
6
Inclusive weak decay

In this chapter, we will study inclusive weak decays of hadrons containing a b
quark. The lowest mass meson or baryon containing a b quark decays weakly,
since the strong and electromagnetic interactions preserve quark flavor. One of
the main results of this chapter is the demonstration that the parton model picture
that inclusive heavy hadron decay is the same as free heavy quark decay is exact
in the mb → ∞ limit. In addition, we will show how to include radiative and
nonperturbative corrections to the leading-order formula in a systematic way.
The analysis closely parallels that of deep inelastic scattering in Sec. 1.8.

6.1 Inclusive semileptonic decay kinematics

Semileptonic B̄-meson decays to final states containing a charm quark arise from
matrix elements of the weak Hamiltonian density

HW = 4G F√
2

Vcb c̄γ μPLb ēγμPLνe. (6.1)

In exclusive three-body decays such as B̄ → Deν̄e, one looks at the decay into
a definite final state, such as Deν̄e. The differential decay distribution has two
independent kinematic variables, which can be chosen to be Ee and Eνe , the
energy of the electron and antineutrino. The decay distribution depends implicitly
on the masses of the initial and final particles, which are constants. In inclusive
decays, one ignores all details about the final hadronic state Xc and sums over
all final states containing a c quark. Here Xc can be a single-particle state, such
as a D meson, or a multiparticle state, such as Dπ . In addition to the usual two
kinematic variables Ee and Eνe for exclusive semileptonic decays, there is an
additional kinematic variable in B̄ → Xceν̄e decay since the invariant mass of
the final hadronic system can vary. The third variable will be chosen to be q2, the
invariant mass of the virtual W boson. The diagrams for semileptonic b-quark
and B̄-meson decays are shown in Fig. 6.1.
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152 Inclusive weak decay

b
e−

c

νe

B

e−
Xc

νe

Fig. 6.1. Weak decay diagrams for semileptonic quark and hadron decay.

In the B̄ rest frame, the differential decay distribution for inclusive semilep-
tonic decay is

d�

dq2 dEe dEνe

=
∫

d4 pe

(2π )4

∫
d4 pνe

(2π )4 2πδ
(

p2
e

)
2πδ

(
p2

νe

)
θ
(

p0
e

)
θ
(

p0
νe

)
× δ

(
Ee − p0

e

)
δ
(
Eνe − p0

νe

)
δ
[
q2 − (

pe + pνe

)2]
×

∑
Xc

∑
lepton
spins

|〈Xceν̄e|HW |B̄〉|2
2m B

(2π )4δ4[pB − (
pe + pνe

) − pXc

]
, (6.2)

where we have used the familiar formula d3p/(2E) = d4 pδ(p2 − m2)θ (p0) and
neglected the electron mass. The phase space integrations can be performed in
the rest frame of the B̄ meson. After summation over final hadronic states Xc, the
only relevant angle is that between the electron and the neutrino three momenta.
Nothing depends on the direction of the neutrino momentum, and integrating over
it gives a factor of 4π . One can then choose the z axis for the electron momentum
to be aligned along the neutrino direction. Integrating over the electron azimuthal
angle gives a factor of 2π . Consequently, the lepton phase space is

d3ped3pνe = 8π2|pe|2d|pe||pνe |2d|pνe |d cos θ, (6.3)

where θ is the angle between the electron and neutrino directions. The three
remaining integrations are fixed by the three delta functions. Using δ(p2

e ) =
δ(E2

e −|pe|2) to perform the integration over |pe|, δ(p2
νe

) = δ(E2
νe

− |pνe |2) to per-
form the integration over |pνe |, and δ[q2−(pe+pνe )

2] = δ[q2−2Ee Eνe (1−cos θ )]
to perform the integration over cos θ gives

d�

dq2 dEe dEνe

= 1

4

∑
Xc

∑
lepton
spins

|〈Xeν̄e|HW |B̄〉|2
2m B

δ4[pB − (
pe + pνe

) − pXc

]
.

(6.4)

The weak matrix element in Eq. (6.4) can be factored into a leptonic matrix
element and a hadronic matrix element, since leptons do not have any strong
interactions. Corrections to this result are suppressed by powers of G F or α, and
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6.1 Inclusive semileptonic decay kinematics 153

they arise from radiative corrections due to additional electroweak gauge bosons
propagating between the quark and lepton lines. The matrix element average is
conventionally written as the product of hadronic and leptonic tensors,

1

4

∑
Xc

∑
lepton
spins

|〈Xceν̄e|HW |B̄〉|2
2m B

(2π )3δ4[pB − (
pe + pνe

) − pXc

]

= 2G2
F |Vcb|2Wαβ Lαβ, (6.5)

where the leptonic tensor is

Lαβ = 2
(

pα
e pβ

νe
+ pβ

e pα
νe

− gαβpe · pνe − iεηβλα peη pνeλ

)
(6.6)

and the hadronic tensor is defined by

W αβ =
∑
Xc

(2π )3δ4(pB − q − pXc )
1

2m B

×〈B̄(pB)|J †α

L

∣∣Xc
(

pXc

)〉〈
Xc

(
pXc

)∣∣Jβ

L |B̄(pB)〉, (6.7)

with Jα
L = c̄γ αPLb, the left-handed current. In Eq. (6.7), q = pe + pνe is the sum

of electron and antineutrino four momenta. Here Wαβ is a second-rank tensor that
depends on pB = m Bv and q, the momentum transfer to the hadronic system.
The relation pB = m Bv defines v as the four velocity of the B̄ meson. The b quark
can have a small three velocity of the order of 1/mb in the B̄-meson rest frame,
and this effect is included in the 1/mb corrections computed later in this chapter.

The most general tensor Wαβ is

Wαβ = −gαβW1 + vαvβW2 − iεαβμνv
μqνW3 + qαqβW4 + (vαqβ + vβqα)W5.

(6.8)

The scalar structure functions W j are functions of the Lorentz invariant quantities
q2 and q · v. Using Eqs. (6.8), (6.6), and (6.5), we find the differential cross
section in Eq. (6.4) becomes

d�

dq2 dEe dEνe

= G2
F |Vcb|2
2π3

[
W1q2 + W2

(
2Ee Eνe − q2/2

)
+ W3q2(Ee − Eνe

)]
θ
(
4Ee Eνe − q2), (6.9)

where we have explicitly included the θ function that sets the lower limit for
the Eνe integration because it will play an important role later in this chapter.
The functions W4 and W5 do not contribute to the decay rate, since qα Lαβ =
qβ Lαβ = 0 in the limit that the electron mass is neglected. These terms have to
be included in decays to the τ .

The neutrino is not observed, and so one integrates the above expression over
Eνe to get the differential spectrum d�/dq2 dEe. For a fixed electron energy the
minimum value of q2 occurs when the electron and neutrino are parallel (i.e.,
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154 Inclusive weak decay

Fig. 6.2. The allowed q2 values as a function of the electron energy Ee, for different
values of the final state hadronic mass m Xc . The entire region inside the curve is allowed.
The curves are (from the outermost curve in) for m Xc = m D , (m Xc/m B)2 = 0.25, 0.5,
and 0.75, respectively.

cos θ = 1), and the maximum value occurs when the electron and neutrino are
antiparallel (i.e., cos θ = −1). Hence

0 < q2 <
2Ee

(m B − 2Ee)

(
m2

B − 2Eem B − m2
Xmin

c

)
, (6.10)

where Xmin
c is the lowest mass state containing a charm quark, i.e., the D meson.

The maximum electron energy is

Emax
e =

m2
B − m2

Xmin
c

2m B
, (6.11)

which occurs at q2 = 0. The allowed q2 values as a function of Ee are plotted
in Fig. 6.2. For a given value of the final hadronic system mass m Xc , electron
energy Ee, and q2, the neutrino energy Eνe is

Eνe =
(

m2
B − m2

Xc
+ q2

2m B

)
− Ee. (6.12)

Consequently, integrating d�/dq2 dEe dEνe over Eνe (at fixed q2 and Ee) to
get d�/dq2 dEe is equivalent to averaging over a range of final-state hadronic
masses. We will see later in this chapter that in some regions of phase space,
the validity of the operator product expansion for inclusive decays depends on
hadronic mass averaging. For values of q2 and Ee near the boundary of the al-
lowed kinematic region, q2(m B − 2Ee) − 2Ee(m2

B − 2Eem B − m2
Xmin

c
) = 0, only

final hadronic states with masses near m Xmin
c

get averaged over in the integration
over Eνe .
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6.1 Inclusive semileptonic decay kinematics 155

The hadronic tensor Wαβ parameterizes all strong interaction physics relevant
for inclusive semileptonic B̄ decay. It can be related to the discontinuity of a
time-ordered product of currents across a cut. Consider the time-ordered product

Tαβ = −i
∫

d4xe−iq · x 〈B̄|T [
J †

Lα(x) JLβ(0)
]|B̄〉

2m B
. (6.13)

Inserting a complete set of states between the currents in each time ordering,
using the analogs of Eqs. (1.159), applying the identity

θ (x0) = − 1

2π i

∫ ∞

−∞
dω

e−iωx0

ω + iε
, (6.14)

and performing the integration over d4x gives, in the B̄ rest frame,

Tαβ =
∑
Xc

〈B̄|J †
Lα|Xc〉〈Xc|JLβ |B̄〉

2m B(m B − EX − q0 + iε)
(2π )3δ3(q + pX )

−
∑
Xc̄bb

〈B̄|JLβ |Xc̄bb〉〈Xc̄bb|J †
Lα|B̄〉

2m B(EX − m B − q0 − iε)
(2π )3δ3(q − pX ). (6.15)

Here Xc is a complete set of hadronic states containing a c quark, and Xc̄bb is a
complete set of hadronic states containing two b quarks and a c̄ quark. At fixed q
the time-ordered product of currents Tαβ has cuts in the complex q0 plane along

the real axis. One cut is in the region −∞ < q0 < m B −
√

m2
Xmin

c
+ |q|2, and the

other cut is in the region ∞ > q0 >
√

m2
Xmin

c̄bb
+ |q|2 − m B . The imaginary part of

T (i.e., the discontinuity across the cut) can be evaluated using

1

ω + iε
= P

1

ω
− iπδ(ω), (6.16)

where P denotes the principal value. This gives

1

π
Im Tαβ = −

∑
Xc

〈B̄|J †
Lα|Xc〉〈Xc|JLβ |B̄〉

2m B
(2π )3δ4(pB − q − pX )

−
∑
Xc̄bb

〈B̄|JLβ |Xc̄bb〉〈Xc̄bb|J †
Lα|B̄〉

2m B
(2π )3δ4(pB + q − pX ).

(6.17)

The first of these two terms is just −Wαβ . For values of q and pB in semileptonic
B̄ decay, the argument of the δ function in the second term of Eq. (6.17) is
never zero, and it does not contribute to the imaginary part of T . It is convenient
to express Tαβ in terms of Lorentz scalar structure functions just as we did
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156 Inclusive weak decay

for Wαβ :

Tαβ = −gαβT1 + vαvβT2 − iεαβμνv
μqνT3 + qαqβT4 + (vαqβ + vβqα)T5.

(6.18)

The Tj ’s are functions of q2 and q · v. One can study Tj in the complex q · v plane
for fixed q2. This is a Lorentz invariant way of studying the analytic structure
discussed above. For the cut associated with physical hadronic states containing
a c quark, (pB −q) − pX = 0, which implies that v · q = (m2

B + q2 − m2
Xc

)/2m B .
This cut is in the region −∞ < v · q < (m2

B + q2 − m2
Xmin

c
)/2m B (see Fig. 6.3).

In contrast, the cut corresponding to physical hadronic states with a c̄ quark and
two b quarks has (pB + q) − pX = 0, which implies that v · q = (m2

Xc̄bb
− m2

B −
q2)/2m B . This cut occurs in the region (m2

Xmin
c̄bb

− m2
B − q2)/2m B < v · q < ∞.

These cuts are widely separated for all values of q2 allowed in B̄ → Xceν̄e

semileptonic decay, 0 < q2 < (m B − m Xmin
c

)2. The minimum separation between
the cuts occurs for the maximal value of q2. Approximating hadron masses
by that of the heavy quark they contain (e.g., m Xmin

c
= mc, m Xmin

c̄bb
= mc + 2mb,

etc.), we find the minimum separation between the two cuts is, 4mc, which is
much greater than the scale �QCD of nonperturbative strong interactions. The
discontinuity across the left-hand cut gives the structure functions for inclusive
semileptonic decay:

− 1

π
Im Tj = W j (left-hand cut only). (6.19)

The double differential decay rate d�/dq2 dEe can be obtained from the triple
differential rate d�/dq2 dEe dEνe , or equivalently, d�/dq2 dEe dv · q, by inte-
grating over q · v = Ee + Eνe . Integrals of the structure functions W j (q2, v · q)
over v · q are then related to integrals of Tj over the contour C shown in Fig. 6.3.

The situation is similar for b → u decays. The results for this case can be
obtained from our previous discussion just by changing the subscript c to u.
However, since the u quark mass is negligible, the separation between the two
cuts is not large compared with the scale of the strong interactions, �QCD, when
q2 is near its maximal value for b → u decays. The significance of this will be
commented on later in this chapter.

Re q ⋅ v

Im q ⋅ v

C

Fig. 6.3. Contour for the Tj integral.
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6.2 The operator product expansion 157

6.2 The operator product expansion

The structure functions Tj can be expressed in terms of matrix elements of local
operators using the operator product expansion to simplify the time-ordered
product of currents,

−i
∫

d4xe−iq·x T
[
J †

Lα(x) JLβ(0)
]
, (6.20)

whose B̄-meson matrix element is Tαβ . The coefficients of the operators that
occur in this expansion can be reliably computed by using QCD perturbation
theory, in any region of v · q that is far away (compared with �QCD) from
the cuts. We compute the coefficients of the operators that occur in the operator
product expansion by using quark and gluon matrix elements of Eq. (6.20). These
operators will involve the b-quark field, covariant derivatives D, and the gluon
field strength G A

μν . At dimension six and above, the light quark fields also occur.
At lowest order in perturbation theory the matrix element of Eq. (6.20) between

b-quark states with momentum mbv + k is (see Fig. 6.4)

1

(mbv − q + k)2 − m2
c + iε

ūγα PL (mb/v − /q + k/)γβ PLu. (6.21)

In the matrix elements of interest, q is usually of the order of mb, but k is of
the order of �QCD. Expanding in powers of k gives an expansion in powers of
�QCD/mb, and thus an expansion in 1/mb of the form factors Tj .

6.2.1 Lowest order

The order k0 terms in the expansion of Eq. (6.21) are

1

�0
ū[(mbv − q)αγβ + (mbv − q)βγα − (mb/v − /q)gαβ

−iεαβλη(mbv − q)λγ η]PLu, (6.22)

where

�0 = (mbv − q)2 − m2
c + iε, (6.23)

q , β q , α

b b

c

Fig. 6.4. Leading-order diagrams in the OPE.
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158 Inclusive weak decay

and we have used the identity in Eq. (1.119). The matrix elements of the
dimension-three operators b̄γ λb and b̄γ λγ5b between b-quark states are ūγ λu
and ūγ λγ5u, respectively, so the operator product expansion is obtained by re-
placing u and ū in Eq. (6.22) by the fields b and b̄, respectively. Finally, to get
the Tj we take the hadronic matrix elements of the operators,

〈B̄(pB)|b̄γλb|B̄(pB)〉 = 2pBλ = 2m Bvλ (6.24)

and

〈B̄(pB)|b̄γλγ5b|B̄(pB)〉 = 0. (6.25)

The latter matrix element vanishes because of the parity invariance of the strong
interactions. Equation (6.24) follows because b̄γλb is the conserved b-quark
number current. The b-quark number charge Qb = ∫

d3xb̄γ0b acts on B̄-meson
states as Qb|B̄〉 = |B̄〉, since they have unit b-quark number. Note that Eqs. (6.24)
and (6.25) are exact. There are no corrections of order �QCD/mb to these relations
and hence at this level in the OPE there is no need to make a transition to the
heavy quark effective theory.

The Tj ’s that follow from Eqs. (6.24), (6.25), and (6.22) are

T (0)
1 = 1

2�0
(mb − q · v),

T (0)
2 = 1

�0
mb, (6.26)

T (0)
3 = 1

2�0
.

At this level in the operator product expansion, the entire cut reduces to a simple
pole. The W j ’s that follow from Eq. (6.26) are

W (0)
1 = 1

4

(
1 − q · v

mb

)
δ

[
v · q −

(
q2 + m2

b − m2
c

2mb

)]
,

W (0)
2 = 1

2
δ

[
v · q −

(
q2 + m2

b − m2
c

2mb

)]
, (6.27)

W 0
3 = 1

4mb
δ

[
v · q −

(
q2 + m2

b − m2
c

2mb

)]
.

Putting these expressions into Eq. (6.9) and performing the integration over
neutrino energies using the δ function in Eq. (6.27) gives

d�

dq̂2 dy
= G2

F |Vcb|2m5
b

192π3
12(y − q̂2)(1 + q̂2 − ρ − y)θ (z), (6.28)

where

y = 2Ee/mb, q̂2 = q2/m2
b, ρ = m2

c/m2
b, (6.29)
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and

z = 1 + q̂2 − ρ − q̂2/y − y (6.30)

are convenient dimensionless variables. This is the same result one obtains from
calculating the decay of a free b quark. Integrating over q̂2 gives the lepton
energy spectrum

d�

dy
= G2

F |Vcb|2m5
b

192π3

[
2(3 − 2y)y2 − 6y2ρ − 6y2ρ2

(1 − y)2
+ 2(3 − y)y2ρ3

(1 − y)3

]
,

(6.31)

which also is the same as obtained from free quark decay. Including perturbative
QCD corrections to the coefficient of the operator b̄γλb in the operator product
expansion would reproduce the perturbative QCD corrections to the b-quark
decay rate.

At linear order in k, Eq. (6.21) contains the terms

1

�0
ū(kαγβ + kβγα − gαβk/ − iεαβληkλγ η)PLu

−2k · (mbv − q)

�2
0

ū[(mbv − q)αγβ + (mbv − q)βγα

−(mb/v − /q)gαβ − iεαβλη(mbv − q)λγ η]PLu. (6.32)

These produce terms in the operator product expansion of the form b̄γλ(iDτ −
mbvτ )b and b̄γλγ5(iDτ −mbvτ )b. Converting the b-quark fields in QCD to those
in the heavy quark effective theory gives, at leading order in 1/mb, the operators
b̄vγλiDτ bv = vλb̄viDτ bv and b̄vγλγ5iDτ bv. The second of these has a vanishing
B̄-meson matrix element by parity invariance of the strong interactions. The first
has a matrix element that can be written in the form

〈B̄(v)|b̄viDτ bv|B̄(v)〉 = Xvτ . (6.33)

Contracting both sides with vτ , we find that the equation of motion in HQET,
(iv · D)bv = 0, implies that X = 0. There are no matrix elements of dimension-
four operators that occur in the OPE for the Tj ’s. This means that, when the
differential semileptonic B̄-meson decay rate is expressed in terms of the bottom
and charm quark masses, there are no corrections suppressed by a single power
of �QCD/mb.

6.2.2 Dimension-five operators

There are several sources of contributions from dimension-five operators to the
operator product expansion. At order k1 we found in the previous subsection
that the operators b̄γλ(iDτ − mbvτ )b and b̄γλγ5(iDτ − mbvτ )b occur. Including
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160 Inclusive weak decay

1/mb corrections to the relationship between QCD and HQET operators gives
rise to dimension-five operators in HQET. Recall from Chapter 4 that at order
1/mb, the relationship between the b-quark field in QCD and in HQET is (to
zeroth order in αs)

b(x) = e−imbv · x
(

1 + i /D

2mb

)
bv(x), (6.34)

and the order 1/mb HQET Lagrange density is

L1 = −b̄v

D2

2mb
bv − b̄vg

Gαβσαβ

4mb
bv. (6.35)

As was noted in Chapter 4, one can drop the ⊥ subscript on D at this order.
Equations (6.34) and (6.35) imply that at order 1/mb (and zeroth order in αs),

b̄γλ(iDτ − mbvτ )b = b̄vγλiDτ bv + i
∫

d4x T [b̄vγλiDτ bv(0) L1(x)]

+ b̄v

(−i
←
/D

2mb

)
γλiDτ bv + b̄vγλiDτ

i /D

2mb
bv. (6.36)

Equation (6.36) is an operator matching condition. The matrix element of the
left-hand side is to be taken in QCD, and of the right-hand side in HQET between
hadrons states constructed using the lowest order Lagrangian. The effects of the
1/mb corrections to the Lagrangian have been explicitly included as a time-
ordered product term in the operator. Equation (6.36) is valid at a subtraction
point μ = mb, with corrections of order αs(mb).

Let us consider the B̄-matrix element of the various terms that occur on the
right-hand side of Eq. (6.36). We have already shown that the equations of
motion of HQET imply that b̄vγλiDτ bv has zero B̄-meson matrix elements. For
the time-ordered product, we note that γλ can be replaced by vλ and write

〈B̄(v)|i
∫

d4x T [b̄viDτ bv(0) L1(x)]|B̄(v)〉 = Avτ . (6.37)

Contracting with vτ yields

〈B̄(v)|i
∫

d4xT [b̄v(iv · D)bv(0) L1(x)]|B̄(v)〉 = A. (6.38)

At tree level, the time-ordered product is evaluated by using (v · D)Sh(x − y) =
δ4(x − y), where Sh is the HQET propagator. Consequently,

A = −〈B̄(v)|L1(0)|B̄(v)〉 = − λ1

mb
− 3λ2

mb
, (6.39)

where λ1 and λ2 were defined in Eqs. (4.23). There is another way to evaluate
the B̄-matrix element of the first two terms on the right-hand side of Eq. (6.36).
Instead of including the time-ordered product, one evaluates the matrix element
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6.2 The operator product expansion 161

of the first term by using the equations of motion that include O(1/m Q) terms
in the Lagrangian, i.e., b̄v (iv · D) bv = −L1.

Using the operator identity [Dα, Dβ] = igGαβ , we find the last two terms on
the right side of Eq. (6.36) become

b̄v

i /D

2mb
γλiDτ bv + b̄vγλiDτ

i /D

2mb
bv = b̄v

iD(λiDτ )

mb
bv − b̄vg

Gατσ
α
λ

2mb
bv, (6.40)

where parentheses around indices denote that they are symmetrized, i.e.,

a(αbβ) = 1

2
(aαbβ + aβbα).

For the operator with symmetrized covariant derivatives we write

〈B̄(v)|b̄viD(λiDτ )bv|B̄(v)〉 = Y (gλτ − vλvτ ). (6.41)

The tensor structure on the right-hand side of this equation follows from the
HQET equation of motion (iv · D)bv = 0, which implies that it must vanish
when either index is contracted with the b quark’s four velocity. To fix Y we
contract both sides with gλτ , giving

Y = 1

3
〈B̄(v)|b̄v(iD)2bv|B̄(v)〉 = 2

3
λ1. (6.42)

Finally we need

〈B̄(v)|b̄vgGατσ
α

λbv|B̄(v)〉 = Z (gλτ − vλvτ ), (6.43)

where again the tensor structure on the right-hand side follows from the fact that
contracting vλ into it must vanish, since b̄vσ

α
λv

λbv = 0. Contracting both sides
of Eq. (6.43) with the metric tensor yields

Z = 1

3
〈B̄(v)|b̄vgGαβσαβbv|B̄(v)〉 = −4λ2. (6.44)

Combining these results we have that the order k1 terms in Eq. (6.32) give the
following contribution to the Tj ’s:

T (1)
1 = − 1

2mb
(λ1 + 3λ2)

{
1

6�0
− (mb − q · v)2

�2
0

+ 2

3

[q2 − (q · v)2]

�2
0

}
,

T (1)
2 = − 1

2mb
(λ1 + 3λ2)

[
5

3�0
− 2mb(mb − v · q)

�2
0

+ 4

3

mbv · q

�2
0

]
, (6.45)

T (1)
3 = 1

2mb
(λ1 + 3λ2)

5

3

(
mb − v · q

�2
0

)
.
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6.2.3 Second order

The order k2 terms in Eq. (6.21) are

−2
k · (mbv − q)

�2
0

ū(kαγβ + kβγα − gαβk/ − iεαβληkλγ η)PLu

+
{

4[k · (mbv − q)]2

�3
0

− k2

�2
0

}
ū[(mbv − q)αγβ + (mbv − q)βγα

− (mb/v − /q)gαβ − iεαβλη(mbv − q)λγ η]PLu. (6.46)

These can be expressed in terms of matrix elements of the operators b̄γ λ(iD −
mbv)(α(iD − mbv)β)b and b̄γ λγ5(iD − mbv)(α(iD − mbv)β)b. The operator in-
volving γ5 will not contribute to B̄-meson matrix elements by parity. Rewrit-
ing the result using HQET operators, we find the only operator that occurs is
vλb̄viD(αiDβ)bv. Its matrix element is given by Eqs. (6.41) and (6.42). So we
find that the terms with two k’s give the following contribution to the structure
functions:

T (2)
1 = 1

6
λ1(mb − v · q)

{
4

�3
0

[q2 − (v · q)2] − 3

�2
0

}
,

T (2)
2 = 1

3
λ1mb

{
4

�3
0

[q2 − (v · q)2] − 3

�2
0

− 2v · q

mb�
2
0

}
, (6.47)

T (2)
3 = 1

6
λ1

{
4

�3
0

[q2 − (v · q)2] − 5

�2
0

}
.

At zeroth order in αs , the b-quark matrix element of the operator b̄σαβGαβb
vanishes. To find the part of the operator product expansion proportional to this
operator, we need to consider the b → b + gluon matrix element of the time-
ordered product. At tree level it is given by the Feynman diagram in Fig. 6.5. The
matrix element has the initial b quark with residual momentum p/2, a final b
quark with residual momentum −p/2, and the gluon with outgoing momentum
p. This choice is convenient since the denominators of the c-quark propagators
do not contribute to the p dependence at linear order in p. The part of this
Feynman diagram with no factors of the gluon four momentum, p, is from the
b → b+gluon matrix element of operators we have already found, with the gluon

q , β q , α

b b

Fig. 6.5. The one-gluon matrix element in the OPE.
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field coming from the covariant derivative D = ∂ + ig A. The part linear in p is

gT AεAλ∗(p)
1

2�2
0

ūγα[−/pγλ(mb/v − /q) + (mb/v − /q)γλ/p]γβ PLu, (6.48)

where εAλ is the gluon polarization vector. Only the part of this antisymmet-
ric under interchange p ↔ ε∗ contributes to the operator we are considering.
Equation (1.119) is used to reexpress the product of three-gamma matrices in
the square brackets of Eq. (6.48) in terms of a single-gamma matrix. Only the
part proportional to the Levi-Civita tensor survives. Applying the identity of
Eq. (1.119) one more time shows that the term linear in p is reproduced by the
matrix element of the operator

g

2�2
0

b̄Gμνε
μνλσ (mbv − q)λ(gασ γβ + gβσ γα − gαβγσ + iεασβτ γ

τ γ5)PLb.

(6.49)

Here we have used the replacement

pβT AεAλ∗ → − i

2
Gβλ

for the part antisymmetric in β and λ.
The transition to HQET is made by replacing b-quark fields in the above by

bv. The operators that occur are b̄vGμνγ λγ5bv and b̄vGμνγ λbv. Because of the
antisymmetry on the indices μ and ν, parity invariance of the strong interaction
forces the latter operator to have a zero matrix element between B̄-meson states.
The matrix element of the other operator can be written as

〈B̄(v)|b̄vgGμνγ λγ5bv|B̄(v)〉 = Nεμνλτ vτ . (6.50)

Contracting both sides of this equation with εμνλρvρ and using the identity

εμνλρvρ b̄vγ
λγ5bv = −b̄vσμνbv (6.51)

yields

N = −2λ2. (6.52)

Consequently, the b → b + gluon matrix element gives these additional contri-
butions to the structure functions:

T (g)
1 = λ2

(mb − v · q)

2�2
0

,

T (g)
2 = −λ2

mb

�2
0

, (6.53)

T (g)
3 = λ2

1

2�2
0

.

Summing the three contributions we have discussed,

Tj = T (1)
j + T (2)

j + T (g)
j , (6.54)
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164 Inclusive weak decay

gives the complete contribution of dimension-five operators in HQET to the
structure functions. At this order in the operator product expansion only two
matrix elements occur, λ1 and λ2. Furthermore, one of them, λ2 � 0.12 GeV2,
is known from B∗ − B mass splitting. The results for Tj determine the nonper-
turbative �2

QCD/m2
b corrections to the inclusive semileptonic decay rate.

6.3 Differential decay rates

The inclusive B̄ semileptonic differential decay rate is calculated by using
Eqs. (6.9) and (6.54), with the W j ’s obtained from the imaginary part of the
Tj ’s. The identity

− 1

π
Im

(
1

�0

)n+1

= (−1)n

n!
δ(n)[(mbv − q)2 − m2

c

]
, (6.55)

where the superscript denotes the nth derivative of the δ function with respect
to its argument, is useful in computing the W j ’s. Terms with derivatives of
the δ function are evaluated by first integrating by parts to take the derivatives
off the δ function. In using this procedure, one must be careful to include the
factor θ (4Ee Eνe − q2), which sets the lower limit of the Eνe integration, in the
differential decay rate, since the derivative can act on this term. Differentiating
the θ function with respect to Eνe gives

δ

[(
m2

b − m2
c + q2

2mb
− Ee

)
− q2

4Ee

]
, (6.56)

which, in terms of the variables y, q̂2, and z defined in Eqs. (6.29) and (6.30), is
the δ function 2δ(z)/mb. This procedure gives for the differential decay rate

d�

dq̂2 dy
= G2

F m5
b

192π3
|Vcb|2

{
θ (z)

[
12(y − q̂2)(1 + q̂2 − ρ − y)

− 2λ1

m2
b

(4q̂2 − 4q̂2ρ + 4q̂4 − 3y + 3ρy − 6q̂2 y)

− 6λ2

m2
b

(−2q̂2 − 10q̂2ρ + 10q̂4 − y + 5ρy − 10q̂2 y)

]

+ δ(z)

y2

[
−2λ1

m2
b

(2q̂6 + q̂4 y2 − 3q̂2 y3 − q̂2 y4 + y5)

−6λ2

m2
b

q̂2(q̂2 − y)(5q̂2 − 8y + y2)

]

+ δ′(z)

y3

[
−2λ1

m2
b

q̂2(y2 − q̂2)2(y − q̂2)

]}
, (6.57)

https://doi.org/10.1017/9781009402125.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.007


6.3 Differential decay rates 165

where the dimensionless variable q̂2, y, ρ, and z are defined in Eqs. (6.29)
and (6.30). Experimentally, the electron energy spectrum d�/dy is easier to
study than the doubly differential decay rate. Integration of Eq. (6.57) over the
allowed region 0 < q̂2 < y(1 − y − ρ)/(1 − y) gives

d�

dy
= G2

F m5
b

192π3
|Vcb|2

{[
2(3 − 2y)y2 − 6y2ρ − 6y2ρ2

(1 − y)2
+ 2(3 − y)y2ρ3

(1 − y)3

]

− 2λ1

m2
b

[
−5

3
y3 − y3(5 − 2y)ρ2

(1 − y)4
+ 2y3(10 − 5y + y2)ρ3

3(1 − y)5

]

− 6λ2

m2
b

[
−y2 (6 + 5y)

3
+ 2y2(3 − 2y)ρ

(1 − y)2

+ 3y2(2 − y)ρ2

(1 − y)3
− 5y2(6 − 4y + y2)ρ3

3(1 − y)4

]}
. (6.58)

Integrating over the allowed electron energy 0 < y < 1 − ρ yields the total
B̄ → Xceν̄e decay rate,

� = G2
F m5

b

192π3
|Vcb|2

[
(1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ)

+ λ1

2m2
b

(1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ)

− 3λ2

2m2
b

(3 − 8ρ + 24ρ2 − 24ρ3 + 5ρ4 + 12ρ2 ln ρ)

]
, (6.59)

which can be written in the compact form

� = G2
F m5

b

192π3
|Vcb|2

[
1 + λ1

2m2
b

+ 3λ2

2m2
b

(
2ρ

d

dρ
− 3

)]
f (ρ), (6.60)

where

f (ρ) = 1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ. (6.61)

The first term is the leading term in the mb → ∞ limit and is equal to the free
quark decay rate. The next two terms are 1/m2

b corrections. The 1/mb correction
vanishes. Note that the ρ dependence of the coefficient of λ1 is the same as that
in the free quark decay rate. We will give a simple physical reason for this result
in the next section.

Results for semileptonic B̄-meson decays from the b → u transition are ob-
tained from Eqs. (6.57), (6.58), and (6.59) by taking the limit ρ → 0. Taking this
limit is straightforward, except in the case of the electron spectrum in Eq. (6.58).
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Suppose the electron energy spectrum in the b → c case contains a term of the
form

gρ(y) = ρn−1

(1 − y)n
. (6.62)

The limit as ρ → 0 of gρ(y) is not zero. The problem is that the maximum
value of y is 1 − ρ and hence at maximum electron energy the denominator in
Eq. (6.62) goes to zero as ρ → 0. Imagine integrating gρ(y) against a smooth
test function t(y). Integrating by parts

lim
ρ→0

∫ 1−ρ

0
dy t(y)gρ(y) = 1

(n − 1)

[
t(1) − lim

ρ→0

∫ 1−ρ

0
dy

dt

dy
(y)

ρn−1

(1 − y)n−1

]

= 1

(n − 1)
t(1). (6.63)

Hence we conclude that

lim
ρ→0

gρ(y) = 1

(n − 1)
δ(1 − y). (6.64)

Differentiating the above gives

lim
ρ→0

ρn−1

(1 − y)n+1
= − 1

n(n − 1)
δ′(1 − y). (6.65)

The ρ → 0 limit of the electron spectrum in Eq. (6.58) is the B̄ → Xueν̄e electron
energy spectrum,

d�

dy
= G2

F m5
b|Vub|2

192π3

{
2(3 − 2y)y2θ (1 − y)

− 2λ1

m2
b

[
− 5

3
y3θ (1 − y) + 1

6
δ(1 − y) + 1

6
δ′(1 − y)

]

− 2λ2

m2
b

[
− y2(6 + 5y) θ (1 − y) + 11

2
δ(1 − y)

]}
, (6.66)

and the total decay width is

� = G2
F m5

b|Vub|2
192π3

(
1 + λ1

2m2
b

− 9λ2

2m2
b

)
. (6.67)

6.4 Physical interpretation of 1/m2
b corrections

The corrections to the decay rate proportional to λ1 have a simple physical
interpretation. They arise from the motion of the b quark inside the B̄ meson. At
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leading order in the 1/mb expansion, the b quark is at rest in the B̄-meson rest
frame, and the B̄-meson differential decay rate is equal to the b-quark, decay rate,
d�(0)(vr , mb). However, in a B̄ meson the b quark really has (in the B̄-meson
rest frame) a four momentum pb = mbvr + k. We can consider this as a b quark
with an effective mass m′

b and an effective four velocity v′ satisfying

m ′
bv

′ = mbvr + k. (6.68)

Including effects of the b-quark motion in the B̄ meson, we find the fully differ-
ential semileptonic decay rate d� is

d� = 〈
d�(0)(v′, m′

b)/v′0〉, (6.69)

where v′0 is the time-dilation factor, the fences denote averaging over k, and d�(0)

is the free b-quark differential decay rate. This averaging is done by expanding
Eq. (6.69) to quadratic order in k and using

〈kα〉 = − λ1

2mb
vα

r , 〈kαkβ〉 = λ1

3

(
gαβ − vα

r vβ
r

)
. (6.70)

More powers of k would correspond to higher dimension operators in the OPE
than those we have considered so far. In expanding Eq. (6.69) one can use

m ′
b
2 = (m′

bv
′)2 = (mbvr + k)2 = m2

b + 2mbvr · k + k2. (6.71)

Note that Eqs. (6.70) and (6.71) imply that 〈m ′2
b 〉 = 〈m2

b〉. Since vrα〈kαkβ〉 = 0,
we can replace m ′

b by mb in Eq. (6.69) without worrying about cross terms in
the average where one factor of k arises from expanding m′

b and the other from
expanding v′. The effective four velocity v′ is related to vr and k by

v′
α = vrα + 1

m ′
b

kα = vrα + kα

mb
, (6.72)

so the time-dilation factor is

v′
0 = vr · v′ = 1 + vr · k/mb. (6.73)

Averaging this yields 〈v′
0〉 = 1−λ1/2m2

b, and since vrα〈kαkβ〉 = 0 we can replace
the factor 1/v′0 in Eq. (6.69) by (1 + λ1/2m2

b). The fully differential decay rate
can be taken to be d�/dq̂2 dy dx , where we have introduced the dimensionless
neutrino energy variable

x = 2Eνe

mb
. (6.74)

The variables x and y depend on the four velocity vr of the b quark through
y = 2vr · pe/mb, x = 2vr · pνe/mb, and consequently, under the replacement
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vr → v′,

y → y′ = y + 2k · pe

m2
b

, x → x ′ = x + 2k · pνe

m2
b

. (6.75)

Hence Eq. (6.69) implies that

d�

dq̂2 dy dx
=

[
1 − λ1

2m2
b

(
−1 + y

∂

∂y
+ x

∂

∂x
+ 1

3
y2 ∂2

∂y2
+ 1

3
x2 ∂2

∂x2

+ 2

3
(xy − 2q̂2)

∂2

∂x ∂y

)]
d�(0)

dq̂2 dy dx
. (6.76)

Integrating over x yields

d�

dq̂2 dy
=

[
1 − λ1

2m2
b

(
−4

3
+ 1

3
y

∂

∂y
+ 1

3
y2 ∂2

∂y2

)]
d�(0)

dq̂2 dy
, (6.77)

where the free b-quark differential decay rate d�(0)/dq̂2 dy is given in Eq. (6.28).
Integrating over q̂2 and y, we find for the total decay rate

� =
(

1 + λ1

2m2
b

)
�(0). (6.78)

Equations (6.77) and (6.78) give the correct λ1 dependence of the B̄-meson dif-
ferential decay rates. Unfortunately, the dependence of the B̄-meson differential
decay rates in Eqs. (6.57)–(6.59) on λ2 does not seem to have as simple a physical
interpretation.

6.5 The electron endpoint region

The predictions that follow from the operator product expansion for the dif-
ferential B̄ → Xeν̄e semileptonic decay rate cannot be compared directly with
experiment in all regions of the phase space. For example, the expression for the
differential cross section d�/dq̂2 dy in Eq. (6.57) contains singular terms on the
boundary of the Dalitz plot, z = 0. Rigorously, predictions based on the operator
product expansion and perturbative QCD can be compared with experiment only
when averaged over final hadronic state masses m X with a smooth weighting
function. Very near the boundary of the Dalitz plot, only the lower-mass final
hadronic states can contribute, and the integration over neutrino energies does not
provide the smearing over final hadronic masses needed to compare the operator
product expansion results with experiment. In fact, since m X is necessarily less
than m B , the weighting function is never truly smooth. As a result the contour
integral over v · q needed to recover the structure functions W j from those asso-
ciated with the time-ordered product Tj necessarily pinches the cut at one point.
Near the cut the use of the OPE cannot be rigorously justified because there will
be propagators that have denominators close to zero. This is not considered a
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problem in a region where the final hadronic states are above the ground state
by a large amount compared with the nonperturbative scale of the strong inter-
actions, because threshold effects that are present in nature but not in the OPE
analysis are very small. In inclusive B̄ decay we assume that threshold effects
associated with the limit on the maximum available hadronic mass m Xmax are
negligible as long as m Xmax − m Xmin � �QCD. Near the boundary of the Dalitz
plot this inequality is not satisfied. Note that at the order in αs to which we have
worked, the singularities in Tj are actually poles located at the ends of what
we have called cuts. When αs corrections are included, the singularities become
the cuts we have described. Hence when radiative corrections are neglected, the
contour in Fig. 6.3 need not be near a singularity in the b → c decay case. For
b → u at q2 near q2

max, the contour necessarily comes near singularities because
the ends of the cuts are close together.

The endpoint region of the electron spectrum in inclusive semileptonic B̄ de-
cay has played an important role in determining the value of the element of the
CKM matrix |Vub|. For a given hadronic final state mass m X , the maximum elec-
tron energy is Emax

e = (m2
B − m2

X )/2m B . Consequently, electrons with energies
greater than Ee = (m2

B − m2
D)/2m B must necessarily come from the b → u

transition. However, this endpoint region is precisely where the singular contri-
butions proportional to δ(1− y) and δ′(1− y) occur in the b → u electron energy
spectrum. Note that these singular terms occur at the endpoint set by quark–gluon
kinematics, Ee = mb/2, which is smaller than the true maximum Emax

e = m B/2.
Clearly, in this region we must average over electron energies before comparing
the predictions of the OPE and perturbative QCD with experiment.

To quantify the size of the averaging region in electron energies needed, we
examine the general structure of the OPE. The most singular terms in the endpoint
region result from expanding the k dependence in the denominator of the charm
quark propagator. A term with power k p produces an operator with p covariant
derivatives and gives a factor of 1/�

p+1
0 in the Tj . This results in a factor of

δ(p−1)(1− y) in the electron energy spectrum. Matrix elements of operators with
p covariant derivatives are of the order of �

p
QCD and so the general structure of

the OPE prediction for the electron energy spectrum is

d�

dy
∝ θ (1 − y)(ε0 + 0 ε + ε2 + · · ·)

+ δ(1 − y)(0 ε + ε2 + · · ·)
+ δ′(1 − y)(ε2 + ε3 + · · ·)
...

+ δ(n)(1 − y)(εn+1 + εn+2 + · · ·)
... (6.79)

where εn denotes a quantity of the order of (�QCD/mb)n . It may contain smooth

https://doi.org/10.1017/9781009402125.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.007


170 Inclusive weak decay

y dependence. The zeroes are the coefficients of the dimension-four operators,
which vanish by the equations of motion. Although the theoretical expression for
d�/dy is singular near the b-quark decay endpoint y = 1, the total semileptonic
decay rate is not. The contribution to the total rate of a term of order εmδ(n)(1− y)
is order εm , and so the semileptonic width has a well-behaved expansion in
powers of 1/mb:

� ∝ (ε0 + 0 ε + ε2 + ε3 + · · ·). (6.80)

In the endpoint region consider integrating d�/dy against a normalized func-
tion of y that has a width σ . This provides a smearing of the electron energy
spectrum near y = 1 and corresponds to examining the energy spectrum with
resolution in y of σ (i.e., a resolution in electron energy of mbσ ). A mean-
ingful prediction for the endpoint spectrum can be made when the smearing
width σ is large enough that terms that have been neglected in Eq. (6.79) are
small in comparison to the terms that have been retained. The singular term
εmδ(n)(1 − y) (where m > n) smeared over a region of width σ gives a contribu-
tion of order εm/σ n + 1. If the smearing width σ is of the order of ε p, the generic
term εmδ(n)(1 − y) yields a contribution to the smeared spectrum of the order of
εm − p(n + 1). Even though m > n, higher-order terms in the 1/mb expansion get
more important than lower-order ones unless p ≤ 1.

If the smearing in y is chosen of order ε (i.e., a region of electron energies
of the order of �QCD), then all terms of the form θ (1 − y) and εn + 1δ(n)(1 − y)
contribute equally to the smeared electron energy spectrum, with less singular
terms being suppressed. For example, all terms of order εn + 2δ(n)(1 − y) are
suppressed by ε, and so on. Thus one can predict the endpoint region of the
electron energy spectrum, with a resolution in electron energies of the order of
�QCD, if these leading singular terms are summed. The sum of these leading
singularities produces a contribution to d�/dy of width ε but with a height of
the same order as the free quark decay spectrum.

We can easily get the general form of the most singular contributions to the
operator product expansion for the electron spectrum by using the physical pic-
ture of smearing over b-quark momenta discussed in the previous section. We
want to continue the process to arbitrary orders in k, but only the most singular
y dependence is needed. It arises only from the dependence of y on mb and v.
Shifting to m′

b and v′,

y → y′ = 2v′ · pe

m ′
b

= y + kμ 2

mb
( p̂eμ − yvμ) + · · · , (6.81)

where the ellipsis denotes terms higher order in k, and p̂e = pe/mb. The term
proportional to yvμ in Eq. (6.81) arose from the dependence of m′

b on k. The
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most singular terms come from the y dependence in the factor θ (1 − y), and so

d�

dy
= d�(0)

dy

[
1 + 〈kμ1〉

(
2

mb

)
( p̂e − v)μ1

∂

∂y
+ · · ·

+ 1

n!
〈kμ1 · · · kμn 〉

(
2

mb

)n

( p̂e − v)μ1 · · · ( p̂e − v)μn

∂n

∂yn
+ · · ·

]
θ (1 − y).

(6.82)

Equation (6.82) sums the most singular nonperturbative corrections in the end-
point region, provided one interprets the averaging over residual momenta as〈

kμ1 · · · kμn

〉 = 1

2
〈B̄(v)|b̄viD(μ1 · · · iDμn)bv|B̄(v)〉. (6.83)

There is no operator ordering ambiguity because 〈kμ1 · · · kμn 〉 is contracted with
a tensor completely symmetric in μ1 · · · μn . Finally, only the part of the matrix
element 〈B̄(v)|b̄viD(μ1 · · · iDμn)bv|B̄(v)〉 proportional to vμ1 · · · vμn contributes
to the most singular terms. A dependence on the metric tensor gμi μ j would result
in a factor of ( p̂e − v)2 that vanishes at y = 1. So writing

1

2
〈B̄(v)|b̄viD(μ1 · · · iDμn)bv|B̄(v)〉 = Anvμ1 · · · vμn + · · · , (6.84)

we find the differential decay spectrum near y = 1 is

d�

dy
= d�(0)

dy
[θ (1 − y) + S(y)], (6.85)

where the shape function S(y) is

S(y) =
∞∑

n = 1

An

mn
bn!

δ(n−1)(1 − y). (6.86)

In Sec. 6.2.2, we showed that A1 = 0 and A2 = − 1
3λ1. At present, one must use

phenomenological models for the shape function to extract |Vub| from semilep-
tonic decay data in the endpoint region. This yields |Vub| ≈ 0.1|Vcb|. The pertur-
bative QCD corrections to d�/dy also become singular as y → 1. These singular
terms must also be summed to make a prediction for the shape of the electron
spectrum in the endpoint region.

For inclusive b → c semileptonic decay, the 1/m2
b corrections are not singular

at the endpoint of the electron spectrum, but they are large because m2
c/m2

b � 1/10
is small. (At order 1/m3

b singular terms occur even for b → c semileptonic decay.)
It is instructive to plot the b → c electron spectrum including the 1/m2

b correc-
tions. This is done in Fig. 6.6. One can clearly see that the 1/m2

b corrections
become large near the endpoint. The OPE analysis gives the electron spectrum
in Eq. (6.58), which depends on the heavy quark masses mb and mc. In particular,
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172 Inclusive weak decay

Fig. 6.6. The electron energy spectrum in inclusive semileptonic B̄ → Xc decay at
lowest order (solid curve) and including the 1/m2

b corrections (dashed curve), with
λ1 = − 0.2 GeV2, mb = 4.8 GeV, and mc = 1.4 GeV. Here �0 = G2

F |Vcb|2m5
b/192π3.

Fig. 6.7. The electron energy spectrum in inclusive semileptonic B̄ → Xc decay, using
the lowest-order formula with quark masses (dashed curve) and with hadron masses (solid
curve); y is defined as 2Ee/mb in both plots, and �0 = G2

F |Vcb|2m5
b/192π3.

the electron endpoint energy is (m2
b −m2

c)/2mb. The true kinematic endpoint for
the electron spectrum is (m2

B − m2
D)/2m B , and it depends on the hadron masses.

In Fig. 6.7, the lowest-order electron spectrum using quark masses has been
compared with the same spectrum in which quark masses have been replaced by
hadron masses. Over most of the phase space, this is close to the true spectrum,
but very near the maximum value of Ee there is no theoretical basis to believe
that the lowest-order spectrum with hadron masses has any connection with the
actual electron spectrum. Nevertheless, the spectrum with hadron masses ends
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6.6 |Vcb| from inclusive decays 173

Fig. 6.8. The inclusive lepton energy spectrum for semileptonic B̄ → Xc decay, as
measured by the CLEO Collaboration. The data are from the Ph.D thesis of R. Wang.
The filled dots are the electron spectrum, and the open dots are the muon spectrum. The
dashed curve is a model fit to the primary leptons from b → c semileptonic decay, which
should be compared with theoretical predictions in Figs. 6.6 and 6.7. The dotted curve
is a model fit to the secondary leptons from semileptonic decay of the c quark produced
in b decay, and the solid curve is the sum of the two.

at the true kinematic endpoint of the allowed electron spectrum. The measured
inclusive lepton spectrum in semileptonic B decay is shown in Fig. 6.8.

6.6 |Vcb| from inclusive decays

The expression for the inclusive differential semileptonic decay rate in Eq. (6.57)
can be used to deduce the HQET parameters �̄ and λ1. In addition, it provides a
determination of the CKM matrix element Vcb. For comparison with experiment,
it is useful to eliminate the c- and b-quark masses in favor of hadron masses.
The average D- and B-meson masses are

m̄ D = m D + 3m D∗

4
= 1.975 GeV, m̄ B = m B + 3m B∗

4
= 5.313 GeV.

(6.87)
Using the results of Chapter 4, we find

mc = m̄ D − �̄ + λ1

2m̄ D
+ · · · ,

mb = m̄ B − �̄ + λ1

2m̄ B
+ · · · ,

(6.88)
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where the ellipses denote terms higher order in the 1/m Q expansion. This gives,
for example,

mc

mb
= m̄ D

m̄ B
− �̄

m̄ B

(
1 − m̄ D

m̄ B

)
− �̄2

m̄2
B

(
1 − m̄ D

m̄ B

)
+ λ1

2m̄ Bm̄ D

(
1 − m̄2

D

m̄2
B

)

� 0.372 − 0.63
�̄

m̄ B
− 0.63

�̄2

m̄2
B

+ 1.2
λ1

m̄2
B

. (6.89)

Applying this procedure to the inclusive semileptonic decay rate in Eq. (6.59)
and including the perturbative QCD corrections to the terms not suppressed by
powers of �QCD/m Q gives

�SL(B) = G2
F |Vcb|2m5

B

192π3
0.369

[
η� − 1.65

�̄

m̄ B
− 1.0

�̄2

m̄2
B

− 3.2
λ1

m̄2
B

]
. (6.90)

Note that m5
B has been factored out instead of m̄5

B . This choice makes the coef-
ficient of λ2/m̄2

B very small, and it has been neglected in the square brackets in
Eq. (6.90).

The perturbative corrections to the leading term in the 1/m Q expansion are
known to order α2

s :

η� = 1 − 1.54
αs(mb)

π
− 12.9

[
αs(mb)

π

]2

= 0.83. (6.91)

Using Eq. (6.90), the measured semileptonic branching ratio BR(B → Xeν̄e) =
(10.41 ± 0.29) %, and the B lifetime τ (B) = (1.60 ± 0.04) × 10−12 s, one finds

|Vcb| = [ 39 ± 1 (exp) ] × 10−3√
1 − 2.0 �̄

m̄ B
− 1.2

(
�̄

m̄ B

)2 − 3.9 λ1

m̄2
B

. (6.92)

The differential decay rate constrains the values of �̄ and λ1. An analysis of the
electron energy spectrum gives (at order α2

s ) �̄ � 0.4 GeV and λ1 � −0.2 GeV2,
with a large uncertainty. These values imply that |Vcb| = 0.042. Note that this is
close to the value extracted from semileptonic B̄ → D∗eν̄e decay in Chapter 4
(see Eq. (4.65)). Theoretical uncertainty in this determination of Vcb arises from
the values of �̄ and λ1 and possible violations of quark hadron duality.

In Eq. (6.91) the order α2
s term is ∼60% of the order αs term. There are

two reasons for this. First, recall from Chapter 4 that �̄ is not a physical quan-
tity and has a renormalon ambiguity of the order of �QCD. Using HQET, we
can relate �̄ to a measurable quantity, for example 〈δsH 〉, the average value of
δsH = sH −m̄2

D , where sH is the hadronic invariant mass squared in semileptonic
B̄ decay. This relation involves a perturbative series in αs . If one eliminates �̄

in Eq. (6.90) in favor of 〈δsH 〉, then the combination of the perturbative series in
the relation between �̄ and 〈δsH 〉 and the series η� will replace η� in Eq. (6.90).
This modified series has no Borel singularity at u = 1/2 and is somewhat better
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6.7 Sum rules 175

behaved. Second, the typical energy of the decay products in b → ceν̄e quark
decay is not mb, but rather Etyp ∼ (mb − mc)/3 ∼ 1.2 GeV. Using this scale in-
stead of mb to evaluate the strong coupling at in Eq. (6.91) leads to a series in
which the order α2

s term is 25% of the order αs term. Note that for this one uses
αs(mb) = αs(Etyp) − α2

s (Etyp)β0 ln m2
b/E2

typ + · · · in Eq. (6.91) and expands η�

to quadratic order in αs(Etyp).

6.7 Sum rules

One can derive a set of sum rules that restrict exclusive B̄ → D(∗)eν̄e form factors
by comparing the inclusive and exclusive semileptonic B̄ decay rates. The basic
ingredient is the simple result that the inclusive B̄ decay rate must always be
greater than or equal to the exclusive B̄ → D(∗) decay rate.

The analysis uses Tαβ considered as a function of q0 with q held fixed. It is
convenient not to focus on just the left-handed current, which is relevant for
semileptonic decay, but rather to allow J to be the axial vector or vector currents
or a linear combination of these. Also we change variables from q0 to

ε = m B − q0 − EXmin
c

, (6.93)

where EXmin
c

=
√

m2
Xmin

c
+ |q|2 is the minimal possible energy of the hadronic

state. With this definition, Tαβ(ε) has a cut in the complex ε plane along 0<ε<∞,
corresponding to physical states with a c quark. Tμν has another cut for 2m B −
EXmin

c̄bb
− EXmin

c
> ε > −∞ corresponding to physical states with two b quarks

and a c̄ quark.∗ This cut will not be important for the results in this section.
Contracting Tμν with a fixed four vector aν yields

a∗μTμν(ε)aν = −
∑
Xc

(2π )3δ3(q + pX )
〈B̄|J † · a∗|Xc〉〈Xc|J · a|B̄〉

2m B
(
EXc − EXmin

c
− ε

) + · · · ,

(6.94)

where the ellipsis denotes the contribution from the cut corresponding to two
b quarks and a c̄ quark. Consider integrating the product of a weight function
W�(ε) and Tμν(ε) along the contour C shown in Fig. 6.9. Assuming W� is
analytic in the region enclosed by this contour, we get

1

2π i

∫
C

dε W�(ε) a∗μTμν(ε)aν

=
∑
Xc

W�

(
EXc − EXmin

c

)
(2π )3δ3(q + pX

) |〈Xc|J · a|B̄〉|2
2m B

. (6.95)

∗ Note that the left-hand and right-hand cuts are exchanged when switching from q0 to ε because of the minus
sign in Eq. (6.93).

https://doi.org/10.1017/9781009402125.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.007


176 Inclusive weak decay

Re ε

Im ε

C

Fig. 6.9. The sum-rule cut.

We want the weight function W�(ε) to be positive semidefinite along the cut
so the contribution of each term in the sum over Xc above is nonnegative. For
convenience we impose the normalization condition W�(0) = 1. We also assume
W� is flat near ε = 0 and falls off rapidly to zero for ε � �. If the operator
product expansion and perturbative QCD are used to evaluate the left-hand side
of Eq. (6.95), it is crucial that W� is flat in a region of ε much bigger than �QCD.
Otherwise, higher-order terms in the operator product expansion and perturbative
corrections will be large.

The positivity of each term in the sum over states X in Eq. (6.95) implies the
bound

1

2π i

∫
C

dε W�(ε) a∗μTμν(ε)aν >

∣∣〈Xmin
c

∣∣J · a|B̄〉∣∣2
4m B Emin

Xc

. (6.96)

To derive this we note that the sum over Xc includes an integral over d3 p/(2π )32E
for each particle in the final state. For the one-particle state, Xmin

c , performing
the integral over its three momentum by using the delta function leaves the
factor (2EXmin

c
) in the denominator of Eq. (6.96). All the other states make a

nonnegative contribution, leading to the inequality Eq. (6.96).
A set of possible weight functions is

W (n)
� = �2n

ε2n + �2n
. (6.97)

For n > 2 the integral Eq. (6.96) is dominated by states with a mass less than �.
These weight functions have poles at ε = (−1)1/2n�. Therefore, if n is not too
large and � is much greater than the QCD scale, the contour in Fig. 6.9 is far from
the cut. As n → ∞, W (n)

� → θ (� − ε) for positive ε, which corresponds to sum-
ming over all final hadronic resonances with equal weight up to excitation energy
�. In this case the poles of W� approach the cut and the contour in Fig. 6.9 must be
deformed to touch the cut at ε = �. As in the semileptonic decay rate, this is usu-
ally not considered a problem as long as � � �QCD. Here W (∞)

� is the common
choice for the weight function, and we use it for the remainder of this chapter.

To illustrate the utility of Eq. (6.96) we go over to HQET, where the charm and
bottom quark masses are taken as infinite, and let Jμ = c̄v′γ μbv and aμ = vμ.
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q q

Fig. 6.10. The leading-order diagram for the OPE.

Only the pseudoscalar member of the ground state D, D∗ doublet contributes in
this case, and

〈D(v′)|J · v|B̄(v)〉 = (1 + w)ξ (ω), (6.98)

where w = v · v′. For � large compared with �QCD, the leading contribution to
the time-ordered product Tμν(ε) comes from performing the OPE, evaluating
the coefficients to lowest order in αs , and keeping only the lowest-dimension
operators. We work in the B̄-meson rest frame v = vr and define the four velocity
of the charm quark by −q = mcv′. Then the charm quark’s residual momentum
is (k0 = mbv

0
r − q0 − mcv

′0, k = 0). In this frame v′
0 = vr · v′ = w. The leading

operator in the OPE is b̄vr bvr , and its coefficient follows from the Feynman
diagram for the b-quark matrix element shown in Fig. 6.10. This yields

vμ
r Tμν(ε)vν

r = (vr · v′ + 1)

2v′
0(mbvr0 − q0 − mcv

′
0)

. (6.99)

The variable ε defined in Eq. (6.93) can be expressed in terms of the heavy quark
masses, �̄ and w,

ε = mb + �̄ − q0 −
√

(mc + �̄)2 + m2
c(w2 − 1) + · · ·

= mb − q0 − mcw + �̄ (w − 1)

w
+ · · · , (6.100)

where the ellipses denote terms suppressed by powers of �QCD/mb,c. Using this,
we find Eq. (6.99) becomes

vμ
r Tμν(ε)vν

r =
(

w + 1

2w

)
1

ε − �̄(w − 1)/w
. (6.101)

Performing the contour integration gives

w + 1

2w
>

|ξ (w)|2(1 + w)2

4w
. (6.102)

At zero recoil, ξ (1) = 1, and the above bound is saturated. Writing ρ2 =
−dξ/dw|w = 1, we find the above gives the Bjorken bound on the slope of
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the Isgur-Wise function at zero recoil, ρ2 ≥ 1/4. Away from zero recoil the
Isgur-Wise function is subtraction-point dependent and consequently ρ2 de-
pends on the subtraction point. Perturbative QCD corrections add terms of the
form αs(μ)(ln �2/μ2 + C) to the bound on ρ2. Consequently the bound on ρ2

is more correctly written as

ρ2(�) ≥ 1/4 + O[αs(�)]. (6.103)

6.8 Inclusive nonleptonic decays

The nonleptonic weak decay Hamiltonian for b → cūd decays H (�c = 1)
W was

given in Eqs. (1.124) and (1.125). The nonleptonic decay rate is related to the
imaginary part of the B-meson matrix element of the time-ordered product of
this Hamiltonian with its Hermitian conjugate,

t = i
∫

d4x T
[
H (�c = 1)†

W (x) H (�c = 1)
W (0)

]
. (6.104)

Taking the matrix element of t between B-meson states at rest and inserting a
complete set of states between the two Hamiltonian densities yields

�(�c = 1) =
∑

X

(2π )4 δ4 (pB − pX )

∣∣〈X (pX )|H (�c = 1)
W (0)|B̄(pB)〉∣∣2

2m B

= Im 〈B̄|t |B̄〉
m B

, (6.105)

where the first line is the definition of �(�c = 1).
Inclusive nonleptonic decays can also be studied by using the OPE. In the case

of semileptonic decays, one can smear the decay distributions over the leptonic
kinematic variables q2 and q · v. The corresponding smearing variables do not
exist for nonleptonic decay, since all the final-state particles are hadrons. For
nonleptonic decays, one needs the additional assumption that the OPE answer
is correct even without averaging over the hadron invariant mass, which is fixed
to be the B-meson mass. This assumption is reasonable because m B is much
greater than �QCD. The leading term in the OPE is computed from the diagram
in Fig. 6.11. Its imaginary part gives the total nonleptonic decay width. The

b b

c

u

d

Fig. 6.11. OPE diagram for inclusive nonleptonic decay.
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situation in the case of nonleptonic decays is not very different from the case
of semileptonic decays, since there the contour of v · q integration cannot be
deformed so that it is always far from the physical cut; see Fig. 6.3.

One can compare the OPE computation of the nonleptonic decay width with
that of the semileptonic decay distribution. Imagine evaluating Fig. 6.11 with ūd
replaced by ν̄e. Computing the imaginary part of the diagram is equivalent to
evaluating the phase space integral for the final-state fermions. Thus performing
an OPE from the imaginary part of Fig. 6.11 is equivalent to integrating the
decay distributions to obtain the total decay width in Eq. 6.60. In the case of
nonleptonic decays, only the total width can be computed. Decay distributions are
not accessible using this method. Another difference between the semileptonic
and nonleptonic decays is that the weak Hamiltonian H (�c = 1)

W contains two terms
with coefficients C1(mb) and C2(mb) due to summing radiative corrections, using
the renormalization group equations.

Including �2
QCD/m2

b terms, we find the final result for the nonleptonic decay
width �(�c = 1) computed using the OPE together with a transition to HQET is

�(�c = 1) = 3
G2

F m5
b

192π3
|VcbVud |2

{(
C2

1 + 2

3
C1C2 + C2

2

)[(
1 + λ1

2m2
b

)

+ 3λ2

2m2
b

(
2ρ

d

dρ
− 3

)]
f (ρ) − 16C1C2

λ2

m2
b

(1 − ρ)3
}
, (6.106)

where f (ρ) was defined in Eq. (6.61) and C1,2 are evaluated at μ = mb.
The form of the leading-order term was computed in Problem 8 in Chapter 1.

The order �2
QCD/m2

b part of Eq. (6.106) proportional to λ1 can be deduced using
the techniques of Sec. (6.4). Equation (6.78) holds for both the semileptonic and
nonleptonic decay widths. However, the correction proportional to λ2 cannot be
deduced as simply. Like the semileptonic decay case, it arises from two sources.
One is from a b-quark matrix element of the time-ordered product t , where the b
quarks have momentum pb = mbv + k. Expanding in the residual momentum k
gives, at quadratic order in k, dependence on λ2 through the transition from full
QCD to HQET. This part of the λ2 dependence is the same for the nonleptonic
and semileptonic decays. There is also λ2 dependence that is identified from
the b → b + gluon matrix element. It is different in the nonleptonic decay case
because of the possibility that the gluon is emitted off the d or ū quarks, as shown
in Fig. 6.12. This contribution depends on the color structure of the operators
O1 and O2, and we consider the pieces in �(�c = 1) proportional to C2

1 , C2
2 , and

C1C2 successively.
For the piece of the λ2 term proportional to C2

1 , the contribution where a gluon
attaches to a d or ū quark vanishes by color conservation because these diagrams
are proportional to Tr T A = 0. Consequently, the λ2 dependence proportional to
C2

1 is the same for nonleptonic and semileptonic decays. For the contribution
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b b

u

c

d

b b

c

d

Fig. 6.12. OPE diagram for inclusive nonleptonic B decay with a gluon emitted from
one of the light quark lines.

proportional to C2
2 , the b → b + gluon matrix element is the same as semileptonic

b → u decay, provided the electron is not massless but rather has a mass equal
to that of the c quark. This is easily seen after making a Fierz rearrangement of
the quark fields in O2. Note that the c-quark mass only enters the calculation
of Tμν through �0. The left-handed projectors PL remove the c-quark mass
term in the numerator of its propagator. After taking the imaginary part, the mc

dependence in �0 goes into setting the correct three-body phase space. However,
the phase space is the same for b → c decay with massless leptons and b → u
decay with a massless neutrino and the electron having the same mass as the c
quark. Consequently, the λ2C2

2 term is also the same as in semileptonic decay.
For the λ2C1C2 term there is the usual part that is the same as for semileptonic
decays, as well as an additional contribution from the piece of the b → b + gluon
matrix element of t where the gluon attaches to either the d or ū quarks. This
additional part is the last term in Eq. (6.106), and the remainder of this section
is devoted to computing it.

The part of Im〈bg|t |b〉 coming from Fig. 6.12 is

16π iG2
F |Vcb|2|Vud |2

∫
d4q

(2π )4 δ
[
(mbv − q)2 − m2

c

]
× ūγ μPL (mb/v − /q + mc)γ νPLu Im �μν. (6.107)

In Eq. (6.107) the δ function comes from the imaginary part of the c-quark
propagator and

�μν = gT AεAλ∗
∫

d4k

(2π )4

× Tr

[
γ μ PL

k/ − /p/2

(k − p/2)2 + iε
γλ

k/ + /p/2

(k + p/2)2 + iε
γν PL

k/ − /q

(k − q)2 + iε

+ γμ PL
k/ + /q

(k + q)2 + iε
γν PL

k/ − /p/2

(k − p/2)2 + iε
γλ

k/ + /p/2

(k + p/2)2 + iε

]
.

(6.108)
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As in the semileptonic decay case, the gluon has outgoing momentum p and the
initial and final b quarks have residual momentum p/2 and −p/2, respectively.
Expanding in p, keeping only the linear term, combining denominators by using
the Feynman trick, performing the k integration, taking the imaginary part, and
performing the Feynman parameter integration gives

Im �μν = igpβT AεAλ∗

32π
δ(q2)Tr[γμ(γβγλ/q − /qγλγβ)γν/q PR + (μ ↔ ν)].

(6.109)

Only the part antisymmetric in β and λ gives a contribution of the type we are
interested in. Performing the trace yields

Im �μν = gpβT AεAλ∗

4π
δ(q2)[εβνλαqαqμ + (μ ↔ ν)]. (6.110)

Putting this into Eq. (6.107), identifying the spinors with HQET b-quark fields,
and using pβT AεAλ∗ → −iGβλ/2 and Eq. (6.50) for the resulting B-meson
matrix element, Fig. 6.12 gives the following contribution to the nonleptonic
width:

δ�(�c = 1) = −32C1C2|Vcb|2|Vud |2G2
Fλ2

×
∫

d4q

(2π )4 δ
[
(mbv − q)2 − m2

c

]
δ(q2)mb(v · q)2. (6.111)

Performing the q0 and q integrations with the δ functions yields

δ�(�c = 1) = −C1C2|Vcb|2|Vud |2G2
Fλ2m3

b

4π3

(
1 − m2

c

m2
b

)3

, (6.112)

which is the last term in Eq. (6.106). The contribution of dimension-six four-
quark operators to the nonleptonic width is thought to be more important than
the dimension-five operators considered in this section, because their coefficients
are enhanced by a factor of 16π2. The influence of similar four-quark operators
in the case of Bs − B̄s mixing will be considered in the next section.

6.9 Bs − B̄s mixing

The light antiquark in a B̄ or B̄s meson is usually called the spectator quark,
because at leading order in the OPE, its field does not occur in the operators
whose matrix elements give the inclusive decay rate. This persists at order 1/m2

b
since λ1,2 are defined as the matrix elements of operators constructed from
b-quark and gluon fields. At order 1/m3

b, the spectator quark fields first appear
because dimension-six four-quark operators of the form b̄vbv q̄q occur in the
OPE. These operators play a very important role in Bs − B̄s width mixing.
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Recall that C P|Bs〉 = −|B̄s〉, so the CP eigenstates are

|Bs1〉 = 1√
2

(|Bs〉 + |B̄s〉)

|Bs2〉 = 1√
2

(|Bs〉 − |B̄s〉),
(6.113)

with CP|Bsj 〉 = (−1) j |Bsj 〉. At second order in the weak interactions there are
|�b| = 2, |�s| = 2 processes that cause mass and width mixing between the |Bs〉
and |B̄s〉 states. In the limit that CP is conserved, it is the states |Bsj 〉 rather than
|Bs〉 and |B̄s〉 that are eigenstates of the effective Hamiltonian Heff = M + iW/2,
where M and W are the 2 × 2 mass and width matrices for this system. For
simplicity, we will neglect CP violation in the remainder of this section; it is
straightforward to extend the arguments to include CP violation. In the Bs − B̄s

basis, the width matrix W is

W =
⎛
⎝ �Bs ��

�� �B̄s

⎞
⎠. (6.114)

CPT invariance implies that �Bs = �B̄s
, so the widths of the eigenstates of Heff

are

� j = �Bs − (−1) j��. (6.115)

The difference between the widths of the two eigenstates |Bs1〉 and |Bs2〉 is
�1 − �2 = 2��.

The width mixing element �� in Eq. (6.114) is defined by

�� ≡
∑

X

(2π )4δ4(pB − pX )
〈Bs |H (�c = 0)

W |X〉〈X |H (�c = 0)
W |B̄s〉

2m Bs

= Im
〈Bs |i

∫
d4x T

[
H (�c = 0)

W (x) H (�c = 0)
W (0)

]|B̄s〉
2m Bs

. (6.116)

The first line is the definition of ��, and the second line can be verified by
inserting a complete set of states. There is a difference of a factor of 2 when
compared with Eq. (6.105), because now both time orderings contribute. The
width transition matrix element �� comes from final states that are common
in Bs and B̄s decay. For this reason it involves only the �c = 0 part of the
weak Hamiltonian; the �c = 1 part does not contribute. The �c = 0 part of the
weak Hamiltonian gives at tree level the quark decay b → cc̄s. In the leading
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logarithmic approximation,

H (�c = 0)
W = 4G F√

2
VcbV ∗

cs

∑
i

Ci (μ)Qi (μ), (6.117)

where the operators Qi (μ) that occur are

Q1 = (c̄αγμ PLbα) (s̄βγ μ PLcβ),

Q2 = (c̄βγμ PLbα) (s̄αγ μ PLcβ),

Q3 = (s̄αγμ PLbα)
∑

q = u,d,s,c,b

q̄βγ μ PLqβ,

(6.118)Q4 = (s̄βγμ PLbα)
∑

q = u,d,s,c,b

q̄αγ μ PLqβ,

Q5 = (s̄αγμ PLbα)
∑

q = u,d,s,c,b

q̄βγ μ PRqβ,

Q6 = (s̄βγμ PLbα)
∑

q = u,d,s,c,b

q̄αγ μ PRqβ.

At the subtraction point μ = MW , the coefficients are

C1(MW ) = 1 +O [αs (MW )] , C j �=1(MW ) = 0 +O [αs (MW )] . (6.119)

The operators Q1 and Q2 are analogous to O1 and O2 in the �c = 1 nonleptonic
Hamiltonian. The new operators Q3−Q6 occur because new “penguin” diagrams
shown in Fig. 6.13 occur in the renormalization of Q1. The sum of diagrams in
Fig. 6.13 is proportional to the tree-level matrix element of the operator

g(s̄T Aγμ PLb)DνG Aνμ, (6.120)

which after using the equation of motion DνG Aνμ = g
∑

q q̄γ μT Aq becomes

g2(s̄T Aγμ PLb)
∑

q = u,d,s,c,b

q̄γ μT Aq. (6.121)

This is a linear combination of Q3 − Q6. Penguin-type diagrams with more
gluons attached to the loop are finite and do not contribute to the operator renor-
malization.

b s b s b s

Fig. 6.13. Penguin diagrams that renormalize the weak Hamiltonian.

https://doi.org/10.1017/9781009402125.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.007


184 Inclusive weak decay

The coefficients of Q1−6 at μ = mb are computed by using the renormalization
group equation Eq. (1.134), where the anomalous dimension matrix is

γ = g2

8π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 3 −1
9

1
3 − 1

9
1
3

3 −1 0 0 0 0

0 0 − 11
9

11
3 − 2

9
2
3

0 0 22
9

2
3 − 5

9
5
3

0 0 0 0 1 −3

0 0 −5
9

5
3 − 5

9 − 19
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.122)

Solving Eq. (1.134) for the coefficients at the scale μ = mb, it is easy to see that
C1 and C2 have the same value as in the �c = 1 case, whereas C3 − C6 are quite
small.

The operators in the OPE for the time-ordered product of weak Hamiltoni-
ans that gives �� must be both �s = 2 and �b = 2. Consequently, the lowest-
dimension operators are four-quark operators, and�� is suppressed by�3

QCD/m3
b

in comparison with �.
Neglecting the operators Q3 − Q6, we calculate the operator product for the

time-ordered product in Eq. (6.116) from the imaginary part of the one-loop
Feynman diagram in Fig. 6.14. This gives

�� = [
C2

1〈Bs(v)|(s̄βγ μPLbvα) (s̄αγ νPLbvβ)|B̄s(v)〉 + (
3C2

2 + 2C1C2
)

× 〈Bs(v)|(s̄αγ μPLbvα) (s̄βγ νPLbvβ)|B̄s(v)〉] Im �μν(pb). (6.123)

Taking the imaginary part converts the loop integration into a phase space inte-
gration for the intermediate c and c̄ quarks:

Im �μν(pb) = 4G2
F

(
VcbV ∗

cs

)2
∫

d3 pc

(2π )32Ec

d3 pc̄

(2π )32Ec̄
(2π )4 δ4 (pb − pc − pc̄)

× Tr[γμ PL (/pc + mc)γν PL (/pc̄ − mc)]. (6.124)

Performing the phase space integration above yields

Im �μν(pb) = 4G2
F

(
VcbV ∗

cs

)2
m2

b(Evμvν + Fgμν), (6.125)

b b

s s

c

c

Fig. 6.14. One-loop diagram for Bs − B̄s mixing.
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where

E = 1 + 2ρ

24π

√
1 − 4ρ,

F = −1 − ρ

24π

√
1 − 4ρ,

(6.126)

and ρ = m2
c/m2

b. Putting the above results together gives

�� = G2
F

(
VcbV ∗

cs

)2
m2

b

6π

√
1 − 4ρ

× {[
C2

1〈Bs(v)|(s̄βPRbvα) (s̄αPRbvβ)|B̄s(v)〉
+ (

3C2
2 + 2C1C2

)
× 〈Bs(v)|(s̄βPRbvβ) (s̄αPRbvα)|B̄s(v)〉](1 + 2ρ)

− (
C2

1 + 3C2
2 + 2C1C2

)
× 〈Bs(v)|(s̄βγ μPLbvβ) (s̄αγμPLbvα)|B̄s(v)〉(1 − ρ)

}
. (6.127)

One of the four-quark operators can be eliminated by using the Fierz identity:

(s̄αγ μPLbα)(s̄βγ νPLbβ) + (s̄βγ μPLbα)(s̄αγ νPLbβ)

= 1

2
gμν(s̄αγ λPLbα)(s̄βγλPLbβ). (6.128)

Making the transition to HQET and contracting with vμvν , we find this Fierz
identity gives

(s̄αPRbvα)(s̄βPRbvβ) + (s̄βPRbvα)(s̄αPRbvβ)

= 1

2
(s̄αγ λPLbvα)(s̄βγλPLbvβ). (6.129)

Using this, Eq. (6.127) becomes

�� = −G2
F

(
VcbV ∗

cs

)2
m2

b

6π

√
1 − 4ρ ×

{(−C2
1 + 2C1C2 + 3C2

2

)
(1 + 2ρ)

× 〈Bs(v)|(s̄β PRbvβ) (s̄α PRbvα)|B̄s(v)〉
+

[
1

2
C2

1 (1 − 4ρ) + (
3C2

2 + 2C1C2
)

(1 − ρ)

]

×〈Bs(v)|(s̄βγ μ PLbvβ) (s̄αγμ PLbvα)|B̄s(v)〉
}
. (6.130)

Estimates of the matrix elements in this equation suggest that |��/�Bs | is ∼0.1.
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6.10 Problems

1. At fixed q2, show that the structure functions F1,2(ω, q2) defined in Sec. 1.8 have cuts on the
real ω axis for |ω| ≥ 1. Also show that the discontinuity across the positive ω cut is given by
Eq. (1.165).

2. Derive Eqs. (6.10) and (6.11).

3. Define the parton-level dimensionless energy and invariant mass variables Ê0 and ŝ0 by

Ê0 = v · (pb − q) /mb = 1 − v · q̂,

ŝ0 = (pb − q)2/m2
b = 1 − 2v · q̂ + q̂2.

The hadronic energy EH and invariant mass sH are given by

EH = v · (pB − q) = m B − v · q,

sH = (pB − q)2 = m2
B − 2m Bv · q + q2.

(a) Show that EH and sH are related to the parton-level quantities by

EH = �̄ − λ1 + 3λ2

2m B
+

(
m B − �̄ + λ1 + 3λ2

2m B

)
Ê0 + · · ·

sH = m2
c + �̄2 + (

m2
B − 2�̄m B + �̄2 + λ1 + 3λ2

)
(ŝ0 − ρ)

+ (2�̄m B − 2�̄2 − λ1 − 3λ2)Ê0 + · · · ,

where the ellipses denote terms of higher order in 1/m B .
(b) For the b → u case, set mc = 0 in the above and show that

〈ŝ0〉 = 13λ1

20m2
b

+ 3λ2

4m2
b

,

〈Ê0〉 = 13λ1

40m2
b

+ 63λ2

40m2
b

,

where the symbol 〈·〉 denotes an average over the decay phase space.
(c) Use the previous results to show that

〈sH 〉 = m2
B

[
7�̄

10m B
+ 3

10m2
B

(�̄2 + λ1 − λ2)

]
.

4. Define

Tμν = −i
∫

d4x e−iq · x
〈B̄|T [

J †
μ(x)Jν(0)

]|B̄〉
2m B

,

where J is a b → c vector or axial current. An operator product expansion of Tμν in the
zero-recoil case q = 0 yields

1

3
T AA

ii = 1

ε
− (λ1 + 3λ2) (mb − 3mc)

6m2
bε (2mc + ε)

+ 4λ2mb − (λ1 + 3λ2) (mb − mc − ε)

mbε2 (2mc + ε)
,

1

3
T V V

ii = 1

2mc + ε
− (λ1 + 3λ2) (mb + 3mc)

6m2
bε (2mc + ε)

+ 4λ2mb − (λ1 + 3λ2) (mb − mc − ε)

mbε (2mc + ε)2 ,

where ε = mb − mc − q0.
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(a) Use these results to deduce the sum rules

1

6m B

∑
X

(2π )3 δ3 (pX ) |〈X |Ai |B̄〉|2 = 1 − λ2

m2
c

+ λ1 + 3λ2

4

(
1

m2
c

+ 1

m2
b

+ 2

3mbmc

)
,

1

6m B

∑
X

(2π )3 δ3 (pX ) |〈X |Vi |B̄〉|2 = λ2

m2
c

− λ1 + 3λ2

4

(
1

m2
c

+ 1

m2
b

− 2

3mbmc

)
.

(b) Use part (a) to deduce the bounds

h2
A1

(1) ≤ 1 − λ2

m2
c

+ λ1 + 3λ2

4

(
1

m2
c

+ 1

m2
b

+ 2

3mbmc

)
,

0 ≤ λ2

m2
c

− λ1 + 3λ2

4

(
1

m2
c

+ 1

m2
b

− 2

3mbmc

)
.

5. Use the results of Sec. 6.2 to derive the double differential decay rate in Eq. (6.57).

6. Calculate the renormalization of Q1 − Q6 and verify the anomalous dimension matrix in
Eq. (6.122).

7. Suppose the effective Hamiltonian for semileptonic weak B decay is

HW = G F√
2

Vcb(c̄γμb)(ēγ μνe).

Perform an OPE on the time-ordered product of vector currents and deduce the nonperturbative
1/m2

b corrections to d�/dq̂2 dy.
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