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ANALYSIS OF A DIFFERENTIAL EQUATION OCCURRING IN THE
THEORY OF FLAME FRONTS
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Abstract

Ronney and Sivashinsky [2] and Buckmaster and Lee [1] have proposed a certain non-
autonomous first order ordinary differential equation as a simple model for an expanding
spherical flame front in a zero-gravity environment. Here we supplement their preliminary
numerical calculations with some analysis and further numerical work. The results show
that the solutions either correspond to quenching, or to steady flame front propagation, or
to rapid expansion of the flame front, depending on two control parameters. A crucial
component of our analysis is the construction of a barrier orbit which divides the phase
plane into two parts. The location of this barrier orbit then determines the fate of orbits in
the phase plane.

1. Introduction

Our purpose in this paper is to describe some analytical and numerical results for the
following autonomous system of ordinary differential equations,

^ = H|! - Lf + V3 (I**3 - I n * ) , (lb)

where Ms a (scaled) time variable, the dependent variables are \Js, R and L, k are
parameters. Eliminating t, we obtain a first-order non-autonomous equation for ijf(R),

^ = ^ - L + ^ « ] - m * ) . (2)

Equations (la, b), or (2), were introduced by Ronney and Sivashinsky [2] for the
case k = 0 as a simple model of an expanding spherical flame front in a zero-gravity
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environment. In this context R is the (scaled) flame front radius, and •ft is the (scaled)
flame front speed, while L is a parameter representing heat loss effects. Hence we
shall confine our discussion to the situation when •ft, R > 0 and L > 0. Ronney
and Sivashinsky [2] showed by some numerical calculations that, depending on the
value of L, the solutions of (2) for the case k = 0 either correspond to quenching
(•ft -> 0, R -> Ro as t —> oo with 0 < Ro < oo), or to steady flame front propagation
(•ft -»• ft0, R -> oo as t -*• oo where 0 < t/f0 < oo).

However, experimental observations show that the quenching radius Ro may be
very sensitive to the initial conditions of the experiment, a feature not captured by
the model equation (2) when k = 0. Hence Buckmaster and Lee [1] introduced
the term with coefficient k > 0 into (2) in an attempt to explain this phenomenon,
and showed by some numerical calculations that for k > 0 it is possible for some
solutions of (2) to exhibit quenching, while solutions with nearby initial conditions
show divergence (R,^ft —> oo). Here the new term models the effects of confinement
(i.e., finite chamber volume) and k is a confinement parameter. The main physical
effect of confinement is a pressure rise giving a non-local effect on the flame front.

In this paper we explore the parameter space k, L > 0 for the solutions of (2).
It is not our purpose to provide a detailed physical interpretation of the results, or a
discussion of the validity of (2) as a model for spherical flame fronts, and we refer the
reader to Ronney and Sivashinsky [2] or Buckmaster and Lee [1] for these aspects.
However, we are guided by the underlying physics in our analysis, and hence the
primary aim is to determine when quenching occurs, as opposed to the alternatives of
steady flame front propagation or an expanding flame (R, -ft —>• oo). Although we
are mainly concerned with the case k > 0, we shall in Section 2 describe in detail
the situation for k = 0 as this provides a suitable framework for the situation when
k > 0 but quite small. Then in Section 3 we discuss the case the k > 0, concentrating
on small values of k. We shall show that the solutions do exhibit some sensitivity,
both to the initial conditions and to the value of k. However, we should point out
immediately that because (la, b) is an autonomous system of the second order there
is no possibility here of chaotic behaviour.

2. The case k=0

First we seek steady states for which -ft = -ft0 where i/r0 is a constant. The first
possibility is that TJ/0 = 0, in which case R = Ro where Ro is a non-zero, finite
constant. This corresponds to quenching, and is a stable state; •ft —> 0 and r —> Ro as
t —> oo. If x//0 > 0, then R -» oo as t —> oo and corresponds to a front with constant
speed. From (lb) or (2), ft0 is given by

O. (3)
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FIGURE 1. A plot of the steady states when k = 0, given by (3).

This is plotted in Figure 1. There are two solutions for 0 < L < Lo, where Lo = \/2e,
denoted by TJSQ. It is readily shown that the upper branch ^o" ls stable, and the lower

branch ^o" is unstable, where 0 < î o" < e~2 < \]/Q < 1.
Next we examine the turning-point curve, defined as the curve on which dty/dR =

0. From (2), it is given by

R = %^—. (4)

We plot this curve in Figure 2. In Figure 2(a), 0 < L < Lo and we see that the
turning-point curve has two branches each with an asymptote \fr —>• r̂<f as R —>• oo.
In Figure 2(b), L > Lo and we see that the turning-point curve has a single branch.
In both cases (a) and (b)

2 ^ oo, (5a)R as

and
R ~ 2f/L as 0. (5b)

d2\l/ d\jx
Also, it is readily shown from (2) that — - is negative when — = 0, so that solutions

dR dR
d\lr

can only cross the turning-point curve from the region where > 0 to the region
dR

df
where —— < 0, i.e., from left to right.

dR
Near R, \j/ —> 0, we can deduce from (2) that

= LR + AR2 + O(R3 In R). (6)
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FIGURE 2. A plot of the turning-point curve when k = 0, given by (4), for (a) L = 0.1(0 < Z. < Lo)
and (b) Z. = 0.5(L > Lo)- Here V'lf are the steady states which exist in case (a), and ffi and 0 denote the
regions where dx/r/dR > 0 or < 0 respectively.

Here A is an arbitrary constant, which can serve as a parameter to define a family
of solutions emerging from the origin. Note that from (6) R ~ ir/L as \fr —> 0;
comparing this with (5b) we see that all solutions emerging from the origin do so into

df
the region —— > 0. Then for 0 < L < Lo we can deduce that there is a critical

dR
value of A, Ac, such that for A > Ac, the orbit emerges from the origin, crosses
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FIGURE 3. Typical orbits when k = 0 and L =0 .1 , for the case 0 < L < L$. The dashed curves are
the turning-point curves.

the upper branch of the turning-point curve (4) and then \js —> \JTQ as R -» oo.
For A < Ac, the orbit emerges from the origin, crosses the lower branch of the
turning-point curve (4) and then xfr —> 0, R —> Ro. Here Ro varies over the range
0 < Ro < oo with Ro —> oo as A -*• Ac from below. These conclusions are based on
local continuity with respect to the parameter A, and the observation that as \(r -> ifr^,

i* - ^o ~ {(1 + m ^cT) ^ } ~ an^ hence the orbits which approach Vo" do so from
above. Figure 3 shows some typical orbits.

However, for L > Lo, we can deduce that all orbits emerging from the origin will
cross the turning-point curve (4) and as t -> oo, \j/ -> 0, R -> Ro. But here Ro varies
over the range 0 < Ro < Rc with Ro —> Rc as A —>• oo. Thus all orbits emerging
from the origin are quenched. Crucial to this conclusion is the establishment of the
existence of a unique orbit for which \fr —> oo as R —> 0, which we shall call the
barrier orbit (see Figure 4). We shall show that this barrier orbit lies always in the
region d\j//dR < 0, and its intersection with \jr = 0 then defines Rc. Then all orbits
emerging from the origin are confined to the left of the barrier orbit. Orbits which lie
to the right of the barrier orbit are such that \j/ —> oo as R -» R\+, and ij/ -> 0 as
R —> Ro— where Ro > Rc and R\ > 0. Some typical orbits are sketched in Figure 4.

To establish the existence of the barrier orbit, we suppose that \j/ —> oo and R —> 0
simultaneously. Then we introduce the transformations

(7)
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FIGURE 4. Typical orbits when k = 0 and L = 0.5, for the case L > Lo. The dashed curve is the
turning-point curve.

and form a differential equation for f{y) from (2).

(8)

In the limit y -*• oo, we seek a solution for which >>/ -*• constant. Some elementary
analysis shows that if such a solution exists, then yf ->• 3. To keep the analysis
simple, we next note that the term Le~2y is exponentially small in this limit, and can
be neglected. Letting

g = yf (9)

and omitting the term Le~2y in (8) we get

(10)' g - J 1 (3-*)]
dy s\y te-2)J"

Our aim now is to show that (10) has a unique solution such that g —> 3 as y —> oo.
It is sufficient here to consider g > 2 and v > y0 > 0. Note that dg/dy —*• —oo as
g -> 2 from above, where g = 2 is the approximation to the turning-point curve (4)
as V —• oo- Next we note that dg/dy = 0 on the curve

-1), (11)

(12a)

where dg/dy > 0 (< 0) above (below) this curve. Next we calculate

d2g = gA

dy2

https://doi.org/10.1017/S0334270000010195 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010195


[7] Analysis of a differential equation occurring in the theory of flame fronts

3.0B

s

2.75

where

FIGURE 5. A plot of the turning-point curve (11) and A = 0 (12b).

A = y(g - 3)(g2 - 4g + 6) + (g - 2)(2g2 -9g + 16). (12b)

Then we can show that the curve A = 0 passes through the point y = 0, g = 2, and
for y > 0, always lies above the turning-point curve (11), while g -> 3 as y -*• oo.
The situation is sketched in Figure 5, where we allow the curve (11) and A = 0 to
divide the region y > 0, g > 2 into 3 subregions, Ru R2 and R3. Here /?i is the
region where d2g/dy2 and dg/dy are positive, R2 is the region where d2g/dy2 is
negative but dg/dy is positive, and R3 is the region where d2g/dy2 and dg/dy are
both negative. Further, we can show that dg/dy evaluated on A = 0 is greater than
the slope of A = 0. It follows that orbits reaching A = 0 must cross from R2 into Rt.
Similarly, orbits reaching the turning-point curve (11) must cross from R2 into R3.
Consider now orbits commencing at y = y0 > 0, with g = g0 > 2. When (y0, g0)
lies in Rit the orbit proceeds upwards crossing g = 3 at a finite value of y. When
(jo. go) lies in R3 the orbit proceeds downwards crossing g = 2 at a finite value of y.
Next, when (y0, g0) lies in R2, orbits starting close to A = 0 will cross into Ri while
orbits starting close to the turning-point curve (11) will cross into /?3. By continuity
with respect to g0, there exists an orbit which remains in R2 for all y > y0.

To show that this orbit is unique, we first note that it is sandwiched between the
curves (11) and A = 0 as y ->• oo. Since (11) can be written in the form

i
(13)
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while A = 0 has the expansion

- = y^a«(3-g)", (14a)
y i

where

B, = lia2={,O3 = U = 7 (14b)
J J y

it follows that j " 1 is O (3 — g) for this orbit, and indeed must have the expansion

1 . . . . . . . ( 1 5 )

where clearly ft = 1, 1 < /J2 < | and so on. It follows that if (10) is written in the
form

T F(y,g), (16)
dy

then F is O(y~2) as y —>• oo. Hence, we can integrate (16) to get

g = 3+ T F(y',g(y'))dy'. (17)
./oo

Standard iterative procedures can now be used on (17) to establish the existence of a
unique solution. Finally we find that ft = f, ft = j in (15).

This barrier orbit defines /?c (see Figure 4), where ^?c depends on L, although we
note from the analysis in the preceding two paragraphs that the asymptotic behaviour
as V —> oo, R -> 0 for the barrier orbit is given by

\- O \ I ,
mA)2 VVKlnVO3/

R ~ 7T7-7 ~ .,_„_.,„ + O TTT-TTT . ^ * -> oo, (18)

independently of L. Indeed there exists a unique solution with this asymptotic be-
haviour for all L > 0, but only for L > Lo will this barrier orbit continue down to
\j/ -> 0, where R -+ Rc. There is no obvious way to determine the dependence of Rc

on L analytically, and so instead we do so numerically. We find that Rc decreases as
L increases, and clearly Rc —> oo as L —>• Lo from above. In Table 1 we show some
numerical results for Rr.
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L
0.3
0.5
0.7
0.9

Rc

22.964
10.3712
7.1055
5.5458

TABLE 1. The values of Rc in terms of L for k = 0.

3. The case k>0

With k > 0 we first note that there are now no steady states ^o > 0, although
\f/ -*• 0, and R -» Ro remains a stable state corresponding to quenching. Next we

consider the turning-point curve on which — = 0. This is here defined implicitly by
uR

R =

dR

2*

-\kRi\j/2'
(19)

For all k > 0, this curve now has two branches. For 0 < k < kc one branch is similar
to the case k = 0 (see Figure 2(b)) and connects the limits \fr -> oo, R —> 0 with the
asymptotic behaviour (5a) to the limit \j/ —> 0, R —> 0 with the asymptotic behaviour
(5b). The second branch connects the limit \}r —> oo, R —> oo to the limit V —*• 0,
R -> oo with the corresponding asymptotic behaviour

In \//, as (20a)

or
- 2

as 0. (20b)

The situation is sketched in Figure 6(a). For k > kc the connection points for the
branches interchange; see Figure 6(b). One branch now connects the limits ty -> oo,
R —> 0 with the limit \fr —>• oo, R —>• oo with the corresponding asymptotic behaviour
(5a) and (20a) respectively. The other branch connects the limits \jf -> 0, R ->• 0
with the limit \fr —> 0, /? —> oo with the corresponding asymptotic behaviour (5b)
and (20b) respectively. Further, for 0 < L < Lo, we note that only case (b) can occur,
and thus effectively kc = 0; in particular the region yj/^ < -ty < \J/Q lies between
the two branches in the region where d\j//dR > 0, where here we recall that XJ/Q are
the solutions of (3) and are the steady states when k = 0. For L > Lo both cases
can occur with kc a function of L. Here kc can be determined by eliminating \fr, R from
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(a)

5.80

t

3.75

(b)

FIGURE 6. A plot of the turning-point curve (19) for L = 0.5 and (a) k = 0.001 (0 < k < kc), (b)
k = 0.003 {k > kc). Here © and 0 denote the regions where d\jr/dR > 0 or < 0 respectively.

the following three equations

and

kcfR
4 = 2,

(21a)

(21b)

(21c)
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L
0.3
0.5
0.7
0.9

kc
0.000057
0.00192
0.00935
0.02565

TABLE 2. The values of kc in terms of L, given by (22a, b).

Here (21a) is just (19) rewritten, while (21b) and (21c) are obtained by equating to
zero the R- and V-derivatives of (21a) respectively. Eliminating R between these
equations, we find that

where

(22a)

(22b)

This pair of equations gives kc parametrically as a function of L. It is readily shown
from (22a, b) that kc increases with L. Some typical values are shown in Table 2; note
that kc is generally quite small, and that kc —> 0 as L —> Lo.

We are now in a position to describe the orbits in the positive quadrant of the \(r — R
plane. First we note that as R, \jr —> 0 the orbits are again described by (6), and
hence there is a one-parameter family of solutions emerging from the origin into a
region where dxfr/dR > 0. Next we again consider the existence of an orbit such that
rfr -*• oo as R -> 0. Using the transformation (7) we now get, in place of (8),

g = / (1 + [2 - f/y + ' ] . (23)

In the limit v -> oo, we again seek a solution for which yf —>• constant, and as in
Section 2 for the case k = 0, we see that if such a solution exists, then yf -> 3. In
this case the terms Le~2y and — |/t/3e~3y are exponentially small in this limit, and
can be neglected. Hence, using the transformation (9) we again obtain (10) and the
argument in Section 2 for the case k = 0 can be repeated here. We conclude that
there is a unique solution such that \j/ ->• oo, R -> 0 where asymptotic behaviour is
given by (18). We shall again call this the barrier orbit, but the crucial question now
is whether or not the barrier orbit is such that \f/ ->• 0 as R —> Rc.

First, let 0 < L < Lo, when the turning-point curve (19) belongs to case (b)
(see Figure 6(b)) for all k > 0. Hence the unique orbit defined by the asymptotic
behaviour (18), while commencing in a region where dr///dR is negative, must cross
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20.00 30.00

FIGURE 7. Typical orbits when k = 0.0001 and L = 0.1 (0 < L < Lo). The dashed curves are the
tuming-point curves.

FIGURE 8. Typical orbits when k = 0.003 (k > kc) and L = 0.5 (Z- > Lo). The dashed curves are
the turning-point curves.
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the upper branch of the turning-point curve, and hence enter a region where dxfr/dR
is positive. The orbit then remains in this region, and passes to infinity. Crucial to
this conclusion is the observation that the maximum point on the lower-branch of the
turning-point curve (18) always lies below and to the right of the minimum point on
the upper branch. Indeed these two points both lie on the curve kx/sR4 = 2, which
has x[r monotonically decreasing as R increases. We also note that any orbit crossing
from a region where d\///dR is positive to a region where d\j//dR is negative must do
so to the left of the maximum (minimum) point on the lower branch (upper branch)
of the turning-point curve (19). Similarly any orbit crossing from a region where
drjf/dR is negative to a region where d\jr/dR is positive must be to the right of the
same maximum (minimum) point. Thus we can conclude that for the family of orbits
emerging from the origin, defined by the parameter A (see (6)), there is a critical
value of A, Ac, such that for A > Ac the orbit emerges from the origin and passes
to infinity with the asymptotic behaviour (20a). For A sufficiently large these orbits
will cross the upper branch of the turning-point curve (19) twice, but of course will
remain below the barrier orbit. For A < Ac the orbit emerges from the origin, crosses
the lower branch of the turning-point curve (19) and then \jr —>• 0 as R —> Ro, where
0 < Ro < oo with Ro —> oo as A -» Ac from below. The situation is sketched in
Figure 7.

Next, we let L > Lo but suppose that k > kc, so that the turning-point curve is
again described by Figure 6(b). The conclusions here are now similar to those of
the preceding paragraph. That is, the barrier orbit passes to infinity, and of the orbits
emerging from the origin, either, for A > Ac they likewise pass to infinity, or for
A < Ac, ifr -> 0 as R -> Ro. A typical situation is sketched in Figure 8.

Finally, we let L > Lo but suppose that 0 < k < kc, so that the turning-point curve
(19) is described by Figure 6(a). Now the barrier orbit has the possibility to remain
in the region where d\js/dR is negative, and hence \j/ —*• 0 as R —> Rc. We find that
this will occur for 0 < k < k0 where k0 < kc. In this situation all the orbits emerging
from the origin will cross the left-hand branch of the turning-point curve, and then as
t —» oo, \(r —> 0 as R —> Ro where 0 < Ro < Rc. Some typical orbits are sketched in
Figure 9(a). However, for k0 < k < kc, the barrier orbit crosses the right-hand branch
of the turning-point curve, and then passes to infinity. This case is generally similar
to that for k > kc described in the previous paragraph, *and the orbits emerging from
the origin either pass to infinity for A > Ac, or for A < Ac, xjr —>• 0 as R —> /Jo-
Some typical orbits are sketched in Figure 9(b). Thus for L > Lo it is k0 which is
the crucial value of k, rather than kc. It is determined by the fate of the barrier orbit
as R increases. Some typical values of k0 as a function of L are shown in Table 3.
Finally we note that since the orbits which pass to infinity do so with the asymptotic
behaviour (20a), it follows from (la) that they reach infinity in finite time.
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(b)
0.08 5.00 10.00 15.00 it 20 00

FIGURE9. Typical orbits when L - 0.5 (L > Lo) and (a) k = 0.0005 (0 < k < ko), or (b) k = 0.001
(/to < k < kc). The dashed curves are the turning-point curves.

L
0.3
0.5
0.7
0.9

*o
0.000029
0.00082
0.0037
0.009935

TABLE 3. The values of ko in terms of L.
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4. Summary

In this paper we have described analytical and numerical results for (2), which
arises as a model for an expanding spherical flame front in a zero-gravity environ-
ment. Equation (2) determines the flame front speed as function of the radius. The
corresponding behaviour in time can be deduced from (la, b). Our emphasis has been
on the behaviour of solutions for small values of the parameter k.

The key component in the interpretation of our results is the existence of a barrier
orbit, which is defined as the unique orbit such that rjr -*• oo as R -> 0, where it has
the asymptotic behaviour (18). The central question is then whether or not the barrier
orbit extends down to the limit ifr -»• 0, R -*• Rc. hi the former case, it acts as a
true barrier, and all orbits emerging from the origin must quench, that is xfr -*• 0 as
r —> Ro for 0 < Ro < Rc as t -*• oo. Otherwise the barrier orbit will pass to infinity,
and orbits emerging from the origin will either quench or likewise pass to infinity.

We find that for 0 < k < ko and L > Lo (where Lo = l/2e), the barrier orbit is
a true barrier in the sense described above, and all orbits emerging from the origin
extinguish. Here k0 depends on L, while Rc depends on both k and L. For L > Lo

but close to Lo, we find that k0 is quite small, and since Rc -*• oo as k -» k0, the
solutions exhibit some sensitivity to the actual value of k.

For k > k0 and L > Lo, the barrier orbit passes to infinity and is not a true barrier.
This also occurs for all/: > OwhenO < L < LQ. hi these cases the solutions emanating
from the origin either quench, or pass to infinity, depending on whether A < Ac or
A > Ac respectively, where A is defined by the limiting behaviour as rfr, R —> 0
(see (6)). Since A defines the initial curvature, whereas numerically defined initial
conditions near \(r = R = 0 define only the initial slope, the orbits emerging from
the origin exhibit numerical sensitivity to the numerical initial conditions, particularly
evident when k > &0 and L > Lo for k close to k0. Indeed, there is a tendency for
orbits emerging from the origin to approach the barrier orbit and apparently follow it
quite closely for a while. Finally we note that when k = 0 and 0 < L < Lo the orbits
either quench, or pass to infinity as a steadily propagating flame front (i.e. \j/ -*• X//Q
as R —y oo). However, for any k > 0, there can be no steadily propagating flame
fronts and orbits which pass to infinity do so as \jr, R —> oo.
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