are similar between
the different flow cases. This finding helps to justify the simplification of assigning the
coefficients a single constant value rather than allowing them to vary with non-dimensional
wall-normal coordinate. A reasonable value for these coefficients is obtained in three stages.
First, the coefficient values between y/δref = 0.1 and 1 are averaged in each data set. The mean
of these values is then calculated over the different Reynolds-number cases for each flow field.
A final average is then performed over the three canonical flow fields to give calibrated con-
stant coefficient values of ccr1 = 0.7, ccr2 = 2.5 and c̃cr3 = 0.8. This modified version of the
conventional formulation is termed the ‘extended quadratic constitutive relation’, or extended
QCR.

3.1 Effect of eddy-viscosity model on turbulent stress estimates
The effect on turbulent stress estimates of the different eddy-viscosity models, including
extended QCR, is studied using the DNS flows listed in Table 1. The estimated turbulent stress
distributions are obtained by evaluating the relevant eddy-viscosity model equation using the
mean velocities provided by the DNS data and the eddy viscosity, μt, from Equation (12).
The estimated turbulent stresses are then compared with the ‘true’ values from DNS.

Prior to evaluating the capabilities of extended QCR, conventional eddy-viscosity mod-
els are assessed for the cases of channel flow, boundary layers and pipe flow. The turbulent
stresses are estimated for: an LEVM which doesn’t account for turbulent kinetic energy
(Equation (2)); QCR-2000 (Equation (3)); QCR-2013 (Equation (5)); and an LEVM account-
ing for turbulent kinetic energy using the ccr2 term from QCR-2013 (Equation (6)). Figure 2
shows how the estimated normal stresses (τxx, τyy and τzz) from each model compare to the
distributions from DNS(10,12,15). This comparison shows that an LEVM based on Equation (2)
predicts all three normal stresses to be equal to zero everywhere, which is not an accurate
representation of the true distribution.

From Fig. 2, it is also evident that the ccr1 and ccr2 terms in QCR-2013 serve two differ-
ent purposes. QCR-2000, which contains only the ccr1 term, better predicts the anisotropies
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channel flow

boundary layer

iii.ii.i.

u′u′ / u2
t v′v′ / u2

t tw′w′ / u2

y / h

y / d

0

1

0.5

0

1

0.5

0 8642 –1 1 2 3 0 1 2 3

pipe flow
(c)

(b)

(a)

y / r

0

1

0.5

y+

y+

y+

25

100

1000

4100

10

100

1000
2500

5

10

100

1000

DNS

LEVM

LEVM + ccr2 term

0

QCR-2000

QCR-2013

Figure 2. Effect of different turbulent stress approximations on estimating the normal turbulent stresses (i.
u′u′, ii. v′v′, iii. w′w′), scaled by the friction velocity, uτ . The true stress from DNS (—) and estimated stress
from an LEVM (Equation (2), –·-), an LEVM with the ccr2 term (Equation (6), –·-), QCR-2000 (Equation (3),
- - -) and QCR-2013 (Equation (5), - - -). Flowfields: (a) channel flow(10); (b) boundary layer(12); (c) pipe
flow(15). In each case, the stress distributions are presented with the wall-normal coordinate in both outer

units (y) and wall units (y+).
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between the turbulent stresses, capturing the fact that u′u′ > w′w′ > v′v′. However, the esti-
mated stresses remain much smaller than the true values. On the other hand, the estimates
from Equation (6), which contains only the ccr2 term, better estimate the size of the stresses
but do not predict any variation between the different turbulent stresses. This observation
suggests that the ccr1 term improves prediction of the anisotropy between the normal turbu-
lent stresses, while the ccr2 term improves the estimate of the magnitudes. QCR-2013, which
contains both ccr1 and ccr2 terms, therefore benefits from both improvements and features sig-
nificantly better turbulent stress estimates than the other models. However, even QCR-2013
exhibits noticeable deviations from the true stress distributions, motivating the need for an
extended QCR.

A comparison of the turbulent stress estimates from QCR-2013 and extended QCR against
the true DNS values is shown in Fig. 3. This figure shows that extended QCR predicts
the turbulent stresses substantially better than QCR-2013. Note that these improvements
are achieved with coefficient values that are neither spatially dependent nor flow specific.
However, in the near-wall region both models struggle to accurately predict the stresses. This
observation is particularly evident when the spatial coordinate is scaled in wall units, y+.
These plots show that extended QCR agrees reasonably well with the DNS data in the outer
part of the flow but, below y+ ≈ 100 − 500, none of the eddy-viscosity models produce sat-
isfactory estimates of the turbulent stresses. Nevertheless, even in this region, extended QCR
still generally performs better than the other models.

The poor predictions in the near-wall region can be attributed to the fact that extended
QCR has been developed in free shear flows and does not take advantage of any information
regarding the proximity of the wall. Capturing this wall-normal dependence remains a chal-
lenge for the future, perhaps using the approach of QCR-2020, which allows the values of
coefficients to vary with wall-normal distance. It is worth noting, however, that even QCR-
2020 has trouble reproducing, in particular, the sharp near-wall peak of τxx at high Reynolds
numbers(20).

In addition to evaluating the improvement in turbulent stress estimates by extended QCR for
different flow fields, it is also useful to consider the effects of Reynolds number. This analysis
is performed using the channel flow as an example, which was studied for Reτ = 4100 in
Fig. 3(a). However, DNS simulations were also conducted by Bernardini et al. for the same
flow field at Reτ = 2050, 1000, 550, and 180. Figure 4 presents the turbulent stresses from the
velocity statistics for these additional simulations, alongside the estimated distributions from
QCR-2013 and extended QCR. This comparison shows that extended QCR provides a better
estimate of the normal stresses than QCR-2013, not just at Reτ = 4100 where the coefficient
values were calibrated, but for the entire Reynolds-number range, Reτ = 180 – 4100.

A similar analysis to the parallel mean shear flows in Fig. 3 can also be extended to the
more complex cases in Table 1, namely the separated boundary layer(16) and the flow in a
square duct(17). In contrast to the parallel shear flows from Fig. 3, the mean velocity in such
flow fields (which have non-zero cross-flow and which vary in x or z) are no longer determined
solely by τxy. Therefore, it is not possible to use the eddy-viscosity distribution from Equation
(12) to correctly relate shear stress with the mean flow. Instead, a different method is used to
evaluate a relevant eddy-viscosity distribution, μt, which provides the best fit for a weighted
balance of all six turbulent stress components:

μt = τijσ̃ij

σ̃klσ̃kl
. · · · (15)

https://doi.org/10.1017/aer.2021.42 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.42


1756 THE AERONAUTICAL JOURNAL OCTOBER 2021

channel flow
(a)

(b)

(c)

boundary layer

iii.ii.i.

y / h

y /

0

1

0.5

0

1

0.5

0 8642 0 1 2 3 0 1 2 3

pipe flow

y / r

0

1

0.5

y+

y+

y+

25

100

1000

4100

10

100

1000
2500

5

10

100

1000

DNS

QCR-2013

extended QCR

d

u′u′ / u2
t v′v′ / u2

t tw′w′ / u2

Figure 3. Effect of different turbulent stress approximations on estimating the normal turbulent stresses
(i. u′u′, ii. v′v′, iii. w′w′), scaled by the friction velocity, uτ . The true stress from DNS (—) and estimated
stress from QCR-2013 (Equation (5), - -) and extended QCR (Equation (11), –). Flowfields: (a) channel
flow(10); (b) boundary layer(12); (c) pipe flow(15). In each case, the stress distributions are presented with

the wall-normal coordinate in both outer units (y) and wall units (y+).
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Figure 4. Effect of Reynolds number on estimates of normal turbulent stresses (i. u′u′, ii. v′v′, iii. w′w′),
scaled by the friction velocity, uτ . The true stress from DNS (—) and estimated stress from QCR-
2013 (Equation (5), - -) and extended QCR (Equation (11), –). Reynolds numbers: (a) Reτ =2,050; (b)
Reτ = 1,000; (c) Reτ = 550; (d) Reτ =180(10). In each case, the stress distributions are presented with the
wall-normal coordinate in wall units (y+), with the data in outer units (y) only included for cases (a) and (d)

for brevity.
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Figure 5. Effect of different turbulent stress approximations on estimating the normal turbulent stresses
(i. u′u′, ii. v′v′, iii. w′w′), scaled by the bulk velocity, ub. The true stress from DNS (—) and estimated
stress from QCR-2013 (Equation (5), - -) and extended QCR (Equation (11), –). Flowfields: (a) separated
boundary layer(16); (b) corner bisector of duct flow(17). In each case, the stress distributions are presented

with the wall-normal coordinate in both outer units (y) and wall units (y+).

In this equation, τij is the true turbulent stress tensor from DNS and σ̃ij = τ̃ij / μt, where
the definition of τ̃ij is taken from Equations (5) or (11) for QCR-2013 and extended
QCR, respectively. Note that τ̃ij is proportional to μt for all three definitions, and so σ̃ij is
independent of μt.

Figure 5 shows the estimated normal turbulent stresses (τxx, τyy and τzz) for these flows.
This figure exhibits similar behaviour to that from the simpler flow cases (Fig. 3). In the
outer part of the flow, extended QCR provides substantial improvements compared to QCR-
2013. However, whilst the turbulent stresses appear to be reasonably predicted down to y+ =
10 for the separated boundary layer, neither of the eddy-viscosity models provide accurate
estimates for the turbulent stresses in the near-wall region (y+ <∼ 60) of the corner bisector
for the square duct flow. This finding further highlights the importance of capturing the wall-
normal dependency of the QCR coefficients in future improvements to the current model.
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Figures 3 and 5, therefore, suggest that extended QCR improves the predictions of turbulent
stresses, which might be expected to improve the calculation of mean flow fields. In order
to test the effect on mean flow behaviour, it would be necessary to assess the accuracy of
RANS simulations conducted using extended QCR. Such an assessment is outside the scope
of the present paper but would be the ultimate test of the proposed quadratic eddy-viscosity
model.

4.0 PREDICTION OF CORNER FLOWS USING QCR
The analysis of DNS data in Figs. 3 and 5 has shown that QCR-2013 produces a somewhat
inaccurate estimate of turbulent stresses. Nevertheless, conventional QCR appears to more
accurately calculate the flow along corner geometries than the corresponding linear eddy-
viscosity models(4,5,7). The successful prediction of stress-induced corner vortices using poor
estimates of the turbulent stresses is somewhat counter-intuitive. In order to better under-
stand this apparent contradiction, the turbulent stresses in corner flows are analysed more
closely.

4.1 Analysis of turbulent stresses
Since corner flows are dominated by the presence of a counter-rotating pair of streamwise
vortices(1), we consider the mean streamwise vorticity equation:

v
∂ωx

∂y
+ w

∂ωx

∂z
= ωy

∂u

∂y
+ ωz

∂u

∂z︸ ︷︷ ︸
A

+ ν

(
∂2

∂y2
+ ∂2

∂z2

)
ωx︸ ︷︷ ︸

B

+
(

∂2

∂y2
− ∂2

∂z2

) (−v′w′)
︸ ︷︷ ︸

C

+ ∂2

∂y∂z

(
v′2 − w′2

)
︸ ︷︷ ︸

D

, · · · (16)

where ωx, ωy and ωz are the vorticity components in the streamwise, wall-normal and span-
wise directions, while ν is the kinematic viscosity of the flow. This equation shows the balance
of the convection of vorticity (the left side) with production and diffusion on the right side.
Term A on the right side corresponds to the generation of Prandtl vortices of the first kind,
corresponding to a bending of vortex lines by the mean shear. The second term (B) represents
the viscous diffusion of vorticity. The third and fourth terms (C and D) correspond to the pro-
duction of Prandtl vortices of the second kind, which is related to turbulent stress anisotropy
in the flow.

The streamwise vortices which exist in corner flows are believed to be generated by mech-
anisms relating to Prandtl vortices of the second kind(1), corresponding to terms C and D
above. We therefore restrict our attention to these two terms, which are referred to as the
‘shear stress term’ (term C) and the ‘normal stress term’ (term D). These two terms are eval-
uated using the turbulent stresses estimated using an LEVM, QCR-2013 and extended QCR,
and are then compared with the equivalent ‘correct’ distribution calculated from the DNS
turbulent stresses.

For this analysis, we assume that in corner flows the streamwise velocities are much greater
than any transverse velocity components (v ≈ w ≈ 0) and the flow is fully developed (∂u/∂x =
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0). For a linear eddy-viscosity model, defined by Equation (6), we find that τyz = 0 and τyy =
τzz, which gives:

shear stress term :
1

ρ

(
∂2

∂y2
− ∂2

∂z2

)
τyz = 0, · · · (17)

normal stress term :
1

ρ

∂2

∂y∂z

(
τzz − τyy

) = 0. · · · (18)

Since the vorticity production terms equate to zero, RANS simulations with an LEVM are
unable to generate the quasi-streamwise vortices that exist in corners, resulting in a poor
prediction of these flows.

The situation is different when quadratic modifications are introduced, however. Rather than
repeating the entire analysis separately for QCR-2013 and extended QCR, both models can
be studied simultaneously using Equation (11). As determined in Section 3.0, the proposed
values of ccr1 = 0.7, ccr2 = 2.5 and c̃cr3 = 0.8 give extended QCR. On the other hand, QCR-
2013, which does not contain the c̃cr3 term, can be replicated by using Equation (11) with the
coefficient combination ccr1 = 0.3, ccr2 = 2.5 and c̃cr3 = 0. Evaluating the relevant turbulent
stress combinations for the shear stress term and the normal stress term in Equation (16) for
a corner flow, u (y, z), we find that:

τzz − τyy = (2ccr1 − c̃cr3) μt√(
∂u
∂y

)2 +
(

∂u
∂z

)2

[(
∂u

∂z

)2

−
(

∂u

∂y

)2
]

, · · · (19)

τyz = (2ccr1 − c̃cr3) μt√(
∂u
∂y

)2 +
(

∂u
∂z

)2

[(
∂u

∂y

) (
∂u

∂z

)]
. · · · (20)

These turbulent stress combinations only depend on the constant combination 2ccr1 − c̃cr3.
This suggests that the generation of streamwise vorticity depends only on the value of 2ccr1 −
c̃cr3 (i.e. some measure of the strength of the quadratic modification) rather than the individual
contributions from the different terms. Therefore, while corner flows do show the importance
of quadratic terms in turbulence modelling, they are poor at discriminating between them.
The dependence of vorticity production on 2ccr1 − c̃cr3 suggests that, if the combined use of
both (or all three) quadratic terms can generate accurate stresses, the streamwise vorticity in
corner flows can be produced using just one of these terms, such as in conventional QCR. For
this to be the case, it is necessary that the model which provides accurate stress estimates and
conventional QCR both share a common value of 2ccr1 − c̃cr3.

Indeed, it is interesting to note that 2ccr1 − c̃cr3 = 0.6 both for QCR-2013 and for extended
QCR. This suggests that vorticity production in corner flows is essentially equivalent between
the two forms and provides an explanation for the success of conventional QCR in such flows
despite somewhat poor turbulent stress prediction. An additional consequence of this find-
ing is that extending QCR to its more general form is unlikely to detrimentally impact the
key success of conventional QCR, i.e. the prediction of the mean flow along streamwise
corners.
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Figure 6. Direct numerical simulation of the flow in a quarter of a square duct(17) with half-height, h,
and bulk velocity, ub: (a) the mean streamwise velocity component, u, with the highlighted contour at
u/ub = 1, representative of the boundary-layer edge shape; (b) the mean streamwise vorticity, ωx. Contours

of positive values are shown with solid lines and negative values are marked by dashed lines.

4.2 Analysis of velocity statistics from DNS
Data from relevant direct numerical simulations are used to illustrate the findings from Section
4.1. A fully developed, incompressible square duct flow was computed by Pirozzoli et al. for a
friction Reynolds number, Reτ = 1100(17). Figures 6(a) and (b) show the streamwise velocity
and vorticity distributions, respectively, for a quarter of the duct. As well as capturing the
shear in the boundary layers, the vorticity distribution displays the pair of counter-rotating
vortices (labelled V+ and V−) either side of the corner bisector. The distorted boundary-
layer shape, denoted by the dotted line in Fig. 6(a), demonstrates how the vortices affect
the streamwise velocity profile through momentum transfer between the core flow and the
boundary layers.

Figure 7(a) presents the turbulent stresses (τyz, τyy and τzz) that appear in the streamwise
vorticity equation (Equation (16)), extracted directly from DNS. The turbulent shear stress,
u′v′, is negative along the corner bisector and is roughly zero on either side. The normal
stresses are generally larger in magnitude than the shear stress, with v′v′ concentrated towards
the floor and w′w′ towards the sidewall. These distributions are compared with equivalent
estimates using Equations (6), (5) and (11), which correspond to an LEVM, QCR-2013 and
extended QCR, respectively.

A comparison of Fig. 7(a) with (b) shows that linear eddy-viscosity models cannot accu-
rately predict the distribution of relevant turbulent stresses. When the QCR-2013 modification
is used, there is an improvement in τyz (Fig. 7(c–i)), which now more closely reflects the dis-
tribution in Fig. 7(a–i). However, the estimates of τyy (Fig. 7(c–ii)) and τzz (Fig. 7(c–iii)) are
still inaccurate in both magnitude and topology. Figure 7(d) shows that extended QCR appears
to provide a reasonable prediction of all three stresses, although the true stress distributions
from Fig. 7(a) are still not perfectly replicated.

As well as investigating the individual turbulent stresses, Fig. 8 shows the equivalent
comparison for the stress combination τzz − τyy, which appears in the normal stress term of
Equation (16). Linear eddy-viscosity models that obey Equation (6) assume that τyy = τzz, and
so the difference between the two stress components evaluates to zero. Since this distribution
would correspond to an empty plot, it is not shown in Fig. 8. More interestingly, Fig. 8(b)
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Figure 7. Turbulent stresses relevant for streamwise vorticity production, in the square duct(17): i. u′v′,
ii. v′v′ and iii. w′w′. These stresses are (a) directly extracted from the DNS turbulence statistics, or are
estimated using (b) a linear eddy-viscosity model, (c) QCR-2013, and (d) extended QCR. Contours of

positive values are shown with solid lines and negative values are marked by dashed lines.

and (c) appear to be equivalent, which shows that QCR-2013 exactly emulates the estimates
from extended QCR. This is a direct consequence of the finding in Section 4.1 that, for these
quadratic modifications, τzz − τyy depends only on 2ccr1 − c̃cr3. This coefficient combination
evaluates to 0.6 for both QCR-2013 and extended QCR. For the same reason, the distribution
of τyz in Fig. 7(c–i) (QCR-2013) and Fig. 7(d–i) (extended QCR) appear to be equivalent.
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Note that the equivalent plot for an LEVM is blank and so has not been presented here.

From the turbulent stress distributions, the shear stress and the normal stress terms from
Equation (16) are evaluated, both individually and in combination (Fig. 9). Figure 9(a)
presents these vorticity production terms for the DNS stress distributions. The overall vor-
ticity production (Fig. 9(a–iii)) takes the form of one lobe each side of the corner bisector (P+
and P−), with opposite sign. Both production terms affect these lobes, with the shear stress
term contributing more towards the corner bisector and the normal stress term influencing the
behaviour close to the walls.

As expected from the analysis of the streamwise vorticity equation, the vorticity produc-
tion terms for LEVMs evaluate to zero, so such models cannot produce streamwise vorticity
using this mechanism. Since this distribution would produce an empty contour plot, it is
not included in Fig. 9. The production terms for QCR-2013 (Fig. 9(c)) and extended QCR
(Fig. 9(d)) produce very similar distributions to one another. This is a consequence of these
two quadratic modifications displaying equivalent spatial distributions for the relevant turbu-
lent stress combinations τyz (Figs. 7(c–i) and (d–i)) and τzz − τyy (Fig. 8(b) and (c)). Therefore,
the following discussion does not distinguish between QCR-2013 and extended QCR.

A closer analysis of Fig. 9 shows that the estimated vorticity production for QCR exhibits
primary lobes of the correct sign. These are labelled P+

1 and P−
1 , corresponding to P+ and P−

from Fig. 9(a). This rough agreement in the structure, sign and magnitude of the production
terms explains the improvement in simulation of corner flows when QCR is used.

However, the topology of the production terms for the quadratic models do exhibit devi-
ations from the ‘true’ DNS distribution. A direct comparison of Fig. 9(b–i) and (c-i) to
Fig. 9(a–i) shows that QCR underestimates the contribution from the shear stress term.
Instead, the primary lobes in the quadratic models (P1) are determined mainly from the nor-
mal stress term. As a result, the estimate of overall vorticity production by QCR (Fig. 9(b-iii)
and (c–iii)) does not correspond well with the true distribution (Fig. 9(a–iii)). In particular,
QCR predicts the P1 lobes to be elongated close to the corner bisector whilst the true produc-
tion distribution (P+ and P−) is concentrated towards the walls. This suggests that, whereas
QCR is able to predict the presence of corner vortices and the resultant boundary-layer shape,
the properties of the vortices (such as their position) may not quite correspond to those in the
physical flow.
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Figure 9. The streamwise vorticity production terms from Equation (16), in the square duct(17): i. shear
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iii. sum of shear stress term and normal stress term. These terms are (a) directly extracted from the DNS
turbulence statistics, or are estimated using (b) QCR-2013 and (c) extended QCR. Contours of positive
values are shown with solid lines and negative values are marked by dashed lines. Note that the equivalent

plot for an LEVM is blank and so has not been presented here.

Another reported limitation of QCR in corner flows occurs when simulations are run with
ccr1 greater than the recommended value of 0.3, which may occur, for example, in an attempt
to better match the mean flow. In such cases, additional non-physical vortices are generated(8).
To investigate this phenomenon further, the vorticity production terms are estimated for ccr1 =
0.5 and c̃cr3 = 0, i.e. 2ccr1 − c̃cr3 = 1.0 rather than 0.6. The primary effect is to strengthen all
the turbulent stresses and thus increase the overall vorticity production, shown in Fig. 10(c).
This figure also reveals the appearance of additional lobes away from the corner bisector,
labelled P+

2 and P−
2 . These lobes are of opposite sign to the primary P1 lobes. The P2 lobes

also appear in Fig. 10(a), and so seem to be associated with the shear stress term in Equation
(16). Note that weak analogues to these P2 lobes can be identified in Fig. 9(b–iii) and (c–iii),
where 2ccr1 − c̃cr3 = 0.6. The lobes in Fig. 10, however, are strong enough to be prominent in
the distribution of overall vorticity production. The presence of the P2 lobes may correspond
to the non-physical vortices reported in RANS simulations of these geometries(8).

In this way, the appearance of the spurious vortices can be linked to the shear stress
term in Equation (16) and, in turn, the inaccuracy of estimating the turbulent shear stress
component, τyz. However, the dependence of the production terms only on the combination
2ccr1 − c̃cr3 suggests that any simple quadratic modification would face similar issues with
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and c̃cr3 = 0 in Equation (11). Contours of positive values are shown with solid lines and negative values

are marked by dashed lines.

corner flow prediction. To overcome this, it is necessary to add complexity either by capturing
the wall-normal dependence of the coefficients or by estimating the turbulent stresses using a
different, more involved technique.

5.0 CONCLUSIONS
This paper revisits the quadratic constitutive relation, a modification to linear eddy-viscosity
models. The analysis in this paper shows that the conventional form of QCR provides a def-
inite improvement but does not, in general, compute the turbulent stresses very accurately,
which may help to explain why its success in mean flow prediction for many flow fields has
been limited.

The improvements in computing the flow along streamwise corners reported by others are
not due to a much better prediction of turbulent stresses in general. Instead, this success can be
attributed to improved estimates of the particular turbulent stress combinations which appear
in the mean streamwise vorticity equation. As a result, the topology and rough magnitudes of
the vorticity production terms are in reasonable agreement with the true values from DNS,
which explains why corner flow computations are improved. Nevertheless, the precise topol-
ogy of the production terms deviates from the DNS distribution, particularly close to the walls,
which suggests that the properties of the vortices (such as their position) may not quite corre-
spond to those in the physical flow. In addition, the imperfect estimate of the shear stress term
is observed to be the source of additional, non-physical vortices when the QCR coefficient,
ccr1, exceeds 0.3.

An extension to QCR is proposed, which improves turbulent stress predictions over a wide
range of canonical and more complex flows. For a small increase in complexity, with one addi-
tional quadratic modification term and associated coefficient compared to QCR, the turbulent
stress estimates now match the true values from DNS more closely. The flow along stream-
wise corner geometries is one such example of a flow field where extended QCR predicts
turbulent stresses with reasonable accuracy. It turns out that streamwise vorticity production
in such flows depends only on the coefficient combination 2ccr1 − c̃cr3 rather than the pre-
cise values of each coefficient. The fact that both extended QCR and conventional QCR have
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2ccr1 − c̃cr3 = 0.6 explains why conventional QCR can reliably predict the generation of cor-
ner vortices despite inaccurate turbulent stress estimates. This finding also implies that, whilst
corner flow calculations are affected by the presence of quadratic terms in the eddy-viscosity
model, this flow field is not a suitable test case for comparing the capabilities of different
quadratic models.

Note that the proposed formulation of extended QCR is still not perfect, however. In par-
ticular, the stresses near the wall are still poorly predicted, demanding a closer study into
the wall-normal dependence of this type of model. Nevertheless, the marked improvement in
turbulent stress predictions is promising and provides compelling reasons to conduct RANS
simulations with extended QCR. These computations would enable the effect of the proposed
modification on mean flow calculations to be assessed. Such calculations would also per-
mit evaluation of the numerical stability of this modification, and would test the existence of
possible spurious vortices in a model where ccr1 = 0.7 greatly exceeds 0.3.
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