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Abstract Let Lϕ = −∆ − ϕ−1∇ϕ · ∇ be the self-adjoint operator associated with the Dirichlet form

Qϕ(f) =
∫

Rd
|∇f(x)|2 dλϕ(x),

where ϕ is a positive C2 function, dλϕ = ϕ dλ and λ denotes Lebesgue measure on Rd. We study
the boundedness on Lp(λϕ) of spectral multipliers of Lϕ. We prove that if ϕ grows or decays at most
exponentially at infinity and satisfies a suitable ‘curvature condition’, then functions which are bounded
and holomorphic in the intersection of a parabolic region and a sector and satisfy Mihlin-type conditions
at infinity are spectral multipliers of Lp(λϕ). The parabolic region depends on ϕ, on p and on the
infimum of the essential spectrum of the operator Lϕ on L2(λϕ). The sector depends on the angle of
holomorphy of the semigroup generated by Lϕ on Lp(λϕ).
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1. Introduction

Let ϕ be a positive function on R
d. We shall denote by λϕ the measure such that dλϕ =

ϕ dλ, where λ denotes Lebesgue measure on R
d. Let Qϕ denote the Dirichlet form defined

by

Qϕ(f) =
∫

Rd

|∇f |2 dλϕ

for all f in the form domain. The form Qϕ determines a unique non-negative self-adjoint
operator Lϕ on L2(λϕ) such that

〈Lϕf, f〉 = Qϕ(f) for all f ∈ Dom(Lϕ). (1.1)

If the function ϕ is differentiable, a simple integration by parts shows that

Lϕf = −(∆ + ϕ−1∇ϕ · ∇)f for all f ∈ C∞
c (Rd).
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Let σ(Lϕ) denote the spectrum of Lϕ on L2(λϕ). We shall denote by σd(Lϕ) the
discrete spectrum, i.e. the set of all isolated eigenvalues with finite multiplicity, and
by σe(Lϕ) = σ(Lϕ) \ σd(Lϕ) the essential spectrum of Lϕ. Set be = inf σe(Lϕ). Then
σd(Lϕ) ∩ [0, be) is a countable set which has at most be as an accumulation point. Let
{Ps} be the spectral resolution of Lϕ for which

Lϕf =
∫ ∞

b

s dPsf for all f ∈ Dom(Lϕ),

where b denotes the bottom of σ(Lϕ). If m is a bounded Borel function on σ(Lϕ), then
the operator m(Lϕ) spectrally defined by

m(Lϕ)f =
∫ ∞

b

m(s) dPsf for all f ∈ L2(λϕ)

is bounded on L2(λϕ). We call m(Lϕ) the spectral operator associated with the spectral
multiplier m. If m(Lϕ) extends from L2(λϕ) ∩ Lp(λϕ) to a bounded operator on Lp(λϕ)
for some p in [1,∞), we say that m is a Lp(λϕ) spectral multiplier for Lϕ. The spectral
multiplier problem for Lϕ consists in finding conditions, necessary or sufficient, which
imply that m is an Lp(λϕ) spectral multiplier for Lϕ.

We assume throughout that ϕ is in C2(Rd) and satisfies

ϕ(x)
ϕ(y)

� Ceβ|x−y| for all x, y ∈ R
d (1.2)

and

1
2

∆ϕ(x)
ϕ(x)

− 1
4

|∇ϕ(x)|2
ϕ(x)2

� −κ for all x ∈ R
d (1.3)

for suitable positive constants C, β and κ.
Assumptions (1.2) and (1.3) may be regarded as weak bounded-curvature conditions.

Indeed, suppose that ϕ is smooth. Then the operator Lϕ may be viewed as the restriction
to rotationally invariant functions of the Laplace–Beltrami operator on the ‘warped prod-
uct’ manifold M = R

d ×ϕ2 T, endowed with the metric ds2 = dx2 + ϕ(x)2 dθ2. Recall
that a Riemannian manifold has bounded curvature up to order k if all the covariant
derivatives of the curvature tensor up to order k are bounded. Now, in the coordinate
system (x, θ), the vector fields Xj = ∂xj and Θ = ϕ−1∂θ are an orthonormal frame. It is
easy to see that the non-vanishing components of the curvature tensor of M are

RXiΘ(Xj) = −
∂2

xixj
ϕ

ϕ
Θ, RXiΘ(Θ) =

d∑
k=1

∂2
xixk

ϕ

ϕ
Xk.

Thus, the manifold M has bounded curvature up to order k if and only if the derivatives
of log(ϕ) of order j ∈ {2, . . . , k+2} are bounded. Now, assumption (1.2) follows from the
boundedness of |∇ log(ϕ)| and assumption (1.3) is equivalent to d(d+1)S + |DΘΘ|2 � κ,
where S = −(2/d(d + 1))ϕ−1∆ϕ is the scalar curvature of M and DΘΘ = −ϕ−1∇ϕ is
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the covariant derivative of Θ with respect to itself. This explains why we may consider
(1.2) and (1.3) as weak bounded-curvature assumptions.

In this paper we prove that Lϕ admits an holomorphic Lp(λϕ) functional calculus on
suitable pencil-like regions of the complex plane. Each such region is the intersection of a
parabolic region and a sector, and depends on p, on β and on the bottom of the essential
spectrum of Lϕ. To describe our result we need more notation. For each positive w, denote
by Pw the parabolic region, which is the image of the strip {z ∈ C : |Im z| < w} under the
map z �→ z2 + be. For each θ in (0, π), let Sθ denote the sector {z ∈ C\{0} : |arg z| < θ}.
Denote by Rw,θ the intersection of Pw and Sθ.

Suppose that p is in [1,∞) and denote by φ∗
p the angle arcsin |2/p − 1|. Suppose also

that w is a number greater than β|1/p − 1/2| and that θ > φ∗
p. It may be that, for some

values of the parameters, Rw,θ is just the parabolic region Pw. Indeed, if be > 1
4β2, then√

be|2/p − 1| > β|1/p − 1/2|. Thus, for any w in the interval (β|1/p − 1/2|,
√

be|2/p − 1|),
the parabolic region Pw is contained in the sector Sφ∗

p
. However, if be � 1

4β2, then Pw

is not contained in the sector Sφ∗
p
. By a result in [3] (applied to the manifold R

d ×ϕ2 T

considered above), this happens when the measure λϕ is infinite. In particular, the vertex
of the parabola might lie on the negative semi-axis.

Our main result (see Theorem 4.2 below) is the following. If p is in (1,∞), w >

β|1/p − 1/2|, θ > φ∗
p, be is positive, m is defined on the spectrum of Lϕ and extends to a

function holomorphic and bounded in Rw,θ, and satisfies Mihlin-type conditions of the
form

|Djm(ζ)| � C|ζ−j | for all j ∈ {0, 1, . . . , L}

for all sufficiently large ζ in Rw,θ and L in N, then m(Lϕ) is bounded on Lp(λϕ).
It is natural to speculate on the optimality of our result. In particular, one would like

to know whether the pencil-like domains are the ‘right ones’ in this setting or if there
are even more natural, smaller domains which still work. Unfortunately, at this stage of
our investigation we have not been able to answer this question.

Note that the angle φ∗
p is related to the angle of holomorphy on Lp of all symmet-

ric diffusion semigroups. Indeed, by a result in [12], such semigroups are bounded and
holomorphic on Lp at least in the sector Sπ/2−φ∗

p
. It is well known that generators of

symmetric diffusion semigroups have bounded holomorphic functional calculus on Lp in
sectors (see [5, 11]). It is also known that some of them have Lp functional calculus
precisely on Sφ∗

p
(see [4,7,13]). The optimal angle ψ for which all generators of sym-

metric diffusion semigroups have bounded holomorphic functional calculus on Sψ is not
known. We observe that the operator −Lϕ generates a symmetric diffusion semigroup
on (Rd, λϕ).

As a consequence of Theorem 4.2, we show that for each θ > φ∗
p the Lp(λϕ) norm of

the imaginary powers mu(Lϕ) (see Remark 4.4 below for the precise definition) of Lϕ is
controlled by Ceθ|u|, where C is independent of u in R.

The proof of Theorem 4.2 is in two stages. First we show that if m is holomorphic
and bounded in Pw and its boundary values satisfy suitable differential inequalities, then
m(Lϕ) is bounded on Lp(λϕ) for p in (1,∞), and satisfies a weak type 1 inequality when
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p = 1 (see Theorem 3.1 below). Next we show that if m is defined on Rw,θ and satisfies
the assumptions of Theorem 4.2, then m may be written as the sum of m0, which is
holomorphic in the sector Sθ and m∞, which is holomorphic in the parabolic region Pw

and satisfies the assumptions of Theorem 3.1.
To prove Theorem 3.1 we use a variant of a well-known method of Taylor [16]. To

apply Taylor’s method in our setting we must overcome a difficulty. Indeed, to prove a
more general multiplier theorem, instead of translating the operator with the bottom b of
the L2 spectrum as Taylor does, we translate with the bottom of the essential spectrum
be. This enables us to require holomorphy of the multiplier in the parabolic region Pw,
which is smaller then the region Pw + b − be considered by Taylor. Since the region
Pw does not contain all the discrete spectrum of Lϕ, to prove that m(Lϕ) is bounded
on Lp(λϕ) we must estimate separately the contribution to m(Lϕ) from the eigenvalues
E1, . . . , EN that fall outside the region of holomorphy of the multiplier. Let ΠEj denote
the corresponding spectral projections. Since the difference Lϕ −

∑
j EjΠEj

does not
have the finite propagation speed property, the application of Taylor’s method is not so
straightforward. This explains why the argument in the proof of Theorem 3.1 is more
technical than Taylor’s.

In our discussion of the geometric meaning of the curvature conditions on ϕ we have
already remarked that the operator Lϕ is the restriction to the subspace of rotationally
invariant functions of the Laplace–Beltrami operator on a manifold M (at least when ϕ

is smooth). Thus, it is natural to speculate whether Theorem 3.1 may be deduced from
Taylor’s results for the Laplace–Beltrami operator on Riemannian manifolds of bounded
geometry [16].

First, note that for general ϕ the manifold M has no positive injectivity radius, because
the infimum of ϕ may be zero. Thus, [16, Theorem 1.1] is not applicable to M .

Second, note that M is a quotient of its simply connected covering M̃ = R
d ×ϕ2 R,

which indeed has positive injectivity radius. Then, in the case where all the derivatives
of log(ϕ) are bounded, we may apply [16, Proposition 3.2] and we find that if p is in
(1,∞), m is holomorphic and bounded in Pw + b − be, decays at infinity and satisfies
suitable differential estimates on the boundary of Pw + b − be, then m(Lϕ) is bounded
on Lp(M).

We emphasize the fact that our main result does not require any decay of m at infinity,
that holomorphy of m is required only in the parabolic region Pw, which is smaller than
Pw + b − be whenever b < be, and finally that the assumptions on ϕ are fairly weak.

Our paper is organized as follows. Section 2 contains some background material and
preliminary results. Section 3 is devoted to the proof of a multiplier theorem in the
parabolic region Pw. In § 4 we prove the multiplier theorem in the region Rw,θ, apart
from a technical lemma, Lemma 4.5, whose proof is deferred to § 5.

The letter C will always denote a positive constant, which may not be the same at
different occurrences, and may depend on any quantifier written, implicitly or explicitly,
before the relevant formula. If T is a bounded operator from a normed space X to a
normed space Y , we denote by |||T |||X;Y its operator norm from X to Y . In the case
where X = Y , we write simply |||T |||X instead of |||T |||X;X .
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2. Background material and preliminary results

Taylor [16] has invented a powerful method for proving multiplier results for a given
operator, T . His method has two basic ingredients: the finite propagation speed of T ,
and the existence of a uniformly bounded local L2-parametrix for T . In this section we
illustrate the prerequisites and the modifications of Taylor’s method needed in our case.

Classical energy estimates for the wave equation in R
d (see, for example, [15]) imply

that the operator Lϕ−be has finite propagation speed, i.e. for all functions f1, f2 ∈ Cc(X)
with supp fi ⊂ B(xi, ri),

〈cos(t
√

Lϕ − be)f1, f2〉 = 0 for all t < |x1 − x2| − r1 − r2.

Note that, since the cosine is an even entire function, the wave propagator cos(t
√

Lϕ − be)
is well defined even though the spectrum of the operator Lϕ − be has non-empty inter-
section with the negative semi-axis.

A noteworthy consequence of the finite propagation speed that will be of importance
to us is that if f is an even bounded Borel function such that the support of its Fourier
transform f̂ is contained in [−h, h], then the support of the Schwartz kernel of f(

√
Lϕ)

is contained in {(x, y) ∈ R
d × R

d : |x − y| � h}.
Now we concentrate on the second ingredient of Taylor’s method, i.e. the existence of

the local L2-parametrix for Lϕ. The existence of a local parametrix which is uniformly
bounded in L2(λϕ) is equivalent to ultracontractivity estimates for the semigroup gen-
erated by −Lϕ. It may be worth observing that the semigroup generated by −Lϕ need
not be ultracontractive, as simple examples show (just take ϕ(x) = ex on the real line).
To overcome this difficulty, it is convenient to reduce the analysis of Lϕ to that of a
Schrödinger operator. This idea was introduced in [6, § 4.7] to obtain Gaussian estimates
of the heat kernel.

Let U2 : L2(λ) → L2(λϕ) be the isometry defined by

U2f = ϕ−1/2f.

A simple computation shows that

U−1
2 LϕU2 = H,

where
H = −∆ + V ϕ

is the Schrödinger operator with potential

V ϕ =
1
2

∆ϕ

ϕ
− 1

4
|∇ϕ|2

ϕ2 .

Note that, by assumption (1.3), the potential V ϕ is bounded from below by −κ.
Clearly, the spectra of Lϕ on L2(λϕ) and of H on L2(λ) coincide. Moreover, if m is a

bounded Borel function on σ(Lϕ), then m(Lϕ) = U2m(H)U−1
2 .

Note also that the operator H has the finite speed of propagation property [15].
Now we prove the existence of a local L2-parametrix for the operator H.
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Proposition 2.1. Let � be the least even integer greater than 1
4d. There then exist

two even functions F1 and F2 and a constant C such that

(i) I = F1(H)H� + F2(H),

(ii) the operators Fj(H) are integral operators with kernels kj(x, y) with respect to the
Lebesgue measure which are supported in {(x, y) : |x − y| � 1} and satisfy the
inequalities

sup
x

‖kj(x, ·)‖L2(λ) � C, j = 1, 2,

(iii) if the operator (I+H)�m(H) is bounded on L2(λ), then m(H) is an integral operator
whose kernel with respect to the Lebesgue measure λ is

H�m(H)k1(x, ·) + m(H)k2(x, ·).

Proof. Let ψ be an even function in C∞
c (R) supported in [−�−1, �−1], such that∫

ψ(t) dt = 1. Denote by ψ̌ its inverse Fourier transform. The identity

1 = (1 − ψ̌(λ) + ψ̌(λ))�

=
(

1 − ψ̌(λ)
λ

)�

λ� +
�∑

j=1

Cj,�ψ̌(λ)j

= F1(λ)λ� + F2(λ)

holds for suitable constants Cj,�. The functions Fj , j = 1, 2 are even entire functions and
satisfy

(1 + |λ|)�|Fj(λ)| � C for all λ ∈ R, j = 1, 2. (2.1)

Moreover, their Fourier transforms F̂j are supported in [−1, 1]. By the spectral theorem

I = F1(H)H� + F2(H). (2.2)

The operator (I + H)−� maps L2(λϕ) to the bounded continuous functions by [14,
Theorem B.3.3]. Thus, the same is true of the operators Fj(H), because Fj(H) =
(I + H)−�(I + H)�Fj(H), and (I + H)�Fj(H) is bounded on L2(λϕ) since

|||Fj(H)|||L2(λϕ) � C sup
λ�0

(1 + |λ|)�|Fj(λ)| � C.

Hence, by the Dunford–Pettis theorem, the operator Fj(H) has a kernel kj(x, y) such
that

sup
x

‖kj(x, ·)‖L2(λ) = |||Fj(H)|||L2(λ);L∞(λ) � C. (2.3)

Moreover, supp kj(x, ·) ⊂ B(x, 1) because F̂j , j = 1, 2, is supported in [−1, 1] and H has
the finite speed of propagation property.
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Let f be a function in L2(λ). By (2.2),

m(H)f(x) = F1(H)H�m(H)f(x) + F2(H)m(H)f(x)

=
∫

k1(x, y)H�m(H)f(y) dλϕ(y) +
∫

k2(x, y)m(H)f(y) dλϕ(y)

= 〈H�m(H)f, k̄1(x, ·)〉 + 〈m(H)f, k2(x, ·)〉,

where 〈· , ·〉 denotes the inner product in L2(λ). Taking the adjoints of the operators
H�m(H) and m(H) and using the fact that the spectral projections of H commute with
complex conjugation, we see that the kernel of m(H) is

m̄(H)H�k̄1(x, ·) + m̄(H)k̄1(x, ·) = m(H)H�k1(x, ·) + m(H)k1(x, ·).

This concludes the proof of the proposition. �

The last result of this section concerns estimates of the eigenfunctions and of the
spectral projections of H. We shall denote by Π the projection-valued measure associated
with the spectral resolution of the identity {Pλ}λ∈R of Lϕ. Similarly, we shall denote
by {P̃λ}λ∈R the spectral resolution of the identity of H and by Π̃ the corresponding
projection-valued measure on R. Thus, if a and b are numbers such that a < b, Π̃(a,b] is
just P̃b − P̃a. For simplicity, we shall write Π̃a instead of Π̃{a}.

Lemma 2.2. Let E be an eigenvalue of H such that E < be. Then, for every
A <

√
be − E, there exists a constant C such that

(i) if ψ is an eigenfunction of H with eigenvalue E, then

|ψ(x)| � Ce−A|x| for all x ∈ R
d;

(ii) if f is a function in L2(λ) with support in B(z, 1), then
( ∫

|x−z|�r

|Π̃Ef(x)|2 dλ(x)
)1/2

� C‖f‖L2(λ)e−Arr(d−1)/2 for all r ∈ R
+.

Proof. Statement (i) is a classical result for Schrödinger operators with potential
bounded from below [1].

To prove (ii), let ψ be an eigenfunction of H with eigenvalue E. Then by (i) and
Schwarz’s inequality,

|〈f, ψ〉ψ(x)| =
∣∣∣∣
∫

ψ(x)ψ(y)f(y) dλ(y)
∣∣∣∣

� C

∫
|y−z|�1

e−A|x−y||f(y)| dλ(y)

� C‖f‖L2(λ)

( ∫
|y−z|�1

e−2A|x−y| dλ(y)
)1/2

� C‖f‖L2(λ)e−A|x−z|.
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Thus,
( ∫

|x−z|�r

|〈f, ψ〉ψ(x)|2 dλ(x)
)1/2

� C‖f‖L2(λ)

( ∫
|x−z|�r

e−2A|x−z| dλ(x)
)1/2

� ‖f‖L2(λ)e−Arr(d−1)/2.

To conclude the proof of (ii) it suffices to observe that the integral kernel of the projection
Π̃E is

dE∑
j=1

ψj(x)ψj(y),

where {ψj : j = 1, . . . , dE} is an orthonormal basis of the E-eigenspace. �

3. Functional calculus on parabolic regions

In this section we shall prove a multiplier theorem for functions which are bounded and
holomorphic and satisfy Mihlin-type conditions in a parabolic region. For each w in R

+

we consider the strip
Σw = {z ∈ C : |Im z| < w}.

Denote by Φ the function Φ(z) = z2 + be. The function Φ maps the strip Σw onto the
parabolic region Pw, where

Pw =
{

x + iy ∈ C : x >
y2

4w2 − w2
}

+ be.

Suppose that m is a function defined on Pw. Denote by mΦ the function defined on Σw by

mΦ(z) = (m ◦ Φ)(z) for all z ∈ Σw.

The space of bounded holomorphic functions in a region Ω of the complex plane will be
denoted by H∞(Ω). For each w > 0 and for each non-negative integer L we denote by
XL

w the space of all functions f in H∞(Pw) for which there exists a constant C such that

(1 + |ζ|)�|D�f(ζ)| � C for all ζ ∈ Pw and all � ∈ {0, 1, . . . , L}, (3.1)

which is endowed with the norm

‖f‖XL
w

= inf{C : (3.1) holds}.

Theorem 3.1. Assume that the function ϕ satisfies (1.2) and (1.3). Suppose that p is
in [1,∞), that w > β|1/p−1/2| and that L is an integer greater than or equal to d/2+5.
Assume that m is a function defined on σ(Lϕ) ∪ Pw whose restriction to Pw is in XL

w .
The following hold.

(i) If p is equal to 1, then m(Lϕ) extends to an operator of weak type 1 and of strong
type q for all q in (1,∞), and there exists a constant C such that, for every f

in L1(λϕ),

λϕ({x ∈ R
d : m(Lϕ)f(x) > t}) � C(‖m‖∞ + ‖m‖XL

w
)
‖f‖L1(λ)ϕ

t
for all t ∈ R

+.
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(ii) If p is in (1,∞), then m is a spectral multiplier of Lq(λϕ) for Lϕ for all q in [p, p′]
and there exists a constant C such that

|||m(Lϕ)|||Lq(λϕ) � C(‖m‖∞ + ‖m‖XL
w
).

Roughly speaking, to prove Theorem 3.1 we would like to use the functional calculus

m(Lϕ) = mΦ(
√

Lϕ − be) = (2π)−1/2
∫ ∞

0
m̂Φ(t) cos(t

√
Lϕ − be) dt, (3.2)

where m̂Φ denotes the Fourier transform of the restriction of mΦ to the real axis. Hence,
our approach to the proof of Theorem 3.1 follows closely that of Taylor for the Laplace–
Beltrami operator L on a Riemannian manifold [16]. Note, however, that Taylor’s func-
tional calculus is based on the wave propagator of the non-negative operator L−b, where
b is the bottom of the spectrum of L. Thus, the operator cos(t

√
L − b) is uniformly

bounded on L2. In our case |||cos(t
√

Lϕ − be)|||L2(λϕ) = cosh(t
√

be − b) grows exponen-
tially as t → ∞ and this growth is not matched by the decay of m̂Φ(t) when m is in
XL

w , as we shall see in Lemma 3.2 below. Thus, in general, the integral in (3.2) does not
converge in the norm of bounded operators on L2(λϕ) and we shall have to estimate
separately the contribution to m(Lϕ) from the eigenvalues of Lϕ below be − w2.

We begin by estimating the decay of the Fourier transform m̂Φ, when m is in XL
w .

Lemma 3.2. Suppose that m is in XL
w for some w in R

+ and some integer L � 2.
Then we can write mΦ = mΦ,a + mΦ,b, where

(i) m̂Φ,a has support in [−1, 1] and

|Dk(mΦ,a)(λ)| � C‖m‖XL
w
(1 + |λ|)−k for all λ ∈ R, k ∈ {0, 1, . . . , L}, (3.3)

(ii) m̂Φ,b(t) = 0 for |t| � 1/2 and

|Dkm̂Φ,b(t)| � C‖m‖XL
w
(1+|t|)−Le−w|t| for all t ∈ R, k ∈ {0, 1, . . . , L−1}. (3.4)

Proof. Let ω be an even smooth function supported in [−1, 1] such that ω = 1 in
[−1/2, 1/2], and define mΦ,a = mΦ � ω̌, where � denotes convolution on the real line and ω̌

is the inverse Fourier transform of ω. Then m̂Φ,a is supported in [−1, 1] and estimate (3.3)
is a straightforward consequence of the fact that the restriction of mΦ to the real line
satisfies the estimates

(1 + |λ|)�|D�mΦ(λ)| � C‖m‖XL
w

for all λ ∈ Σw and all � ∈ {0, 1, . . . , L},

and ω̌ is a Schwartz function. The proof of (ii) follows from the fact that m̂Φ,b =
m̂Φ(1 − ω) and the estimate

|Dkm̂Φ(t)| � C‖m‖XL
w
|t|−Le−w|t| for all t ∈ R \ {0}, k ∈ {0, 1, . . . , L − 1},

proved in [10, Lemma 5.4]. �
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Now, if m is a function defined on σ(Lϕ) ∪ Pw whose restriction to Pw is in XL
w for

some L � 3 and λ � be − w2, we may write

m(λ) = mΦ(
√

λ − be)

= (mΦ,a)(
√

λ − be) + (2π)−1/2
∫ ∞

1/2
m̂Φ,b(t) cos(t

√
λ − be) dt. (3.5)

Note that mΦ,a(
√

λ − be) is well defined for all complex λ because mΦ,a is an even entire
function, and that the integral is absolutely convergent by (3.4).

Recall that we denote by Π the projection-valued measure on R associated with the
spectral resolution of the identity {Pλ}λ∈R.

Denote by I1 and I2 the intervals [0, be − w2] and (be − w2,∞), respectively, and let
E1, E2, . . . , Er be the eigenvalues of Lϕ in I1. Define the operator M(Lϕ) by setting

M(Lϕ) = (2π)−1/2
∫ ∞

1/2
m̂Φ,b(t) cos(t

√
Lϕ − be)ΠI2 dt. (3.6)

Note that, since |||cos(t
√

Lϕ − be)ΠI2 |||L2(λϕ) � cosh(|t|w), the integral converges and
defines a bounded operator on L2(λϕ) by (3.4). By the spectral theorem and (3.5),

m(Lϕ) = m(Lϕ)ΠI1 + m(Lϕ)ΠI2

=
r∑

j=1

m(Ej)ΠEj
+

∫ ∞

be−w2
m(λ) dPλ

=
r∑

j=1

m(Ej)ΠEj
+ mΦ,a(

√
Lϕ − be)ΠI2 + M(Lϕ). (3.7)

We shall estimate the norm on Lp(λϕ) of each summand separately. This will be done in
Propositions 3.3, 3.4 and 3.5 below. The proof of Theorem 3.1 will be a straightforward
consequence of these three propositions.

Proposition 3.3. Suppose that w > β|1/p−1/2| and let E1, E2, . . . , Er be the eigen-
values � be − w2 of Lϕ. Then, for every q in [p, p′],

∣∣∣∣
∣∣∣∣
∣∣∣∣

r∑
j=1

m(Ej)ΠEj

∣∣∣∣
∣∣∣∣
∣∣∣∣
Lq(λϕ)

� C‖m‖∞.

Proof. Let ψ be an eigenfunction of Lϕ with eigenvalue E � be − w2. Then ψ =
ϕ−1/2ψ̃, where ψ̃ is an eigenfunction of H with the same eigenvalue. By Lemma 2.2
and (1.2), for every A <

√
be − E there exists a constant C such that

‖ψ‖q
Lq(λϕ) � C

∫
Rd

ϕ(x)1−q/2e−Aq|x| dλ(x)

� C

∫
Rd

e−εq|x| dλ(x),
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where ε = A − β|1/q − 1/2| is positive for all q in [p, p′] when A is sufficiently close to√
be − E. Thus, ψ is in Lq(λϕ) for all q in [p, p′].
To conclude the proof, it suffices to observe that the integral kernel of the projection

ΠE is
dE∑
j=1

ψj(x)ψj(y),

where {ψj : j = 1, . . . , dE} is an orthonormal basis of the E-eigenspace. Hence,

|||ΠE |||Lq(λϕ) �
∑

j

‖ψj‖Lq(λϕ)‖ψj‖Lq′ (λϕ),

by Hölder’s inequality. �

Proposition 3.4. Suppose that L is an integer greater than d/2 + 2 and that w is a
positive number. Denote by I2 the interval (be − w2,∞). Let m be a function defined on
σ(Lϕ) ∪ Pw whose restriction to Pw is in XL

w .

(i) If w > β/2, then the operator mΦ,a(
√

Lϕ − be)ΠI2 is of weak type 1 and there
exists a positive constant C such that, for all f in L1(λϕ),

λϕ({x ∈ R
d : |mΦ,a(

√
Lϕ − be)ΠI2f(x)| > t}) � C‖m‖XL

w

‖f‖L1(λϕ)

t
∀t ∈ R

+.

(ii) If w > β|1/p − 1/2| for some p in (1,∞), then mΦ,a(
√

Lϕ − be)ΠI2 is bounded on
Lp(λϕ) and

|||mΦ,a(
√

Lϕ − be)ΠI2 |||Lp(λϕ) � C‖m‖XL
w
.

Proof. We shall prove only the weak-type estimate (i), because the proof of (ii) is
similar. By Proposition 3.3, the projection

ΠI2 = I −
r∑

j=1

ΠEj

is bounded on L1(λϕ). Hence, it is sufficient to prove that the operator mΦ,a(
√

Lϕ − be)
is of weak type 1. To simplify notation for the duration of this proof we shall write A
instead of mΦ,a(

√
Lϕ − be) and B instead of mΦ,a(

√
H − be). Recall that U−1

2 AU2 = B
because U−1

2 LϕU2 = H. First we show that the operator B satisfies the following weak-
type estimate: there exists a constant C such that, for all f in L1(λ),

λ({x ∈ R
d : |Bf(x)| > t}) � C‖m‖XL

w

‖f‖L1(λ)

t
for all t ∈ R

+. (3.8)

Observe that, by assumption (1.3), the potential V ϕ is bounded from below by −κ.
Therefore, the Schrödinger operator HV ϕ+κ, formally defined by −∆ + V ϕ + κ, has non-
negative potential. Since the function mΦ,a is even and entire, the function F defined
by

F (ζ) = mΦ,a(
√

ζ − be − k) for all ζ ∈ C \ (−∞, κ + be]
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extends to an entire function, still denoted by F . Note that

B = F (HV ϕ+κ).

By (3.3), the function F satisfies

|DkF (λ)| � C‖m‖XL
w
(1 + λ)−k for all λ ∈ [be + κ + 1,∞) and all k ∈ {0, . . . , L}.

Since F is entire, the same estimate holds for all λ in [0,∞). Now [8, Theorem 1] implies
the desired weak-type inequality (3.8).

Next we show that (3.8) implies the required weak-type 1 estimate for A =
mΦ,a(

√
Lϕ − be). Let {Bj} be a sequence of balls of radius 1 which cover R

d and such
that, for some constant N , ∑

j

12Bj � N,

where 2Bj denotes the ball with the same centre of Bj and twice the radius. By assump-
tion (1.2) there exists a constant C such that

C−1 � ϕ(x)
ϕ(y)

� C for all x, y ∈ 2Bj and all j ∈ N. (3.9)

In other words, the density ϕ is essentially constant in each of the balls Bj , uniformly in j.
By Lemma 3.2 the Fourier transform of mΦ,a has support in [−1, 1]. Since the operator
Lϕ − be has the finite propagation speed property, the Schwartz kernel of the operator A
is supported in the set {(x, y) ∈ R

d × R
d : |x − y| � 1}. Thus, if f is a smooth function

with compact support, the values of Af on Bj depend only on the values of f on 2Bj ,
i.e.

1Bj
Af = 1Bj

A(f12Bj
).

Hence,

λϕ({|Af(x)| > t}) �
∑

j

λϕ({x ∈ Bj : |Af(x)| > t})

=
∑

j

λϕ({x ∈ Bj : |A(f12Bj )(x)| > t}). (3.10)

Now, if xj denotes any point in Bj , then

λϕ({x ∈ Bj : |A(f12Bj )(x)| > t}) =
∫

Bj∩{|A(f12Bj
)|>t}

ϕ(x) dλ(x)

� Cϕ(xj)λ({x ∈ Bj : |A(f12Bj )(x)| > t}) (3.11)

by (3.9). Observe that, since A = U2BU−1
2 ,

λ({x ∈ Bj : |A(f12Bj )(x)| > t}) = λ({x ∈ Bj : |B(f12Bj ϕ
1/2)(x)| > tϕ(x)1/2})

� λ({x ∈ Bj : |B(f12Bj ϕ
1/2)(x)| > Ctϕ(xj)1/2}).
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Now, (3.8) implies that, for all t in R
+ and f in L1(λ),

λ({x ∈ Bj : |A(f12Bj )(x)| > t}) � C‖m‖XL
w

‖f12Bj
ϕ1/2‖L1(λ)

t
√

ϕ(xj)

� C‖m‖XL
w

‖f12Bj
‖L1(λ)

t
. (3.12)

By combining (3.10), (3.11) and (3.12) we obtain that

λϕ({|Af | > t}) � C
‖m‖XL

w

t

∑
j

ϕ(xj)‖f12Bj ‖L1(λ)

� C
‖m‖XL

w

t
‖f‖L1(λϕ).

This concludes the proof of the proposition. �

To conclude the proof of the multiplier theorem in the parabolic region Pw, it remains
to estimate the norm on Lp(λϕ) of the operator

M(Lϕ) = (2π)−1/2
∫ ∞

1/2
m̂Φ,b(t) cos(t

√
Lϕ − be)ΠI2 dt.

Proposition 3.5. Assume that 1 � p < 2 and let w, L and m be as in Theorem 3.1.
Then the operator M(Lϕ) is bounded on Lq(λϕ) for every q in [p, p′] and there exists a
constant C such that

|||M(Lϕ)|||Lq(λϕ) � C‖m‖XL
w
.

Proof. By standard duality and interpolation arguments it is sufficient to prove that
M(Lϕ) is bounded on Lp(λϕ). Let Up : Lp(λ) → Lp(λϕ) be the isometry defined by

Upf = ϕ−1/pf.

Then the operator M(Lϕ) is bounded on Lp(λϕ) if and only if

U−1
p M(Lϕ)Up = U−1

p U2M(H)U−1
2 Up

is bounded on Lp(λ). Moreover, the norm of the operator M(Lϕ) on Lp(λϕ) coincides
with the norm of U−1

p U2M(H)U−1
2 Up on Lp(λ).

Note that

M(H) = (2π)−1/2
∫ ∞

1/2
m̂Φ,b(t) cos(t

√
H − be)Π̃I2 dt, (3.13)

where Π̃ is the projection-valued measure associated with the self-adjoint operator H.
Let � be the least even integer greater than 1

4d. Then

(I + H)�M(H) = (2π)−1/2
∫ ∞

1/2
(1 + be − D2

t )�m̂Φ,b(t) cos(t
√

H − be)Π̃I2 dt.
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Since |||cos(t
√

H − be)Π̃I2 |||L2(λ) � Cewt and L > 1
2d + 5, the estimates (3.4) imply that

the operator (I +H)�M(H) is bounded on L2(λ). Thus, by Proposition 2.1, the operator
M(H) is an integral operator whose kernel with respect to the Lebesgue measure is the
function

kM (x, y) = H�M(H)k1(x, ·) + M(H)k2(x, ·), (3.14)

where kj(x, ·), j = 1, 2, are two functions in L2(λ) with support in B(x, 1) such that
supx ‖kj(x, ·)‖L2(λ) < ∞. To prove that U−1

p U2M(H)U−1
2 Up is bounded on Lp(λ) it

suffices to show that it is bounded on L1(λ) and on L∞(λ), i.e. that its kernel
(

φ(x)
φ(y)

)1/p−1/2

kM (x, y)

satisfies the estimates

sup
y

∫ (
φ(x)
φ(y)

)1/p−1/2

|kM (x, y)| dλ(x) < ∞,

sup
x

∫ (
φ(x)
φ(y)

)1/p−1/2

|kM (x, y)| dλ(y) < ∞.

Note that ϕ(x)/ϕ(y) and ϕ(y)/ϕ(x) are both bounded by Ceβ|x−y| by (1.2). Since the
adjoint M(H)∗ is the operator obtained by replacing m by m(z) = m(z̄) in (3.13) and
the map m �→ m is an isometry of XL

w , it suffices to prove that

sup
x

∫
eβ(1/p−1/2)|x−y||kM (x, y)| dλ(y) < ∞.

To estimate this integral we divide R
d into shells

Ax(j) = {y ∈ R
d : j � |x − y| < j + 1}

and we observe that∫
eβ(1/p−1/2)|x−y||kM (x, y)| dλ(y) =

∞∑
j=0

∫
Ax(j)

eβ(1/p−1/2)|x−y||kM (x, y)| dλ(y)

� C

∞∑
j=0

eβ(1/p−1/2)j‖kM (x, ·)‖L2(Ax(j)), (3.15)

by Schwarz’s inequality. By (3.14),

‖kM (x, ·)‖L2(Ax(j)) � ‖H�M(H)k1(x, ·)‖L2(Ax(j)) + ‖M(H)k2(x, ·)‖L2(Ax(j)). (3.16)

By (3.13) we have

M(H)k2(x, ·) = (2π)−1/2
∫ ∞

1/2
m̂Φ,b(t) cos(t

√
H − be)Π̃I2k2(x, ·) dt, (3.17)

H�M(H)k1(x, ·) = (2π)−1/2
∫ ∞

1/2
(be − D2

t )�m̂Φ,b(t) cos(t
√

H − be)Π̃I2k1(x, ·) dt. (3.18)
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Moreover, by (3.4),

|m̂Φ,b(t)| + |(be − D2
t )�m̂Φ,b(t)| � C‖m‖XL

w
(1 + |t|)−Le−w|t| for all t ∈ R. (3.19)

We begin by estimating the second summand in the right-hand side of (3.16). As in [16]
we estimate the L2-norm on Ax(j) using the finite propagation speed property of H− be.
Note, however, that the operator cos(t

√
H − be)Π̃I2 in (3.17) is the wave propagator of

(H − be)Π̃I2 , which does not have finite speed of propagation. Thus, to be able to exploit
the property we write

cos(t
√

H − be)Π̃I2 = cos(t
√

H − be) −
r∑

i=1

cos(t
√

Ei − be)Π̃Ei , (3.20)

where E1 < E2 < · · · < Er � be − w2 are the eigenvalues of H to the left of I2 =
(be − w2,∞) and we split the integral in (3.17) into the sum of two integrals over the
intervals [1/2, j − 1] and [j − 1,∞). Using (3.20) and finite propagation speed, we get

∫ j−1

1/2
· · · dt|Ax(j)

=
∫ j−1

1/2
m̂Φ,b(t)

[
cos(t

√
H − be) −

r∑
i=1

cos(t
√

Ei − be)Π̃Ei

]
k2(x, ·) dt|Ax(j)

= −
∫ j−1

1/2
m̂Φ,b(t)

r∑
i=1

cos(t
√

Ei − be)Π̃Eik2(x, ·) dt|Ax(j).

Hence, by (3.19),

∥∥∥∥
∫ j−1

1/2
· · · dt

∥∥∥∥
L2(Ax(j))

� C‖m‖XL
w

r∑
i=1

∫ j−1

1/2

e−wt

(1 + t)L
cosh(t

√
be − Ei) dt‖Π̃Eik2(x, ·)‖L2(Ax(j))

� C‖m‖XL
w

r∑
i=1

∫ j−1

1/2
exp((

√
be − Ei − w)t) dt‖Π̃Ei

k2(x, ·)‖L2(Ax(j))

� C‖m‖XL
w

r∑
i=1

exp((
√

be − Ei − w)j)‖Π̃Ei
k2(x, ·)‖L2(Ax(j)).

Now, choose ε > 0 such that w > β(1/p − 1/2) + 2ε. By Lemma 2.2 (ii) there exists a
constant C such that

‖Π̃Eik2(x, ·)‖L2(Ax(j)) � C‖k2(x, ·)‖L2(λ) exp(−(
√

be − Ei − ε)j)

� C exp(−(
√

be − Ei − ε)j) for all i = 1, . . . , r,
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where the second inequality follows from Proposition 2.1 (ii). Thus,
∥∥∥∥
∫ j−1

1/2
· · · dt

∥∥∥∥
L2(Ax(j))

� C‖m‖XL
w
e−(w−ε)j

� C‖m‖XL
w
e−(β(1/p−1/2)+ε)j . (3.21)

Next we estimate the norm in L2(Ax(j)) of the integral over the interval [j−1,∞). Let
I3 denote the interval (be − ε,∞) and let Er+1 < Er+2 < · · · < Er+s be the eigenvalues
of H in I2 \ I3. Then

cos(t
√

H − be)Π̃I2 = cos(t
√

H − be)Π̃I3 +
s∑

i=1

cos(t
√

Er+i − be)Π̃Er+i
, (3.22)

and
|||cos(t

√
H − be)Π̃I3 |||L2(λ) � eεt for all t � 0.

Thus,∥∥∥∥
∫ ∞

j−1
· · · dt

∥∥∥∥
L2(Ax(j))

�
∫ ∞

j−1
|m̂Φ,b(t)||||cos(t

√
H − be)Π̃I3 |||L2(λ) dt‖k2(x, ·)‖L2(λ)

+
∫ ∞

j−1
|m̂Φ,b(t)|

s∑
i=1

cosh(t
√

be − Er+i) dt‖Π̃Er+ik2(x, ·)‖L2(Ax(j))

� C‖m‖XL
w

∫ ∞

j−1
e−wteεt dt

+ C‖m‖XL
w

s∑
i=1

∫ ∞

j−1
exp((

√
be − Er+i − w)t) dt exp(−(

√
be − Er+i − ε)j)

� C‖m‖XL
w
e−(w−ε)j

� C‖m‖XL
w
e−(β(1/p−1/2)+ε)j , (3.23)

where, as before, we have used (3.19) to estimate |m̂Φ,b(t)| and Lemma 2.2 (ii) to estimate
the norm of Π̃Er+i

k2(x, ·) in L2(Ax(j)).
Now, by (3.17) and estimates (3.21) and (3.23),

‖M(H)k2(x, ·)‖L2(Ax(j)) � C‖m‖XL
w
e−(β(1/p−1/2)+ε)j . (3.24)

A similar argument shows that the same estimate holds for ‖H�M(H)k1(x, ·)‖L2(Ax(j)).
Thus, by (3.15) and (3.16),

∫
eβ(1/p−1/2)|x−y||kM (x, y)| dλ(y) � C‖m‖XL

w

∞∑
j=1

e−εj � C‖m‖XL
w
.

This concludes the proof of the proposition. �
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4. Functional calculus in pencil-like regions

In order to state our main result we need more notation. Suppose that w is in R
+, that

θ is in (0, π) and that L is a non-negative integer. We denote by ZL
w,θ the space of all f

in H∞(Rw,θ) such that the quantity N(f), defined by

N(f) = max
�∈{0,1,...,L}

sup
ζ∈Rw,θ:|ζ|�1

|ζ|�|D�f(ζ)|, (4.1)

is finite. We endow ZL
w,θ with the norm

‖f‖ZL
w,θ

= ‖f‖∞ + N(f).

Remark 4.1. Observe that if f is in H∞(Rw′,θ′) and there exists a number r > 0
such that

max
�∈{0,1,...,L}

sup
ζ∈Rw′,θ′ :|ζ|�r

|ζ|�|D�f(ζ)| < ∞,

then f is in ZL
w,θ whenever w < w′ and θ < θ′.

Theorem 4.2. Assume that the function ϕ satisfies (1.2) and (1.3). Suppose that p

is in (1,∞), that w′ > β|1/p − 1/2|, that L is an integer > d/2 + 5, that be > 0 and
that θ′ > φ∗

p. If m is a function defined on σ(Lϕ) ∪ Rw,′θ′ and holomorphic in Rw,′θ′

whose restriction to Rw,θ is in ZL
w,θ, for some θ in (φ∗

p, θ
′) and w in (β|1/p − 1/2|, w′),

then m is a spectral multiplier of Lp(λϕ) for Lϕ. Furthermore, there exists a constant C,
independent of m, such that

|||m(Lϕ)|||Lp(λϕ) � C(‖m‖∞ + ‖m‖ZL
w,θ

).

We do not know whether functions in ZL
β|1/p−1/2|,φ∗

p
are Lp(λϕ) spectral multipliers

of Lϕ for some large integer L: we need to assume that m belongs to ZL
w,θ for some w >

β|1/p − 1/2| and θ > φ∗
p. By slightly decreasing both w and θ we may always assume

that m is in ZL
w,θ and is holomorphic and bounded in a region bigger than Rw,θ. It is

not restrictive to assume that such a bigger region is Rw′,θ′ for some w′ > β|1/p − 1/2|
and θ′ > φ∗

p.
It may be worth stating explicitly the following corollary.

Corollary 4.3. Assume that the function ϕ satisfies (1.2) and (1.3). Suppose that p

is in (1,∞) and that θ > φ∗
p. Assume also that be > 0. If m is defined on {0} ∪ Sθ and

belongs to H∞(Sθ), then m is an Lp(λϕ) spectral multiplier of Lϕ. Furthermore, there
exists a constant C, independent of m, such that

|||m(Lϕ)|||Lp(λϕ) � C‖m‖∞.

Proof. It is straightforward to check that the restriction of m to Rw,θ′ is in ZL
w,θ′

for any w in R
+, any integer L, and for all θ′ < θ. Furthermore, its norm in ZL

w,θ′ is
dominated by C‖m‖H∞(Sθ). Therefore, Theorem 4.2 applies whenever φ∗

p < θ′, and the
required result follows. �
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Remark 4.4. For each u in R, denote by mu the function defined on the closed right
half-plane as follows:

mu(0) = 0 and mu(z) = ziu for all z ∈ S̄π/2 \ {0}.

Corollary 4.3 applied to mu gives the following estimate: for every θ > φ∗
p there exists a

constant C, independent of u, such that

|||mu(Lϕ)|||Lp(λϕ) � Ceθ|u| for all u ∈ R.

In the case where log ϕ is an admissible weight in the sense of [9, § 4], the following
estimate from below holds [9, Theorem 5.2 (i)]:

Ceφ∗
p|u| � |||mu(Lϕ)|||Lp(λϕ) for all u ∈ R,

proving that the upper estimate above is almost optimal.

The idea of the proof of Theorem 4.2 is simple. Given m as in the statement of the
theorem, we write m = m0+m∞, where m∞ satisfies the hypotheses of Theorem 3.1, and
m0 is holomorphic and bounded outside a certain compact curve in the complex plane
whose support lies outside Sθ for some θ > φ∗

p. This decomposition is accomplished in
Lemma 4.5 below, except for a technical assumption that will be removed later.

Recall that Φ(z) = z2 + be and that mΦ denotes the composite function m ◦ Φ. We
denote by z− and z+ the two points in ∂Pw ∩ ∂Sθ with largest real part, and by t0 the
point in R

+ such that z− = Φ(−t0 + iw) and z+ = Φ(t0 + iw). Observe that the boundary
of Rw,θ is the union of the support of three curves ω0, ω− and ω+. The curve ω0 runs
from z+ to z− along the boundary of Rw,θ and ω+, ω− are the two arcs of parabola
from ∞ to z+ and from z− to ∞, respectively. We shall denote by ω∗

0 the support of the
curve ω0.

Lemma 4.5. Suppose that w is positive, that θ is in (0, π/2) and that L is a positive
integer. Let m be a function in CL(R̄w,θ \ {0}) ∩ H∞(Rw,θ). Assume, further that m

vanishes of order at least L + 1 at z− and z+, and that there exists a constant C such
that

|D�mΦ(x + iw)| � C(1 + |x|)−�

for |x| � t0 and for all � ∈ {0, 1, . . . , L}. Define

m0(z) =
1 + z

2πi

∫
ω0

m(ζ)
(ζ − z)(ζ + 1)

dζ for all z ∈ C \ ω∗
0 .

Then m = m0 + m∞, where m∞ is in XL
w , and there exists a constant C, independent

of m, such that
‖m∞‖XL

w
� C‖m‖ZL

w,θ
.

The proof of Lemma 4.5 is somewhat technical and will be deferred to the next section.
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The proof of Theorem 4.2 requires some information (contained in Lemma 4.6 below)
concerning the spectra of Lϕ and some related operators, which we now define.

It is well known that the operator −Lϕ generates a symmetric diffusion semigroup.
Therefore, the restriction of −Lϕ to Cc(Rd) is a closable operator on Lp(λϕ) for every p

in [1,∞) and its closure, which we denote by −Lϕ
p , is the generator of the semigroup on

Lp(λϕ). Note that Lϕ
2 = Lϕ and that all the semigroups {e−tLϕ

p : t � 0} are consistent,
i.e. they agree on Cc(Rd). We shall denote by σ(Lϕ

p ), σd(Lϕ
p ) and ρ(Lϕ

p ) the spectrum,
the discrete spectrum and the resolvent of Lϕ

p , respectively.

Lemma 4.6. Suppose that p is in [1,∞), and denote by βp the number β|1/p − 1/2|.
Then σ(Lϕ

p ) is contained in S̄φ∗
p

and, for every θ in (φ∗
p, π),

sup
ζ∈C\Sθ

|ζ||||(ζI − Lϕ
p )−1|||Lp(λϕ) < ∞. (4.2)

Moreover, for p in (1,∞), the following hold:

(i) if 0 ∈ ρ(Lϕ), then 0 ∈ ρ(Lϕ
p );

(ii) if 0 ∈ σd(Lϕ), then 0 ∈ σd(Lϕ
p ) and the spectral projection Π0 onto the kernel of

Lϕ is bounded on Lp(λϕ);

(iii) the spectrum of Lϕ
p is contained in σd(Lϕ) ∪ (S̄φ∗

p
∩ P̄βp). Moreover, if λ is in the

discrete spectrum of Lϕ and λ is not in P̄βp
, then the spectral projection Πλ is

bounded on Lp(λϕ) and λ belongs to the discrete spectrum of Lϕ
p .

Proof. By [12] the semigroup generated by −Lϕ
p on Lp(λϕ) is bounded and holomor-

phic in the sector Sπ/2−φ∗
p
. Hence, the spectrum of Lϕ

p is contained in the closed sector
S̄φ∗

p
and estimate (4.2) holds.

Now we prove (i). Suppose first that p is in (1, 2). Since 0 is in the resolvent set of
Lϕ, the bottom b of σ(Lϕ) is positive. By spectral theory |||e−tLϕ |||L2(λϕ) � e−bt for all
positive t. Recall that |||e−tLϕ

1 |||L1(λϕ) � 1 for all positive t. Since the semigroups generated
by Lϕ

1 on L1(λϕ) and by Lϕ on L2(λϕ) are consistent, an interpolation argument shows
that |||e−tLϕ

p |||Lp(λϕ) � e−2b(1−1/p)t for all positive t. Therefore, σ(Lϕ
p ) is contained in the

half-plane {z : Re z � 2b(1 − 1/p)} by abstract semigroup theory. This proves (i) for
1 < p < 2.

The result for p > 2 follows by symmetry and duality.

Next we prove (ii). Assume that 0 is in the discrete spectrum of Lϕ. By (1.1) the
kernel of Lϕ is the space C1 of constant functions. Thus, λϕ is a finite measure and the
spectral projection Π0 on the kernel of Lϕ is bounded on Lp(λϕ) for all p in [1,∞). Define
Lp

0(λ
ϕ) = (I − Π0)Lp(λϕ). Clearly, Lp

0(λ
ϕ) is the closed subspace of all functions f in

Lp(λϕ) such that
∫

f dλϕ = 0 and Lp(λϕ) = C1 ⊕ Lp
0(λ

ϕ). Note that both subspaces are
Lϕ

p -invariant. Denote by Lϕ
p,0 the restriction of Lϕ

p to Lp
0(λ

ϕ). Then Lϕ
p = 0 ⊕ Lϕ

p,0 and
therefore σ(Lϕ

p ) = {0} ∪ σ(Lϕ
p,0). Next we show that 0 ∈ ρ(Lϕ

2,0). Indeed, it is well known
that all the isolated points in the spectrum of a self-adjoint operator on a Hilbert space
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are semisimple eigenvalues. Therefore, 0 is a semisimple eigenvalue for the operator Lϕ

on L2(λϕ). This means that

L2(λϕ) = Ker (Lϕ) ⊕ Ran (Lϕ) .

Since obviously Lϕ
2,0 is injective and L2

0(λ
ϕ) = Ran (Lϕ) = Ran

(
Lϕ

2,0

)
, 0 belongs to the

resolvent set of Lϕ
2,0, whence the bottom of the spectrum b0 of Lϕ

2,0 is positive. Thus,

|||exp(−tLϕ
2,0)|||L2

0(λϕ) � e−b0t.

Since

|||exp(−tLϕ
1,0)|||L1

0(λϕ) � C,

the same interpolation argument used in the proof of (i) shows that 0 is in ρ(Lϕ
p,0) for

every p in (1,∞). Thus, 0 is an isolated eigenvalue of Lϕ
p . Hence, Ker

(
Lϕ

p

)
⊂ Π0(Lp(λϕ)),

and 0 has finite multiplicity.

Finally, we prove (iii). We already know that the spectrum of Lϕ
p is contained in S̄φ∗

p
.

Thus, it remains to show that if λ does not belong to σd(Lϕ) ∪ (P̄βp
), then λ is in the

resolvent set of Lϕ
p .

Consider the function defined by rλ(z) = (λ − z)−1. Then rλ(Lϕ) = (λI − Lϕ)−1

by the spectral theorem. Observe that rλ is in XL
w for some w > βp = β|1/p − 1/2|

and for all positive integers L. Then Theorem 3.1 implies that for every p in (1,∞) the
operator rλ(Lϕ) extends from L2(λϕ) ∩ Lp(λϕ) to a bounded operator on Lp(λϕ). Thus,
λ is also in the resolvent set of Lϕ

p by [2, Proposition 2.3], and (λ − Lϕ
p )−1 = rλ(Lϕ) on

L2(λϕ) ∩ Lp(λϕ), as required.
Next, assume that λ is a point in the discrete spectrum of Lϕ which lies outside

P̄βp
. Since σ(Lϕ

p ) ⊂ σd(Lϕ) ∪ P̄βp
, there is a neighbourhood N of λ such that N \ {λ}

is contained in ρ(Lϕ) ∩ ρ(Lϕ
p ). Let γ be a closed simple curve which surrounds λ in N

counterclockwise and is bounded away from P̄βp
. Then, by functional calculus,

Πλ =
1

2πi

∫
γ

(zI − Lϕ)−1 dz.

Since the support γ∗ of γ is compact and contained in ρ(Lϕ
p ),

sup
z∈γ∗

|||(zI − Lϕ)−1|||Lp(λϕ) < ∞.

Hence, the spectral projection Πλ extends to a bounded operator on Lp(λϕ). Therefore,
the finite-dimensional space Πλ(L2(λϕ) ∩ Lp(λϕ)) is dense both in ΠλL2(λϕ) and in
ΠλLp(λϕ). This shows that ΠλLp(λϕ) = ΠλL2(λϕ). Thus, λ is an isolated eigenvalue of
finite multiplicity of Lϕ

p . �

Proof of Theorem 4.2. We observe that m is holomorphic in a neighbourhood of
R̄w,θ \ {0} and satisfies Mihlin-type conditions of the form (4.1) for all ζ in R̄w,θ such
that |ζ| � t0/2.
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We claim that it is not restrictive to assume that m vanishes of order at least L + 1
at z±.

Indeed, we may write m = gh, where

h(z) =
(

z + 1
z − z+

)L+1(
z + 1
z − z−

)L+1

and g = m/h. Clearly, g vanishes of order at least L + 1 at z± and satisfies the same
assumptions as m. By the spectral theorem,

h(Lϕ) = (1 + Lϕ)L+1(1 + Lϕ)L+1(Lϕ − z+)−(L+1)(Lϕ − z−)−(L+1).

By Lemma 4.6 the spectrum of Lϕ
p is contained in the closed sector S̄φ∗

p
. Since the points

z± are on the boundary of the sector Sθ and θ > φ∗
p, they are in ρ(Lϕ

p ), and hence the
operator h(Lϕ) is bounded on Lp(λϕ). Therefore, it suffices to show that the operator
g(Lϕ) is bounded on Lp(λϕ). This proves the claim.

Henceforth, we assume that the function m vanishes of order L + 1 at z±. We need to
consider two cases, depending on whether be − w2 is positive or not.

Case 1 (be − w2 > 0). In this case the support ω∗
0 of the path ω0 is the union of

two segments on ∂Sθ and a compact arc of parabola on ∂Pw. By Lemma 4.6 (iii), ω∗
0 is

bounded away from σ(Lϕ
p ) unless a point of σd(Lϕ) lies on ω∗

0 , in which case we may
always modify ω∗

0 by choosing a slightly smaller w, so that the modified ω∗
0 is bounded

away from σ(Lϕ
p ). Hence,

sup
ζ∈ω∗

0

|||(ζI − Lϕ)−1|||Lp(λϕ) < ∞. (4.3)

By Lemma 4.5 we may write m(Lϕ) = m0(Lϕ) + m∞(Lϕ), where

m0(z) =
1 + z

2πi

∫
ω0

m(ζ)
ζ + 1

(ζ − z)−1 dζ,

and m∞ is in XL
w . The operator m∞(Lϕ) is bounded on Lp(λϕ) by Theorem 3.1. Using

the identity (1 + z)(ζ − z)−1 = −1 + (ζ + 1)(ζ − z)−1, we see that

m0(z) = cm +
1

2πi

∫
ω0

m(ζ)
ζ − z

dζ, (4.4)

where

cm = − 1
2πi

∫
ω0

m(ζ)(1 + ζ)−1 dζ.

Now (4.3) implies that
|||m0(Lϕ)|||Lp(λϕ) � C‖m‖∞.

This concludes the proof of the theorem when be − w2 > 0.

https://doi.org/10.1017/S0013091506001234 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091506001234


602 A. Carbonaro, G. Mauceri and S. Meda

Case 2 (be − w2 � 0). In this case ω∗
0 is the union of two segments on ∂Sθ joining

at 0.
If 0 is in the resolvent set of Lϕ, then 0 is also in the resolvent set of Lϕ

p by Lemma 4.6 (i)
and again ω∗

0 is bounded away from σ(Lϕ
p ). Hence, we obtain the desired conclusion by

arguing as in the previous case.
Now suppose that 0 is in σ(Lϕ). First we show that there exists a constant C such

that
|||m(Lϕ + εI)|||Lp(λϕ) � C(‖m‖∞ + ‖m‖ZL

w,θ
) for all ε ∈ (0, 1]. (4.5)

According to Lemma 4.5 we may write

m(Lϕ + εI) = m0(Lϕ + εI) + m∞(Lϕ + εI).

Define (τεm∞)(λ) = m∞(λ + ε). It is straightforward to check that there exists a con-
stant C such that ‖τεm∞‖XL

w
� C‖m∞‖XL

w
for every ε ∈ (0, 1]. Therefore, by Theo-

rem 3.1 and Lemma 4.5,

|||m∞(Lϕ + εI)|||Lp(λϕ) � C‖m∞‖ZL
w,θ

for all ε ∈ (0, 1]. (4.6)

It remains to estimate |||m0(Lϕ + εI)|||Lp(λϕ). Denote by ωε the path defined by ωε(t) =
ω0(t) − ε. Since be is positive by assumption, and 0 is in the spectrum of Lϕ, 0 is in
the discrete spectrum of Lϕ. Hence, by Lemma 4.6 (iii), the point 0 is in the discrete
spectrum of Lϕ

p . Therefore, there exist η > 0 such that σ(Lϕ
p ) \ {0} is contained in

{z ∈ C : |arg z| � φ∗
p, |z| � η}. It is straightforward to check that for every ε in (0, 1]

there exists a path γε from z− − ε to z+ − ε whose support γ∗
ε lies entirely in ρ(Lϕ

p ) and
is bounded away from σ(Lϕ

p ) uniformly in ε (we may, and will, also assume that ωε + γε

is homotopic to a circle that surrounds the origin). Hence, there exists a constant C such
that

max
ζ∈γ∗

ε

|||(ζI − Lϕ
p )−1|||Lp(λϕ) � C for all ε ∈ (0, 1]. (4.7)

By (4.4),

m0(z + ε) = cm +
1

2πi

∫
ω0

m(ζ)
ζ − z − ε

dζ

= cm +
1

2πi

∫
ωε

m(ζ + ε)
ζ − z

dζ

= cm +
1

2πi

∫
ωε+γε

m(ζ + ε)
ζ − z

dζ − 1
2πi

∫
γε

m(ζ + ε)
ζ − z

dζ

for all z in the spectrum of Lϕ. Now, by spectral theory,

m0(Lϕ + εI) = cmI + nε(Lϕ) − 1
2πi

∫
γε

m(ζ + ε)(ζI − Lϕ) dζ,

where the function nε is defined by

nε(z) =
1

2πi

∫
ωε+γε

m(ζ + ε)(ζ − z)−1 dζ.
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Note that nε(z) is equal to m(z +ε) if z is inside the curve ωε +γε and to 0 if z is outside
ωε + γε. Therefore, nε(Lϕ) = m(ε)Π0, and the boundedness of Π0 on Lp(λϕ) implies
that

sup
ε∈(0,1]

|||nε(Lϕ)|||Lp(λϕ) � ‖m‖∞.

Then, using (4.7), we obtain that

|||m0(Lϕ + εI)|||Lp(λϕ) � C‖m‖∞ for all ε ∈ (0, 1],

which, combined with (4.6), proves (4.5).
Now, (4.5) implies that

|||(I − Π0)m(Lϕ + εI)|||Lp(λϕ) � C(‖m‖∞ + ‖m‖ZL
w,θ

) for all ε ∈ (0, 1]. (4.8)

Observe that, for every ε > 0,

m(Lϕ + εI)f = m(ε)Π0f +
∫ ∞

0+
m(λ + ε) dPλf for all f ∈ L2(λϕ).

Thus, if ε → 0+,

(I − Π0)m(Lϕ + εI)f =
∫ ∞

0+
m(λ + ε) dPλf →

∫ ∞

0+
m(λ) dPλf

= m(Lϕ)f − m(0)Π0f for all f ∈ L2(λϕ).

Therefore, (4.8) and Fatou’s lemma imply that

|||m(Lϕ) − m(0)Π0|||Lp(λϕ) � C(‖m‖∞ + ‖m‖ZL
w,θ

)

and finally that

|||m(Lϕ)|||Lp(λϕ) � C(‖m‖∞ + ‖m‖ZL
w,θ

),

as required to complete the proof of the theorem. �

5. Proof of Lemma 4.5

Let γ denote a (possibly unbounded) piecewise smooth curve in C and let γ∗ be its
support. Suppose that −1 is not in γ∗ and that if γ is unbounded,

|γ′(t)|
1 + |γ(t)|2 � C(1 + |t|)−1−ε

for some ε > 0. For G in L∞(γ∗) consider the function F defined by

F (z) =
z + 1
2πi

∫
γ

G(ζ)
ζ − z

dζ

ζ + 1
for all z ∈ C \ γ∗.
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Clearly, F is analytic in C \ γ∗, in view of Morera’s theorem. Note that the derivatives
of F are given by

F (j)(z) =
1

2πi

∫
γ

G(ζ)∂j
z

(
z + 1
ζ − z

)
dζ

ζ + 1
for all z ∈ C \ γ∗. (5.1)

Note that
z + 1
ζ − z

= −1 +
ζ + 1
ζ − z

,

so that, for every j in N \ {0}, there exists a constant C such that

∣∣∣∂j
z

(
z + 1
ζ − z

)∣∣∣ � C
|ζ + 1|

|ζ − z|j+1 . (5.2)

For z in a compact set K ⊂ C \ γ∗, we have bounds

|F (j)(z)| � C‖G‖∞ for all j ∈ N,

where C depends on j and K. Under the additional hypothesis that G has compact
support in γ∗, we also have that

|F (j)(z)| � C‖G‖∞ and |F (j)(z)| � C
‖G‖∞
|z|j+1 for all j ∈ N \ {0} (5.3)

for z bounded away from the support of G.
Next, we give a simple lemma saying that if G is small near the endpoints of γ∗,

then F and some of its derivatives have non-tangential limits at the endpoints. We need
more notation. Let γ0 and γ1 denote the endpoints of γ. We assume that γ0 ∈ C and that
γ1 = ∞ if γ∗ is unbounded. For every δ in (0, 1), define the region Γδ(γ) of non-tangential
approach to the endpoints of γ by

Γδ(γ) = {z ∈ C : dist(z, γ∗) � δ min{|z − γ0|, |z − γ1|}}.

Lemma 5.1. Suppose that G is a function of class CL+1 on L∞(γ∗) that vanishes of
order at least L+1 at the endpoints of γ. If γ is bounded, then, for every � in {0, . . . , L},
j in {0, 1} and δ in (0, 1),

lim
z→γj ,z∈Γδ(γ)

F (�)(z) =
1

2πi

∫
γ

G(ζ)∂�
z

(
z + 1
ζ − z

)∣∣∣∣
z=γj

dζ

ζ + 1
. (5.4)

Furthermore,
sup

z∈Γδ(γ)
|F (�)(z)| � C(‖G‖∞ + ‖G(L+1)‖∞).

If γ1 = ∞, the same conclusion holds for the limit in γ0, assuming that G vanishes of
order at least L + 1 at γ0.
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Proof. We shall prove the lemma only in the case where γ1 = ∞. The proof when the
endpoints are both finite requires only minor changes. Observe that the integral in (5.4)
is convergent because of (5.2). Using (5.2), the definition of Γδ(γ) and the assumption
on G, it is easy to see that if z is in Γδ(γ), and j is in {0, . . . , L}, then the integrand
in (5.1) is dominated by a C‖G(L+1)‖∞ when |ζ − γ0| < 1, by C‖G‖∞(1 + |ζ|)−2 when
j = 0 and |ζ − γ0| � 1, and by C‖G‖∞(1 + |ζ|)−(j+1) when j > 0 and |ζ − γ0| � 1. The
desired convergence and estimate follow by the dominated convergence theorem. �

Proof of Lemma 4.5. Applying Cauchy’s theorem to m(z)/(z + 1), we see that

m(z) =
z + 1
2πi

∫
ω++ω0+ω−

m(ζ)
ζ − z

dζ

ζ + 1
for all z ∈ Rw,θ.

Define the function m∞ on C by setting

m∞(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z + 1
2πi

∫
ω++ω−

m(ζ)
ζ − z

dζ

ζ + 1
if z ∈ C \ (ω∗

+ ∪ ω∗
−),

m(z) − m0(z) if z ∈ ω∗
+ ∪ ω∗

− \ {z+, z−},

lim
z→z+, z∈Γδ(ω+)

m∞(z) if z = z+,

lim
z→z−, z∈Γδ(ω−)

m∞(z) if z = z−.

Note that the limits exist and do not depend on δ by Lemma 5.1. Thus, m(z) = m0(z)+
m∞(z) for all z in R̄w,θ \ ω0.

Note that m∞ is holomorphic on C\(ω∗
+∪ω∗

−), and hence in Pw, because it is defined as
a Cauchy integral over ω++ω−. Furthermore, m∞ is bounded in Pw. Indeed, observe that
m is bounded on Rw,θ by assumption, and that m0 is bounded outside any neighbourhood
of ω∗

0 by (5.3), Since m∞ = m − m0, we only need to consider m∞ near the points
z+ and z−. By symmetry, we only need to consider z+. Lemma 5.1 shows that m∞ is
bounded near z+, except possibly in the complement of a region Γδ(ω+) of non-tangential
approach to z+. But in that complement m∞ is the difference of m, which is bounded
by assumption, and m0, which is bounded again by Lemma 5.1. Thus, m∞ is bounded
on Pw near z+.

To prove that m∞ is in XL
w it suffices to show that

|D�(m∞)Φ(x±iw)| � C‖m‖ZL
w,θ

(1+|x|)−� for all x ∈ R and all � ∈ {0, 1, . . . , L}. (5.5)

Note that mΦ satisfies similar estimates for |x| > t0, by assumption. Since m∞ = m−m0

and, by (5.3), m0 satisfies the estimates

|m(j)
0 (z)| � C‖G‖∞ and |m(j)

0 (z)| � C‖G‖∞|z|−(j+1) for all j ∈ N \ {0},

away from ω∗
0 , it is easy to see that (m∞)Φ satisfies (5.5) for |x| > t0 + ε for every ε > 0,

with a constant C which may depend on ε. Since m∞ is holomorphic on the intersection
of the boundary of Pw with the half-plane Re z < Re z+, it is easy to see that (5.5) also
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holds for |x| < t0 −ε for all ε > 0. Therefore, it remains only to prove that the derivatives
of order less than or equal to L of the restriction of m∞ to the boundary of Pw are
continuous near z+ and z−. Once more, by symmetry, we only need to consider z+. Let
∂�

−m∞(z+) and ∂�
+m0(z+) denote respectively the left and right derivatives of m∞ and

of m0 at z+ along the curve ∂Pw, i.e.

∂�
−m∞(z+) = lim

z→z+
∂�m∞(z),

where z is in ∂Pw and Re z < Re z+, and

∂�
+m0(z+) = lim

z→z+
∂�m0(z),

where z is in ∂Pw and Re z > Re z+. Lemma 5.1 implies that the restriction of m∞ to
{z ∈ ∂Pw : Re z � Re z+} is of class CL even at the point z+. Moreover, the values of
m∞ and its derivatives up to order L along {z ∈ ∂Pw : Re z � Re z+} at z+ may be
obtained as limits of their values in Rw,θ ∩ Γδ(ω+). Similarly, the values at z0 of m0 and
its derivatives up to the order L, computed along the arc of parabola {z ∈ ∂Pw : Re z �
Re z+}, coincide with the limits of their values in Rw,θ ∩ Γδ(ω0). Hence, in these two
cases we may use the same points from E = Rw,θ ∩ Γδ(ω0) ∩ Γδ(ω+) when taking the
limits. But m = m0 +m∞ in E and m, and all its derivatives up to order L+1 vanish as
z → z+ from within E. This shows that the left derivative ∂�

−m∞(z+) of m∞ coincides
with the right derivative −∂�

+m0(z+) of −m0 at z+, for � = 0, . . . , L. Since m∞ = m−m0

on {z ∈ ∂Pw : Re z > Re z+} and ∂�m(z+) = 0 for � = 0, . . . , L, this proves that m∞ is
L times continuously differentiable at z+. The proof of the lemma is complete. �
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