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Abstract
Continuous monitoring of the mass balance of the Greenland ice sheet is crucial to assess its
contribution to the rise of sea levels.TheGRACEandGRACE-FOmissions have providedmonthly
estimates of the Earth’s gravity field since 2002, which have been widely used to estimate monthly
mass changes of ice sheets. However, there is an 11month gap between the twomissions. Here, we
propose a data-driven approach that combines atmospheric variables from the ERA5 reanalysis
with GRACE-derived mass anomalies from previous months to predict mass changes. Using an
auto-regressive structure, the model is naturally predictive for shorter times without GRACE/-FO
observations.The results show a high r2-score (> 0.73) between model predictions and GRACE/-
FO observations. Validating the model’s ability to reproduce mass anomalies when observations
are available builds confidence in estimates used to bridge the GRACE and GRACE/-FO gap.
Although GRACE and GRACE-FO are treated equally by the model, we see a decrease in model
performance for the period covered by GRACE-FO, indicating that they may not be as well-
calibrated as previously assumed. Gap predictions align well with mass change estimates derived
from other geodetic methods and remain within the uncertainty envelope of the GRACE-FO
observations.

1. Introduction

The Greenland ice sheet has lost mass at increasing rates since the early 1990s, caused by
an increased discharge of ice to the ocean through marine-terminating outlet glaciers and
a decrease in surface mass balance (SMB); the mass loss is highly variable, with maximum
peaks about 2010–12 and 2019 caused by increased melting and runoff (Tedesco and Fettweis,
2020; Otosaka and others, 2023). In this study, we focus on the central west (CW) basin of the
Greenland ice sheet as defined by Zwally and others 2012, as this basin holds 130 cm equiv-
alent sea level (Mouginot and others, 2019). The CW basin includes several large and highly
dynamic glaciers, including Sermeq Kujalleq (Jakobshavn isbræ) and Kangilliup Sermia (Rink
isbræ), which all play an important role in the regional mass balance (MB) (Khazendar and
others, 2019; Mouginot and others, 2019; Joughin and others, 2020). Sermeq Kujalleq has natu-
rally receivedmuch attention, being the largest outlet of the Greenland ice sheet. Still, the entire
CW exhibits considerable variability; Mouginot and others 2019 showed that this basin was in
equilibrium from the 1970s until the early 2000s, when it started to accelerate. From 2000 to
2018, the basin lost more than 740 Gt of mass, corresponding to 21% of the entire Greenland
mass loss (Mouginot and others, 2019; Shepherd and others, 2020). In 2017 and 2018, the basin
experienced a deceleration in mass loss, primarily driven by a deceleration and thickening of
Sermeq Kujalleq (Khazendar and others, 2019), followed by a record high mass loss of 2019
(Sasgen and others, 2020; Velicogna and others, 2020).

The MB of the ice sheets is continuously monitored using three geodetic methods:
Gravimetry (changes in the gravitational field), altimetry (changes in the surface eleva-
tion) and the input–output method (IOM), which estimates MB by comparing SMB (input)
with solid ice discharge (output) (Otosaka and others, 2023). The Ice Sheet Mass Balance
Intercomparison Exercise (IMBIE) has provided comprehensive assessments of different MB
monitoring approaches by systematically comparing and reconciling results from gravimetry,
satellite altimetry and the IOM. While IMBIE found overall good agreement between the dis-
tinct approaches, the assessment also revealed variability among them, highlighting the use of
different geophysical corrections, SMB models and glacial isostatic adjustment (GIA) models
(Shepherd and others, 2020; Otosaka and others, 2023). This study focuses on mass changes
derived from gravity variations measured by the Gravity Recovery and Climate Experiment
(GRACE) satellites and their successor, GRACE Follow-On (GRACE-FO). However, the 1 year
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data gap between the conclusion of the GRACE mission and
the start of GRACE-FO poses a significant challenge for ensur-
ing continuous MB monitoring. To address this, several attempts
have been made using independent methods (Sasgen and others,
2020), including in situ observation from the Greenland GNSS
network (Barletta and others, 2024a) and traditional techniques
for monitoring mass changes (Otosaka and others, 2023). We aim
to provide an alternative to existing methods to bridge the gap
betweenGRACE andGRACE-FO that is consistent with GRACE/-
FO observations of mass anomalies.

Recent advances in deep learning techniques have offered var-
ious opportunities for ice sheet MB monitoring and modelling.
Among these, physics-informed neural networks (PINNs) have
proven to be a powerful tool for modelling ice sheet evolution
by integrating observational data with physical laws to enhance
computational efficiency while maintaining adherence to physical
principles (Jouvet and others, 2022; Jouvet and Cordonnier, 2023).
In addition to improving computational efficiency, PINNs have
proven valuable for inferring basal conditions, such as subglacial
topography and basal friction, which are challenging to measure
directly (Bolibar and others, 2023; Cheng and others, 2024). For
SMB, deep learning methods have been successfully utilized to
downscale SMB models (van der Meer and others, 2023). By inte-
grating high-resolution remote sensing data with deep learning
techniques, these methods can capture fine-scale spatial varia-
tions in SMB processes, such as melt patterns, that are otherwise
missed in coarse-resolutionmodels (De Roda Husman and others,
2024). Furthermore, deep learning techniques have proven help-
ful in automatically detecting supraglacial lake evolution and melt
from remote sensing data (Lutz and others, 2023; Zhu and others,
2024).

Additionally, machine learning methods have shown potential
for bridging the gap between GRACE andGRACE-FO (Zhang and
others, 2022; Shi and others, 2024). Shi and others (2024) use an
SVMmodel based on climate model outputs to reconstruct a grid-
ded GRACE/-FO product, while Zhang and others (2022) apply
a nonlinear neural network to integrate both climate model out-
put and ice discharge at the basin scale. Both methods successfully
capture the annual MB but struggle to accurately resolve seasonal
variations. In this study, we integrate daily atmospheric conditions
from the European Centre for Medium-Range Weather Forecasts
global atmospheric reanalysis dataset v5 (ERA5) with a history
of GRACE/-FO-derived mass anomalies to better capture short-
term atmospheric variability and improve the representation of the
different drivers of ice mass change. By using daily ERA5 vari-
ables instead of monthly aggregates, we aim to retain information
of short-term variability, e.g. short-lived but intense precipitation
events, which are otherwise smoothed out in the monthly aggre-
gates.Thedata-drivenmodel provides griddedmass anomalies that
are consistent with GRACE/-FO spatiotemporal variability.

In this study, we focus on the CW basin of the Greenland ice
sheet. All GRACE/-FO-derivedmass anomalies are subject to some
degree of spatial leakage effects from neighbouring regions. The
northern drainage basins, in particular, are affected not only by
leakage from adjacent Greenland drainage basins but also by mass
changes in the nearby Canadian Arctic glaciers due to their geo-
graphic proximity (Baur and others, 2009; Barletta and others,
2013). Likewise, if we choose a basin further south, the basins are
more narrow, which can also cause problems with GRACE/-FO
due to the coarse spatial resolution of GRACE/-FO. Therefore, the
CW basin is a good and interesting region for this case study. The
proposed model addresses gaps in the mass anomaly time series

between GRACE and GRACE-FO with an auto-regressive model,
enabling it to predictmonthlymass anomalies based on past obser-
vations and atmospheric drivers. During the gap period, when
GRACE observations are unavailable, the model feeds its own
predicted mass anomalies from the previous time step into sub-
sequent predictions in place of the missing GRACE data. With the
approach, we provide monthly mass anomalies that are consistent
with GRACE/-FO observations and exhibit seasonal variability
similar to other MB approaches. Therefore, we can provide a 21
year continuous time series of mass anomalies.

2. Data

WeusemonthlyGRACE/-FOmass anomaly observations (Barletta
and others, 2013) to provide a historical record of the total
MB from 2002 to 2023. Within the same period, we use daily
ERA5 variables (Hersbach and others, 2020) to describe the atmo-
spheric/surface components of the totalMB observed byGRACE/-
FO. Basin-scale solid ice discharge estimates (Mankoff and others,
2020) are included to derive the basin SMB, used exclusively to
deep-constrain the model to fit basin SMB during training. The
data-drivenmodel estimates are compared to two geodetic datasets
derived from different approaches: the IOM Mankoff and others
(2021) and altimetry (Khan and others, 2025). All data will focus
on the CW basin, defined as basin no. 7 in Zwally and others 2012,
and we describe the data in further detail in the following sections.

2.1. ERA5 surface variables

We use daily means of the ERA5 global atmospheric reanalysis
(Hersbach and others, 2020). ERA5has a spatial resolution of 0.25∘,
corresponding to 30 km over the Greenland ice sheet, with 137
vertical levels. We include only the surface variables that primarily
control the SMB: the 2 m temperature, total precipitation, surface
pressure and short-wave and long-wave downward surface radia-
tion.We aggregate the hourly ERA5 data into daily values since this
temporal resolution should be enough to predict themonthlymass
changes on the same grid as GRACE/-FO.

2.2. GRACE gravimetric MB

GRACE and GRACE-FO are dedicated missions to map tempo-
ral and spatial variations in Earth’s gravity field. GRACE, launched
in 2002 and operational until 2017, utilized a pair of satellites to
monitor changes in the distance between themcaused by variations
in Earth’s gravitational pull. These changes reflect mass redistri-
butions in the Earth system due to, e.g. ice sheet mass changes
(Velicogna andWahr, 2005; Tapley and others, 2019). GRACE-FO,
launched in 2018, continues this legacy, although leaving a gap in
the observations betweenOctober 2017 and June 2018 between the
two missions.

Here, we use a dataset of gravimetric ice sheet mass changes
(Barletta and others, 2024b), which are based on GRACE and
GRACE-FO monthly solutions (CSR, RL06.2) using the point-
mass inversion method described in Barletta and others 2013.
In Barletta and others (2024b), the C20 and C30 coefficients are
replaced, and degree-1 coefficients have been added according to
the release centre technical notes (Swenson and others, 2008; Sun
and others, 2016; Landerer, 2024). The dataset offers both gridded
estimates of 22 km disks and integrated drainage basin estimates.
For the basin mass changes, estimates of the uncertainty are pro-
vided, accounting for the propagation of formal errors from the
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L2 GRACE/-FO data, uncertainty in degree-one terms, GIA cor-
rections (Caron and others, 2018) and uncertainties in ocean and
atmospheric models (Barletta and others, 2013).

2.3. Surface mass balance

Simplified, the MB of ice sheets is the difference between SMB and
solid ice discharge (D). Hence, by combining the GRACE/-FO-
derived mass anomaly observations over the basin and the solid
ice discharge, we can derive the SMB as,

SMB = MB + D (1)

Here, D is the solid ice discharge. We do not account for the con-
tribution of mass loss from basal processes, e.g. melting at the base,
as the MB in the CW basin is mainly driven by SMB and solid ice
discharge (Shepherd and others, 2020; Karlsson and others, 2021).

Solid ice discharge estimates between 2002 and 2023 are cal-
culated from the ice velocity and thickness of fast-flowing glaciers
(Mankoff and others, 2020). Ice velocity post-2000 is derived from
a combination of PROMICE (Solgaard and others, 2021) and
MEaSUREs (Howat and Ohio State University, 2017) ice velocity
datasets.The ice thickness is derived from surface elevation (Howat
and others, 2014) and bedrock elevations (Morlighem and others,
2017), with adjustments over time based on changes in surface
elevation (Khan and others, 2016). Flux gates are selected auto-
matically using a threshold of 100 m yr−1 since SMB dominates
outlet glaciers below this threshold. Finally, the solid ice discharge
is calculated per pixel along the flux gate using the density of ice
(Mankoff and others, 2020).

2.4. Data for inter-comparison

For inter-comparison purposes, we apply two geodeticMB records:
The daily mass changes estimates from the IOM (Mankoff and oth-
ers, 2021) and the monthly mass changes derived from altimetry
(Khan and others, 2022). Mankoff and others (2021) computes the
SMB within the GRACE/-FO period using the average of three
regional climate models: HIRHAM, RACMO and MAR.The solid
ice discharge estimates are from Mankoff and others (2020). To
improve the MB estimates of the IOM, Mankoff and others (2021)
includes the basal MB term in the MB. We refer to Mankoff and
others (2021) for a more detailed description of the IOM dataset.
However, it is relevant to note that the solid ice discharge dataset
included in the Mankoff and others (2021) dataset is also used
for deep supervision during model training in this study. Thus,
Mankoff andothers (2021) is not a completely independent dataset.

Khan and others 2025 estimate the mass changes of the
Greenland Ice Sheet from 2003 to 2023 using a combination of air-
borne and satellite altimetry data, including measurements from
CryoSat-2, Envisat, ICESat, ICESat-2 and Operation IceBridge.
Elevation changes are interpolated onto a regular grid using krig-
ing, and elevation changes are converted to mass changes using
the density from RACMO RCM (Noël and others, 2019). To cor-
rectly convert volume to mass, firn compaction is accounted for
using a simple firn model that includes melt and refreezing. As the
data product is based on altimetry elevation changes, it should be
noted that this method cannot produce rapid changes but rather a
temporally “smoothed” data product. Additionally, the regression
procedure of Khan and others 2025 imposed a strong inter-annual
cycle in MB.

3. Methods

The proposed neural network architecture can handle the different
spatiotemporal resolutions of ERA5 and GRACE/-FO. To ensure
faster andmore stable learning, we scale all data before feeding it to
the model. Furthermore, we split data into training and testing sets
to evaluate the model’s performance on unseen data and prevent
overfitting.

3.1. Preprocessing

For each GRACE/-FO solution, a data cube of 30 days of ERA5
daily data leading up to the midpoint of the GRACE/-FO solu-
tion is created. Together with the previous GRACE solution at time
T − 1, the data cube of the 30 days of ERA5 data between timeT − 1
and T is used to predict the mass anomaly at time T. It is impor-
tant to note that the GRACE solutions are irregularly sampled in
time. While most have an interval of roughly 30 days, longer gaps
occasionally occur. Due to model architecture constraints, we only
sample 30 days of ERA5 data for each GRACE solution, even when
the GRACE observational interval exceeds 30 days. However,<7%
of the GRACE/-FO solutions have a time interval>30 days.

To ensure fast and stable learning, input data are linearly scaled
to a similar order of magnitude. Since the different ERA5 variables
and GRACE are on different scales, the larger ranges can dispro-
portionately influence the model’s learning rate, leading to biased
predictions and poor generalization. We select the scaling strategy
based on the distribution of each input variable prior to scaling. For
the monthly GRACE/-FO mass anomalies and daily ERA5 tem-
perature and long-wave downward radiation, we apply a z-score
normalization, which removes the mean and linearly scales to unit
variance. It is appropriate to apply a z-score normalization in this
case, as all three variables exhibit approximately normal distribu-
tions prior to scaling.The daily ERA5 surface pressure, short-wave
downward radiation and precipitation are linearly scaled between
zero and one based on theminimum andmaximum values. Unlike
the z-score normalization, this scaling method preserves the effect
of outliers after scaling. Figure S1 in the Supporting Information
illustrates the data distributions before and after scaling.

Data are divided into three subsets: training, validation and
testing. The testing dataset comprises data from 2009 up to and
including 2011, which corresponds to 15% of the dataset.The test-
ing period is intentionally chosen to be in themiddle of theGRACE
period rather than at the beginning or end, as theGRACE solutions
generally have lower uncertainty. In themiddle of the GRACEmis-
sion period, data are also consistently available monthly, which is
not the case towards the end of the mission, where data availabil-
ity becomes more irregular. Having reliable data for model testing
ensures that any differences between GRACE and model predic-
tions stem from the model’s performance rather than biases in the
GRACE observations. Furthermore, the period also includes the
extreme melt year of 2010, leading to a high SMB-driven mass loss
(Tedesco and others, 2011).The remaining data are randomly split
into training and validation sets in an 80:20 ratio. A random split is
used instead of a consecutive split to ensure that most periods are
represented in the training dataset to account for the large variabil-
ity in themass loss observed over the past two decades (Khazendar
and others, 2019). We further explore the ability to bridge the gap
between theGRACE andGRACE-FOmissions. To do so, we create
30 day timestamps to build ERA5 data cubes. Since the previous
GRACE solution is unavailable during the gap period, we use an
auto-regressive approach where we take the previously predicted
mass anomalies instead.
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Figure 1. Proposed model architecture consisting of an encoder and decoder. The encoder handles the daily ERA5 data, while the decoder combines the encoded ERA5 data
with the previous GRACE/-FO observation and seasonal information to predict the mass anomalies.

3.2. Deep learning architecture

The proposed neural network consists of an ERA5 encoder and a
decoder to handle the different spatiotemporal resolutions of ERA5
and GRACE/-FO; see Fig. 1. The ERA5 encoder consists of a CNN
with two convolutional layers, each with a kernel size of 3 × 3 ×
3 with a 2-pixel stride and the exponential linear unit (elu) as an
activation function.The elu activation function was primarily cho-
sen to allow small negative outputs. Between each convolutional
layer, we apply a three-dimensional MaxPooling layer and dropout
(p = 0.2). Then, we apply three fully connected (fc) layers, where
the last fc layer reduces the spatial dimension to match GRACE/-
FO. The outcome of this encoding step produces feature maps
representing the SMB of the basin at time T, being constrained
by the SMB derived from GRACE/-FO and the solid discharge.
We note that the feature maps outputted from the ERA5 encoder
are only used to constrain the model during training and are not
regarded as an output once the model is trained.The next step is to
merge the GRACE/-FO solution at T − 1 with the encoded ERA5
data using a convolutional layer before concatenating the seasonal
cycle and applying two fc layers to estimate the mass anomaly of
the next time step. We represent the seasonality using a sinusoidal
transformation. By representing the day of the year as the sine
and cosine of the day, it ensures that the cyclical nature of time
is preserved. Again, the elu activation function is applied for the
convolutional layer, but a hyperbolic tangent function is applied to
the first fc layer as it yielded the best performance, and no activa-
tion function is applied to the last fc layer to allow negative values
smaller than −1.

3.2.1. Training
During training, the Adaptive Moment Estimation (Adam)
(Kingma and Ba, 2015) is employed, starting with a learning rate
of 10−3. Adam uses an adaptive learning rate by scaling updates for
each parameter based on the mean and variance of past gradients.
Models are trainedwith a batch size of 20 for 150 epochs, saving the
ten models with the lowest validation loss. We experimented with

alternative hyperparameters, including learning rate, loss function
and optimiser, but the presented configuration yielded the best
results.

A multipart loss function constrains the model:
ℒ = ℒSMB + ℒMB , (2)

where ℒSMB ensures that the SMB representation from the ERA5
decoder follows the SMB trends on basin scale:

ℒSMB = 1
n1

√√√
⎷

t

∑
i=1

((∑n1
j=1 ̂ySMB,ij) − YSMB,i)2

t (3)

where ̂ySMB,ij is the output of the ERA5 decoder before merging
with GRACE, see Fig. 1, and have the same spatial resolution of
ERA5. n1 is the number of grid points of ̂ySMB,ij and YSMB,i is the
basin SMB derived from GRACE/-FO mass anomalies and solid
ice discharge using eq. (1). Note that the SMB includes contribu-
tions from basal MB, as we do not remove the signal from basal
processes in the GRACE/-FO solutions. ℒMB is computed on the
mass anomalies output of the model:

ℒMB =
t

∑
i=1

n2
∑
j=1

( ̂yMB,ij − yMB,ij)2

n2

+ 1
n2

t

∑
i=1

((∑n1
j=1 ̂yMB,ij) − YMB,i)2

2𝜎2 (4)

where yMB,ij is the GRACE/-FO-derived mass anomalies, ̂yMB,ij is
the predicted mass anomalies on the same grid as GRACE/-FO
and YMB,i is the basin mass anomalies measured by GRACE/-FO.
n2 is the number of grid points of GRACE/-FO grid. The first
term of ℒMB computes the MSE between predicted mass anoma-
lies and mass anomalies observed by GRACE/-FO. For basin-scale
mass anomalies, we have the associated uncertainty for theGRACE
observation; see Fig. 4. Thus, we can incorporate the uncertainty
into the loss function for the second term. This means that when
the uncertainty is high, the errors between predictions and obser-
vations are given less weight.
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Figure 2. Overview of basin definitions by Zwally and others 2012 (a) with a focus on CW basin and annual point MB estimates. For 2010, the GRACE observations from
Barletta and others 2013 (b) and the model predictions (c) are compared in (d) with distributions of the differences shown in (g). (e) and (f) show the MB of 2017 and 2018.
2010 corresponds to one of the years in the test dataset, and both 2017 and 2018 correspond to the GRACE/-FO gap. Scatter point MB estimates by the model are on the
same resolution as GRACE/-FO with a disk radius of 22 km.

We tested different strategies for weighting ℒSMB and ℒMB
in eq. (3), including assigning different weights as well as adap-
tive weighting using SoftAdapt (Heydari and others, 2019) and
GradNorm (Chen and others, 2018). However, equal weights but
ensuring equal units of ℒSMB and ℒMB yielded the best results.

3.2.2. Auto-regression
We only train the data-driven model when GRACE/-FO is avail-
able. GRACE solutions are provided as input into the model until
10 June 2017, as indicated by the dark blue arrow in Fig. 1. When
the GRACEmission ends, and then the model operates in an auto-
regressive manner, shown by the light blue arrow in Fig. 1. This
means the mass anomaly output of the previous time step is fed
into the model as input for the next prediction step instead of
the observed GRACE solutions. This allows for the MB recon-
structions during the observational gap between GRACE and
GRACE-FO. To make a realistic evaluation of the reliability of
the auto-regressive predictions, we also apply the auto-regressive
model during the test period, where GRACE observations are
available for comparison.

4. Results

Due to the auto-regressive nature of the model, we can provide
monthly mass anomaly estimates both when GRACE/-FO solu-
tions are available and when they are not. In Fig. 2, we compute
the annualMB of three different years (2010, 2017 and 2018) based
on monthly estimates by the model. The annual MB in 2010 (Fig.
2c) is part of the testing dataset, whereas both 2017 (Fig. 2e)
and 2018 (Fig. 2f) are partially within the GRACE/-FO gap. For
2010, the reported MB by Barletta and others 2013 is illustrated
in Fig. 2b, and the difference between the model predictions and

GRACE/-FO observations is shown in Fig. 2d. Fig. 2d shows a
slightly negative bias in 2012, meaning that the model predicts a
slightly greater MB (0–0.2 Gt). Only in the northern part of the
does GRACE observe a higher MB in 2010 (Fig. 2d). The GRACE
solutions are provided as input into the model until 10 June 2017,
when the GRACEmission ends, and then the model operates in an
auto-regressive manner. Both 2010 and 2018 show a greater mass
loss at themargin of the ice sheet compared to 2017, corresponding
with the reported decline of discharge of the marine-terminating
glaciers of the CW basin during 2017 (Mankoff and others, 2021).
For the CW basin, 2017 was also a lowmelt year (Tedesco and oth-
ers, 2017), followed by an increase in melt in 2018 compared to the
previous year (Tedesco and others, 2018).

Figure 3 shows the observed GRACE/-FO mass anomalies and
predicted mass anomalies by the deep learning model. The plot
showcases both the testing dataset (2009–11), marked as unfilled
points, and the training dataset, marked as filled points. For the
training data, we further differentiate between the GRACE (dark
blue) and GRACE-FOmissions (light blue).The training data have
RMSE of 15.04Gt and r2 of 0.83, while the test dataset have RMSE
of 14.61 Gt and r2 of 0.87. It is important to note that the test-
ing data only includes data from the GRACE as input, whereas
the training data includes both GRACE and GRACE-FO data. For
the GRACE period only, the model predictions have a RMSE of
14.54 Gt and r2 of 0.99, while the model performs worse in the
GRACE-FO period with a RMSE of 19.70 Gt and r2 of 0.73.

Figure 4 presents the GRACE/-FOmass anomalies with associ-
ated uncertainties and the model-predicted mass anomalies. Both
training and testing periods are included, with the testing peri-
ods highlighted as the vertical grey areas. The model predictions
generally fall within the uncertainty range of the GRACE/-FO
observations for both training and testing periods. Figure 4 also
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Figure 3. Predicted mass anomalies versus GRACE/-FO-derived mass anomalies
with RMSE and r2-score. Dark blue is within the GRACE period and light blue is
within the GRACE-FO period. Unfilled points indicate the testing period, which is
included in the GRACE period. RMSE and r2-scores are shown for both training
data and testing data. RMSE and r2-score for the training period are also divided
into GRACE and GRACE-FO period.

Figure 4. Mass anomalies for the CW basin. The black dots are the
GRACE observation with uncertainties (1 σ) as lines. The first GRACE-
FO solution is excluded due to a short baseline. The vertical grey areas
illustrate the two testing cases: one where data are not included in train-
ing the model and the GRACE/-FO gap. The blue is the mass anomalies
estimated by the model. The two dotted lines show the result of the
auto-regression in the gap between GRACE and GRACE-FO, both includ-
ing (blue) and excluding (green) GRACE data from early 2017. Figure S2
in the Supporting Information shows the auto-regression over the gap
but excludes 2, 4 and 6 GRACE solutions before the end of the mission.

shows the auto-regressive model applied to the GRACE/-FO gap
twice: Once where the auto-regression starts on 29November 2016
and once where it starts on 10 June 2017, the last available GRACE
solution. 29 November 2016 is chosen based on Figure S2 in the
Supporting Information, where we explore different starting times
for the auto-regression. When the auto-regression begins on 10
June 2017, the predicted mass anomalies are about 30 Gt lower
than what GRACE-FO measures at the start of its record. For the
gap prediction initiated on 29 November 2016, the model predicts
mass anomalies in accordance with the GRACE-FO uncertainty
envelope.

We compare the annual MB of the CW basin in Fig. 5. Here we
use a hydrological year, running from October to September. The
data-driven annual MB shows good agreement with GRACE/-FO
observations (correlation coefficient = 0.79). The correlation with

altimetry-derivedMB is lowest (correlation coefficient= 0.68), and
the correlation with the IOMMB is the highest (correlation coeffi-
cient = 0.85). However, the data-driven estimates are consistently
higher annual MB compared to the IOM, showing a high offset
between the two. The GRACE/-FO in Fig. 5d and e also shows a
lower correlation between the annualMB from IOMand altimetry.
The correlation between altimetry and IOM altimetry in Fig. 5 is
high but also shows a similar high offset between the twomethods.

Figure 6 shows the computedmass changes over the basin com-
pared with IOM and altimetry. Since the altimetry-derived mass
changes natively is a smoothened dataset, we apply a 4 month
running mean to the GRACE/-FO solutions, model estimates and
the IOM data for the records to be comparable. Figure 6a shows
mass change for the full period, Fig. 6b within the testing period,
and Fig. 6c within the gap between GRACE and GRACE-FO. The
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Figure 5. Comparison of annual MB for the CW basin for hydrological years (Oct–Sept) between the data-driven model estimates, Barletta and others (2013), Mankoff and
others (2021), and Khan and others (2022). All axis units are in Gt/year and offset is calculated as 1/n∑(xi − yi), units in Gt/yr. Due to the gap between GRACE and GRACE-FO,
incomplete hydrological years are excluded in the data-driven model estimates and Barletta and others (2013) plots (a-e). Only (f) includes all years between 2002 and 2023.

mass changes for the testing period compare well with both inter-
comparison datasets. Figure 6b also includes the mass changes
from the auto-regressive model starting in January 2011.The auto-
regression performs similarly for the first year but shows less vari-
ability and less mass loss in the summer of 2011. In the following
winter, the auto-regressivemodel predicts similarMBs as the inter-
comparison datasets but deviates in the 2012melt season. Figure 6c
also includes the mass changes from the auto-regressive model
that were initialized at different times: 29 November 2016 and 10
June 2017. There are only small differences between mass changes
predicted by the two auto-regressive predictions within the gap
between GRACE and GRACE-FO.When compared with the IOM
and altimetry-derived mass changes, both comparison datasets
show more negative mass change in the summer of 2017. The fol-
lowing winter and summer the auto-regressive predictions show
similar mass changes when compared with IOM and altimetry.
When looking at the mass changes leading up to the GRACE/-FO
gap, the GRACE data appear to be out of phase compared with
IOM and altimetry, which is partially also seen in the model pre-
dictions. When the auto-regression starts before 2017, the model
can capture the increase in mass change and hence fits better the
comparison datasets.

5. Discussion

Our findings confirm that a deep learning model can effectively
combine atmospheric conditions with prior GRACE/-FO-derived
mass anomaly measurements to emulate mass anomalies. This
capability highlights the potential of the data-driven model when
filling the gap of observations in the gravitational record of ice
mass loss. As seen in Figs. 3 and 4, the model demonstrates the
ability to capture the complex interactions between atmospheric
drivers and the observed mass anomalies on the entire CW basin,
showing low RMSE (< 20Gt) and high r2-score (> 0.73) between
model predictions and observations. The model has slightly better
test statistics than training, indicating that the model is gener-
alizing well to unseen data. The testing period was intentionally
chosen to be in the middle of the GRACE period rather than at
the beginning or end, as the GRACE solutions consistently show-
case lower errors, thus making them more reliable for testing the
model’s performance. Still, the training data do include all data
independent of data quality, which explains the slightly better test
performance. Furthermore, GRACE-FO was not included in the
test dataset but only in the training data. Within the GRACE-
FO period, the model shows slightly lower performance compared
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Figure 6. Mass changes estimated by the deep learning model (blue), GRACE/-FO observations (black), the IOM (green) and derived from altimetry (yellow). Since the altimetry-
derived mass changes are temporally smoothed, we apply a 4 month running mean to the mass changes by data-driven model. (This study), GRACE/-FO observations and
the IOM (a) show the full GRACE/-FO period, whereas (b) and (c) include the testing periods. In both (b) and (c), the dotted lines show the auto-regressive predictions.

with the GRACE period. This suggests that, despite the assump-
tion that GRACE and GRACE-FO data are equivalent due to
their identical systems and underlying physics, themodel struggles
to capture MB variability during the GRACE-FO period accu-
rately. This may point to potential differences within the CW
basin between data from the two missions. Due to the accelerom-
eter data degradation on GRACE-D, replaced with transplant
data (Behzadpour and others, 2021), the GRACE-FO measure-
ment uncertainty is generally larger. These increased uncertainties
propagate into the GRACE/-FO mass anomaly estimates, which
is evident in Figs. 4 and 6. We incorporate the uncertainty of
the mass anomalies into the model training, constraining the
model to stay within the uncertainty bounds of the GRACE/-
FO observations. Thus, in periods with larger uncertainty, the
model can deviate more from the observations, which might
explain the slight drop in model performance during the GRACE-
FO period. As the operational record of GRACE-FO increases
in the future, it would be interesting to see if these differences
persist.

Themass anomalies for the basin in Fig. 4 show that the model-
predicted mass anomalies generally fall within the GRACE/-FO
uncertainty envelope. Evident in Fig. 6, the model captures the
general trend of the mass changes but fails to capture the full mag-
nitude of these mass changes. GRACE/-FO mass change obser-
vations show several high-amplitude mass changes both within

the training and testing period. Such rapid increases are typi-
cally driven by short-lived, large precipitation events, extrememelt
events or brief periods of extremely high calving rates, each of
which occurs only rarely. As a result, these events are also rare in the
data, making it difficult for the model to effectively learn and cap-
ture them.This is also evident with the peak in late 2014, where we
see a strong highmass change in both the GRACE solution and the
data-driven model, but not in the IOM and altimetry. The perfor-
mance of the data-driven model is limited by the data it is trained
with. This challenge is not specific to the method presented in this
study but represents a broader limitation for data-driven models
(Goodfellow and others, 2016). Furthermore, we also note that
these high-amplitude mass changes are not present in either IOM
or altimetry mass changes. IOM relies on RCMs to describe the
MB and, thus, inherits any biases present in the RCMs. Moreover,
the ice velocity data used to calculate solid ice discharge vary in
temporal coverage, which introduces additional ‘smoothing’ to the
dataset. Altimetry-derived mass changes are natively temporally
‘smoothed’. Consequently, neither IOM nor altimetry can capture
these high-amplitude mass changes. On the other hand, GRACE/-
FO can observe these high-amplitude changes, since the GRACE/-
FO directly measures the changes in Earth’s gravity field and does
not rely on RCMs for surface processes or smoothed ice veloc-
ity data. However, on a shorter time scale, the measurements can
be susceptible to noise, mainly due to aliasing of short-term mass
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variations in the atmosphere and ocean, which are not removed
by the background models and, therefore, are more prominent at
short time scales (Wahr and others, 2006).

As shown in the annual validation plot (Fig. 5a), the data-driven
model aligns well with the GRACE/-FO solutions, demonstrat-
ing high correlation and minimal offset. This indicates that the
data-driven model captures the annual variability in MB observed
by GRACE/-FO. In contrast, there is a high RMSE (> 21 Gt/yr)
and substantial offset (> 10 Gt/yr) between the data-driven model
and both the IOM (Fig. 5b) and altimetry-derived (Fig. 5c) MB
estimates. Furthermore, the correlation between the data-driven
and the altimetry-derived MB is low, but a lower correlation is
seen between altimetry and GRACE/-FO MB in Fig. 5e. This sug-
gests that it is not a limitation of the data-driven model but rather
a discrepancy between the altimetry-derived MB and other esti-
mates. The IOMmethod shows a high offset with the data-driven,
meaning that on average, the IOM estimates 26.4 Gt lower MB,
compared with the data-driven model. Similarly, the IOM also
shows positive offsets with GRACE/-FO solutions and altimetry,
again suggesting that the discrepancy is not a limitation of the data-
drivenmodel, but rather a systematic offset in the IOM.While both
the IOM and GRACE/-FO observations do not include the outer
glaciers, GRACE/-FO observations are affected by signal leakage
from outer glaciers, especially from Disko Island. However, signal
leakage cannot explainmore than 20Gt/yr offset between IOMand
GRACE/-FO observations in the CW basin.

While Fig. 5 revealed interannual variability and offsets between
the MB approaches, the model-estimated mass changes generally
show the same seasonal variability as the IOM and altimetry-
derived mass changes in Fig. 6. However, in 2017, leading up to
the GRACE/-FO gap, the GRACE solutions drift away from the
mass change estimated by both the IOM and altimetry. Since the
applied loss function accounts for the uncertainties inGRACE/-FO
data by assigning less weight to observations with high uncertainty,
it is unsurprising that the model performs poorly during the first
years of the GRACE mission, where the GRACE uncertainties are
generally high. However, in 2017, the uncertainties associated with
GRACE do not reflect any decrease in data quality near the end
of the mission, even though the solutions fail to capture the sea-
sonal trends observed in the IOM and altimetry mass changes.
The model similarly fails to capture the seasonal trend, inheriting
this limitation from the GRACE data. Since data-drivenmodels, in
general, learn the relationship between input and output data, the
model is naturally sensitive to the quality of the GRACE/-FO solu-
tions.Themodelwill reproduce systematic biases anduncertainties
in the GRACE/-FO data. It is, therefore, important to carefully
consider data quality when applying data-driven models.

To test the performance of the auto-regressive nature of the
model, we perform an auto-regression during the testing period
where GRACE solutions are available (Fig. 6b). Here, we can eval-
uate how well the auto-regressive model performs by comparing
the auto-regressive predictions to GRACE observations and the
regular model (seeing the entire GRACE observational period).
The auto-regression correctly captures the general trend but does
not exhibit the same variability as the GRACE solution or regular
model. With the auto-regressive model, we can capture the general
climatic trends of the MB, but mass changes induced by weather
variability are not fully captured. Although the auto-regressive
model cannot capture the full variability of the MB, it can repro-
duce the long-term trends (climatic variability) and thus still be
useful for bridging the gap between GRACE and GRACE-FO in
Fig. 6c. Since GRACE fails to capture the seasonal trends in early

2017, we initiate the auto-regression twice: first on 29 November
2016 to exclude GRACE solutions from 2017, and again at the
end of the final GRACE solution on 10 June 2017. Compared to
IOM and altimetry, neither auto-regressive predictions capture as
large a mass loss during the 2017 melt season. The subsequent
mass increase during the winter of 2017 and mass loss of the 2018
melt season comparedwell with IOMand altimetry, indicating that
the auto-regressive model successfully captures mass changes dur-
ing this part of the gap. Leading up to the end of the GRACE
mission, we can compare the regular and auto-regressive mod-
els. While the auto-regressive model can only capture the climatic
trends, it still compares better with IOM and altimetry than the
regular model, as this model inherits the bias from the GRACE
observations. Furthermore, this also explains the 30 Gt difference
between the two auto-regressivemodel predictions.Thus, the auto-
regressive model, which begins before 2017, produces the best
estimates. While integrating the actual GRACE/-FO observation
into themodel is preferred, 2017 illustrates a case where the autore-
gressive model outperforms the regular model due to a bias in the
GRACE observation.

Capturing the evolution of mass anomalies over time requires
a deep learning architecture that can effectively model both short-
term variability and long-term trends. For future work, we suggest
improving the model by including more advanced temporal mod-
elling approaches in the network architecture for future work to
enhance the model’s auto-regressive capabilities. Recurrent Neural
Networks such as Long Short-Term Memory networks or Gated
Recurrent Units are well-suited to capturing temporal correlations.
They can aid the model to better understand the time evolution of
the system’s dynamics (Goodfellow and others, 2016). Additionally,
incorporating attention mechanisms within the temporal frame-
work could further enhance the network’s ability to focus on key
time steps or critical transitions, such as periods of rapid ice loss
or extreme melt seasons affecting the properties of the firn in
the subsequent years. By incorporating these components into the
architecture, the generative performance of the network could be
improved, leading to more accurate reconstructions and predic-
tions of mass anomalies within the GRACE/-FO gap.

6. Conclusion

This study demonstrates that a data-driven model can success-
fully emulate mass anomalies by combining atmospheric con-
ditions with a history of GRACE/-FO-derived mass anomalies.
The model captures basin-scale mass anomalies well, showing low
RMSE and high r2 scores for the GRACE period but slightly lower
performance in the GRACE-FO period, suggesting differences
between the twomissions.This difference is likely due to the higher
uncertainty associated with the GRACE-FO observations, which is
accounted for duringmodel training. Overall, themodel-predicted
mass anomalies generally fall within the GRACE/-FO uncertainty
envelope, successfully capturing the broader mass change trends
but missing high-amplitude changes driven by extreme precipi-
tation, melt and calving events. These limitations stem from the
data-driven approach, as these extreme events are rare occur-
rences in the input data, making it difficult for the data-driven
model to learn and capture them effectively. Annually, the MB
estimated by the data-driven model aligns well with GRACE/-
FO observations. In contrast, both the data-driven model and the
GRACE/-FO observations reveal an offset in the IOM and low cor-
relation with the altimetry-derived MB, suggesting discrepancies
are between the traditional methods rather than in the data-driven
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approach. Using the auto-regressive nature of the model, we fill
the gap between GRACE and GRACE-FO by replacing the previ-
ous GRACE mass anomaly observation with the previously pre-
dicted mass anomaly. Results show that the auto-regressive model
successfully predicts climatic variability but struggles to capture
weather-imposed mass changes. Leading up to the end of the
GRACE mission in 2017, the seasonal trend is not captured in
GRACE-derived mass changes, whereas it remains evident in both
IOM- and altimetry-derivedmass changes.Thedata-drivenmodel,
which sees the entire GRACE observational period, inherits this
trend from the GRACE observations, whereas the auto-regressive
predictions do not. Results show that by excluding 2017 GRACE
solutions in the auto-regressive predictions, we can better bridge
the gap between GRACE and GRACE-FO while remaining within
theGRACE-FOuncertainty envelope.Thus, we can create a 21 year
continuous time series of mass anomalies that are consistent with
GRACE/-FO observations using a data-driven model, providing
an alternative to traditional methods such as IOM and altimetry
for estimating ice sheet MB during periods with limited or missing
GRACE/-FO data.

Supplementary material. The supplementary material for this article can
be found https://doi.org/10.1017/aog.2025.10019.
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