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of the SU(2) self-dual Yang-Mills equation and its solution is constructed.

1991 Mathematics Subject Classification. 35Q58.

1. Introduction. It is well known that the solutions of most of the soliton
equations are given in terms of the determinants with wronskian or grammian
structure. The bilinear forms of the equations are reduced to algebraic identities for
determinants, the so-called Pliicker relations. On the other hand, the determinant
can be regarded as a special case of the pfaffian, i.e., a special choice of the ele-
ments of pfaffian recovers the determinant. Moreover the determinant and pfaffian
have quite similar properties. This means that for a given soliton equation whose
solution is written in determinant form, we can replace the determinant by a pfaf-
fian keeping the appropriate structure and construct a new soliton equation whose
solution is given by the pfaffian instead of determinant. We term this process
pfaffianisation. By applying this procedure to the KP hierarchy and its determinant
solution, the hierarchy of the coupled KP equation and its pfaffian solution were
derived [1]. Instead of the Pliicker relations, we use the pfaffian analogue of the
Pliicker relations to construct the corresponding bilinear equations in the pfaffian
case.

In this paper we apply the pfaffianisation technique to the SU(2) self-dual
Yang-Mills (SDYM) equation and its determinant solution, and propose a new
equation with pfaffian solutions. Many articles have been written on methods of
finding solutions of the SDYM equation (for example [2]-[7]), and it has been
revealed that a large class of solution admits the determinant expressions [5,8]
whose structure is quite similar to that of the t function of KP hierarchy. Hence it
is naturally expected that the pfaffianisation process is appropriate for the SDYM
equation.

2. Persymmetric determinants and pfaffians. The SU(2) SDYM equation,
(3 Dy + (=TT, =0 (1

where J is 2 x 2 matrix satisfying detJ = 1, admits the solution [5],
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where the entries in J are given expressed in terms of the persymmetric determinants

On—N+1 --- @n
Ty = det((pi+j+n—N—l)1§i,j§N =
Pn cor o @ntN-1
and ¢, satisfies the linear differential equations,

Oy@n = 0:0n11 0200 = —05Pus1- 3)

In addition, let the ¢, depend on an auxiliary variable and let d denote the
derivative with respect to this variable. Suppose then that ¢, satisfies

00y = Puy1.

Then the 7}, may be written as bidirectional wronskian determinants with respect to
this auxiliary derivative. For example,

%o 32900 oo Vg
_ o  Ppo ... Ve
W= . : @
Ny Ve PN 2

The Hirota bilinear form of (1) is expressed in terms of three 2 x 2 matrices G,
H and A4 and a scalar F. These relate to the solution as follows: J = G/F, J-' = H/F
and A is an auxiliary matrix required to effect bilinearisation. This bilinear form is
written in matrix form as

GH = F?, (5
D,G-H=2D.A-F, (6)
D:G-H=—2D;A-F. (7)

It may be shown [4,9] that the persymmetric determinants 7}, satisfy

rxﬂrx_] - tﬁ,@ﬂ%ﬁl = r]]\\,]z, ®)

Dyry -ty =Dryn -7y ©)

D.szlx\/fﬂ Ty = DZTIJ\\;II] ST\ (10)

Dy(ey ey =Ty s T) = —DDoty -y (n

and those obtained by the symmetry y — Z, z — —J, where D is Hirota bilinear
operator corresponding to 9. Consequently, the bilinear equations (5)—(7) are satis-
fied by taking
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N-1 N N+1 N
FeV G — N TN-1 H= N —TN-1
- N T\ Y A+ I V-1
N+l TN N+1 N

N  _N-1

4= -0ty Ty
- N+1 N |

Tyil Oty

In what follows, we will show how the entries in these matrices may also be expres-
sed in terms of pfaffians and how this representation leads, in a natural way, to a
pfaffian version of SU(2) SDYM.

and

There are several ways to write a determinant as a pfaffian. Here we utilise the
persymmetric structure of the above t function. Our starting point is the following
theorem.

THEOREM 1. [10] Given quantities v;, for each k =0, ..., 2N — 2 define

k k
Gk = Z <p) wk72p

=0

and
k
Pk = Z wk—Zp'
p=0

The following identity relating a persymmetric determinant and a persymmetric pfaf-
fian holds

det(@itj—2)1<ijeny = PE(Oj—i—1)1<icj<an-

Here and throughout this paper we will use standard results and notation for
pfaffians as described in [11]. Before giving a proof of this theorem we illustrate it by
writing the result explicitly in the case N = 2. We have

| Yo v1+y1 Yo+vot+in
Yo Yo + ¥
Yo

Yo Yo+ _
Yo+ Yoo+ 2% + Y

Proof. We have already seen in (4) that the determinant on the left hand side

may be expressed as a bidirectional wronskian 7, say, with respect to the auxiliary

derivative 0. This is consistent with letting the quantities v satisfy
MW = Vi1 + Vi1
The pfaffian on the right hand side is

®=(1,2,...,2N)
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where the (i, j) element

i1

(@, )) = pj—i-1 = Z Yiic1-2p
p=0

satisfies
o N=0+L)+Gj+1, GH=>0+1/7+1). (12)

It is known that both ¢ and r%f satisfy the one dimensional Toda molecule
equation,

Dty -ty =2tysitv-1 N > 1, 0 =1,

where D denotes the Hirota bilinear operator corresponding to 9. Then, since
et — t‘lof = 19, the bilinear Toda equation may be used recursively to prove the
identification tfvet = t]'i,f for all N > 2. O

It is clear from this theorem that

i '=(1,2,....,2N) and ty,, =(1,2,...,2N+2), (13)

where (i, /) = pj—i—1. It is consistent with (3) to let the quantities ; satisfy the linear
equations

ayVIn = az(l/fn—l + 1;//‘n-‘rl)’ 0z, = _8}3(1//71—1 + Wn-‘rl),

and then it follows from (12) and the above that

apn = Pu—1 + Pu+1, 8ypn = 3z(,0n4 + pn+l) and 32/0n = _8)7(:0?171 + lon+1)- (14)

The other determinants in the bilinear form of (1) may not be written as pfaffians so
readily. In the next section we will study bordered pfaffians related to those descri-
bed above. These pfaffians satisfy a system, which, for appropriate choices of the
bordering terms, is SU(2) SDYM. Using this result we obtain not only a complete
description of the solutions described above in terms of pfaffians, but also a gen-
eralisation of SU(2) SDYM itself.

3. Bordered persymmetric pfaffians. We now introduce a sequence of labels ¢ to
be used in defining bordered pfaffians. The pfaffian elements are defined by

(i,)) = pj—i-1, (0, a)) = aj_iy1 and (a;, a)) =0, (15)

where o satisfies the same linear equations (14) as px.
Let a, b denote any pair of the labels a;. We will use the following notation

oy=(1,2,....2N), o%=(1,2,....2N+1,a), o%=(1,2,....2N,a,b). (16)
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Further, we denote by a™ (a™) the label with index one greater (less) than that of
label a. Because of this, and the defining properties of the pfaffian entries (15), the
pfaffians are invariant under a uniform shift of all labels up or down. For example,

ov=(0,1,....2N— 1) = (2,3,..., 2N + 1),

and
oy =(0,1,...,2N,a")=(2,3,...,2N +2,a").
We now state the simplest quadratic identities satisfied by these pfaffians.

THEOREM 2. For the pfaffians defined in (16), the following identities, and those
obtained by the transformation y — z, z — —y, hold.
b

ab a b~ a b~ a” b
oy oy —onoy " +oyon_ —oy_jon =0, (17)

ab a~ b~ a b~ a” b
ONLION — ON410y -~ +oyoy —oy oy =0, (18)
ab ab at b a bt a b
ONLION — ON410y + Oy Oy — ooy = Doy - oy, (19)
atht a b~ a b~ a b __ a b
ONp) ON — ON410y © +oyoy — oy oy = —Doy - oy, (20)

ab _ ath ab™ b~ at b a
2D,oy oy = DZ{(O’N “Oy— Oy Oy +0ON_| -0y —ON_; Oy

+ - - +
— (o oy —on-oh +ol ok —ab_,-oh)), Q1)
b b b b b a
2Dy0% - o = D{(o%y, - oy +oNpy 0N — ok oy — 0N o)
b* + b, b+ + b
- (UN"’Nf] +U/\fl'UN+l — oy oy — Oy 'GN)}7 (22)

2D,y o — s )+ DDk oy — o o)

= D4} oy — oy, 0N+l ok —ol o)

— (O oy — Oy oN o ol — ok o)

+ (UaN_fl *ON —Ongp Uﬁ’v"”_ + UaN_ o - GaN“ : U?v)

— Oy oy —0oxp oy ¢ HoN oy —oh -0} (23)

Proof. Identities (17)—(20) are established by means of standard pfaffian iden-
tities together with the results
304 =(1,2,....2N.2N+2,a) + 0% =(0,2,....2N+ L, a)+ 0% . (24
To prove (19), for example, we consider the standard pfaffian identity

(1,....2N+2,a,b)1,....2N) = (1, ..., 2N + 2)(1, ..., 2N, a, b)

+(1,...,2N+1,a)1,...,2N,2N+2,6) — (1, ..., 2N+ 1,b)(1, ..., 2N, 2N + 2, a)
—0.

Then using the first equality in (24) gives the required result.
The other identities are more nonstandard and as an example we show how to
prove (21). We make use of the pfaffian identities
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(1, 2N, a,b)y(1, ..., 2N) = (1,..., 2N, a, b)(1, ..., 2N);
= (0,..., 2N, @)oi(0, ..., 2N, B)gy — (0, ..., 2N, @)y, (0, ..., 2N, b),;

(Lo 2N+ L @) (1, 2N 4 1, B) e = (Lo 2N+ L @) (1 o 2N 41, D)y
= —(1,....2N,a,b)(2,....2N+ 1) + (2, ..., 2N + 1, a, b)(1, ..., 2N)
— (1, 2N+ 1,a)2, .. 2N, b);+ (2, ..., 2N, a)(1, ..., 2N + 1, ),

i

where i and j are arbitrary integers and (...); means the (i, j) cofactor of the pfaffian
(...). The left hand side of (21) may be rewritten as

2D,(1,....2N,a,b)-(1,....2N)
=2((1,...,2N,ay, b))+ (1,...,2N, a,b))(1, ..., 2N)

+ 3D @), (1. 2N a, b)y(1, ... 2N) = (1,..., 2N, a. b)(1, ..., 2N);)
[

=2((1,....2N,af +aZ,b)+(1,...,2N,a, b +b2))(1,...,2N)
+ ) D (G4 1), + G+ 1.)(O. ... 2N, @)y (0. ..., 2N, b)y
i

—(0,..., 2N, @) (0, ..., 2N, b)y,)
=2((1,...,2N,a*, )+ 2,...,.2N+ 1,a., b*) +(1,..., 2N, a, b7)
+(Q,..., 2N+ 1,a",b))(1,...,2N)

_ ZZ(i,j)z((l, L 2NA1a) (1 2N+ 1 b)
i

—(L,....2N+ 1L, a)j 55 (1, ... .2N 4+ 1,b7),,

+ (1, 2N+ L @)1, 2N+ 1,6Y),

—(L....2N+ La")(1,... . 2N+ 1,b);yp)

=2{((1,....2N,af ., b) + (1,...,2N,a,bD))(1,...,2N)
+(,...,2N,a.,bH(2,.... 2N+ 1)

—(2,....2N,a)(1,....2N+ 1,b") +(1,....2N+ 1,a.)(2,..., 2N, b")
+(1,...,2N,a*,b.)2,....,2N+1)—(2,...,2N,a")(,..., 2N+ 1,b.)
+(1,....2N+1,a")(2, ..., 2N, b.)}

+ 3D )1 2N @t b)y(2, ... 2N + 1)
i

— Qo N4 L at b)Y, 2N) (1, 2N+ 1,aY)(2, L 2N, ),
— Q2 2N @), 2N L B)+ (1, 2N, a, b2, 2N 4 1)
Q2N L bTY( 2N) = (2, 2N, @)L 2N+ 1B
+ (1, 2N+ 1,a)(2, ... 2N, b))
=2((1,...,2N,a*, b).(2, ..., 2N+ 1) = (2, ...,2N + 1, a*, b)(1, ..., 2N)
+ (1. 2N+ 1,a")Q2, ..., 2N, b). — (2,...,2N,a*)(1,..., 2N + 1, b).
+(1,.. ., 2N, @, b").(2, ..., 2N+ 1) = (2,... 2N+ 1,a,b")(1, ..., 2N).
—(2,...,2N,a).(1,... . 2N+ 1,6+ (1,...,2N + 1,a).(2, ..., 2N, b")).

z
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After symmetrising this expression using identities of the form 2X.Y = D.X - Y+
(XY)., it is readily shown to equal the right hand side. Hence (21) is established. The
remaining identities can be proved similarly. OJ

Next, we will show that the identities given in Theorem 2 reduce to the ones,
(8)—(11), satisfied by the persymmetric determinants which satisfy SU(2) SDYM. In
this way we see that the Hirota bilinear equations (17)—(23) define a generalisation of
this system.

Let the labels a; be such that

ak+2 = —dg,

so that there are just two independent labels, ¢y and «@; say. Then one can show that

oy =ajnty and oW = —(af + )TN .
For example,
| Lo p1 ao | Yo ¥Ya+v1 @ 1
a
o’ = o0 o_1| = Yo —a | = oyl = a; 1.
o_) —Q

Taking a = a; and b = ay, the identities (17)—(23) reduce to (8)—(11). Hence we
see that the system defined by (17)—(23) reduces to SU(2) SDYM.

In the next section we present another constraint on the labels a; which gives a
system distinct from SU(2) SDYM.

4. A pfaffianised SU(2) self-dual Yang-Mills equation. Let us take a different
reduction by imposing the simple condition,

k42 = k.

Choosing a = ay, b = ay, the identities (17)—(23) reduce to

2w = ooy, — oo 29
203{10N+1 = O)4 10y — O 10N (26)

U]a\?-illON + onpioy! = 07\/12 - ‘77\?2’ 27
ONLION — OOy = oy? — oy’ + Doy - oy, (28)

DoV oy = D.(o_, - o — o oV, (29)

Dyoyyy - on1 = Doy - oy, — 0o - ON,)s (30)

D,oy - oy = D-(oy}} - on — ong1 - o), (31

Dy(oyy) - on +ong1 - o) = DD.(oy - oy —oy -oy) +4D.oy -ay.  (32)

We now wish to obtain from these identities a system which has a similar form to
SU(2) SDYM. For this reason we define the matrix

https://doi.org/10.1017/S001708950100009X Published online by Cambridge University Press


https://doi.org/10.1017/S001708950100009X

106 Y. OHTA, J. J. C. NIMMO AND C. R. GILSON
oy —oy"
G = dpd ’
ON+1 Opnyg

_ A ay
Fy =0y £ oy.

and scalars

Then, by virtue of (27), the matrix

-1
~ (F. 0
=65 £) -

satisfies detJ = 1. The new system will be defined in terms of this matrix. Further,
Foo0\"!
-1 _ _
= ( 0 F+> f,

dody dody
—ON+1 ON

where

It is also necessary to define auxiliary matrices

L (FORIEE oy o
+= ; )
oNg T oy FOFL) F Fe

Now all of the identities may be written in terms of these 4 matrices and 2 scalars as

follows;
GH=F_F,,
D,G-H=D.(A_-Fy +F_-A4y),
2GhH = A_F, +F_A,,
2D,G-hH = D.F_ - Fy,
where

(0 %)

Next, we eliminate G and H from the final three equations in favour of J and J~! to
obtain

2J,J 7! —7D}’F_ -F+Jh‘]_l = &_ﬁ + i_i_ﬁ D:F_ - Fy
’ F_F, F. F ) \F_. F, FF_ 7

A. 4
2JhJ—‘=< + *),

F.o U F,
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and

D.F_-F D,F_-F
2<thJ‘l+JhJ‘1JZJ‘1— : +): y +

F_F, F_F,

From these equations we obtain an expression, involving J alone, as an exact
z-derivative, namely

1/A_. A
-1 _ -1 _ -1 -1 _ 2 _ a4
JyJ J.J JhJ = J.hJ 3 (F F+)z'

Finally, using the transformation y — z, z — —y we get a second version of the
above and eliminating the auxiliary terms by cross-differentiation gives

(LI = LT = TR Ty + T+ Jpd T TR T s T, = 0. (33)
We note that this may also be written as
I g+ U+ (VR LI L R S T ) 4 2000 S T =0, (34)

where [-, -] denotes the matrix commutator.

5. Concluding Remarks. By showing how the persymmetric determinant solu-
tions of the SU(2) SDYM equation can be written in terms of pfaffians, we have
been led to study a class of bordered pfaffians and the identities they satisfy. We
have considered two reductions of this master system; one choice leading to SU(2)
SDYM and the other leading to a new system (33). This process naturally give
solutions to these systems as bordered persymmetric pfaffians.

There appears to be no straightforward connection between the SDYM equa-
tion (1) and the pfaffianised version (33). However there exists an intriguing possi-
bility, which is still to be explored, that by making a different choice of bordering
terms in the pfaffians one may be able to replace the constant matrix s with a more
general one which permits the limit 7 — i/, in which the pfaffianised version reduces
to SU(2) SDYM.

In general, we expect that this pfaffianisation technique is applicable to many
integrable systems which admit determinant solutions and works as a powerful tool
to construct new integrable equations whose solutions are given by pfaffians.
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