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1. Introduction. Let K/Ko be a finitely generated field extension of transcendence
degree 1. Let u0 be a valuation of Ko and v a valuation of K extending v0 such that the
residue field of v is a transcendental extension of the residue field k0 of vo\ such a
prolongation v will be called a residually transcendental prolongation of v0. By an element
with the uniqueness property for (K, v)/(K0, v0) (or more briefly for v/v0) we mean an
element / of K having u-valuation 0 which satisfies (i) the image of t under the canonical
homomorphism from the valuation ring of v onto the residue field of v (henceforth
referred to as the ^-residue ot t) is transcendental over ko\ that is v coincides with the

Gaussian valuation v'o on the subfield K0(t) defined by v'0[ £ a,f' = min(t>0(a,)); (ii) v is
\ i / i

the only valuation of K (up to equivalence) extending the valuation v'o.
In this paper, we consider the problem of existence and construction of elements with

the uniqueness property for (K, v)/(K0, v0) when K is a function field of a conic over Ko\
that is K = K0(x,y), where (x,y) satisfies an irreducible polynomial relation of degree 2
over Ko and v is a residually transcendental extension of v0.

In 1988, Polzin showed that the existence of elements with the uniqueness property
for a residually transcendental extension (K, v)/(K0, v0), where K is a one variable
function field over Ko (any genus) for which the algebraic closure of Ko in K is a purely
inseparable extension of Ko and where the rank of v is 1, is equivalent to the so called
"Local Skolem Property" (cf. [12]). His proof is based on rigid analytic geometry and uses
a result of Matignon [7, p. 197, Thm. 3] which itself depends upon a structure theorem for
affinoid domains proved in [4, p. 160, Thm. 1]. For any genus a 1, he shows [12, p. 129,
Rk. 1] the existence of examples where the "Local Skolem Property" is not satisfied (this
gives rise to valued function fields without the uniqueness property) and for genus 0 (i.e.
function fields of conies [1, Chap. 16, Thm. 6]) he shows that the "Local Skolem
Property" is always satisfied and so they have the uniqueness property. Our goal here has
been to give an elementary proof of the result which not only shows the existence of an
element with the uniqueness property but also gives a method to construct it explicitly. It
may be remarked that in the particular case when K is a simple transcendental extension
of KQ and rank v is 1, a direct proof based on valuation theory for the existence of
elements with the uniqueness property has already been given by Matignon and Ohm (see
[8, Thm. 0.1]).

We shall prove the following result.

THEOREM 1.1. Let v0 be a rank 1 valuation of a field Ko. Let K be a function field of a
conic over Ko such that the algebraic closure of Ko in K is a purely inseparable extension
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of Ko. Suppose that v is a residually transcendental extension of v0 to K. Then there exists
an explicitly constructible element of K which satisfies the uniqueness property for v/v0-

The example in [9, Cor. 2.3.4] shows that we cannot remove the condition "u0 is of
rank 1" from the hypothesis of Theorem 1.1.

2. Definitions, notations and some preliminary results. A field K, which is a
function field of a conic over Ko, is said to be regular if (i) K/Ko is separably generated
and (ii) Ko is algebraically closed in K.

Observe that a simple transcendental extension K0(t) of a field Ko is a regular
function field of a conic over Ko which can be visualized by writing K0(t) as K0(t, r"

1),
where (t, /"') satisfies the equation XY - 1 = 0 .

We shall abbreviate transcendental as tr., use Z for the set of integers and X, Y for
indeterminates.

As in [11], for any a in the base field Ko, Ha(X, Y) will stand for the polynomial
X2 - XY - aY2 or X2 - aY2 accordingly, depending on whether the characteristic of Ko is
2 or not. It is a routine calculation to check that if a and b are non-zero elements of Ka,
then the polynomial Ha{X, Y) - b is irreducible over Ko.

The following Proposition 2.1 and Lemma 2.2 have been proved by an elementary
method by Ohm (see [11, Thm. 2.3, Cor. 2.10]). We omit their proofs.

PROPOSITION 2.1. Let K be a regular function field of a conic over Ko. Then one can
determine (by an explicit algorithm) non-zero elements a and b in Ko such that
K = K0(x,y), where (x,y) satisfies Ha(X, Y)-b=0.

LEMMA 2.2. Let K = K0(x,y) be a regular function field of a conic over Ko with x,y
related by Ha(x,y) - b = 0, for some non-zero a, b in Ko. Let c be a root of the quadratic
polynomial Ha(X, 1). Then K(c) is a simple transcendental extension of K0(c) having
Z=x - cy as a generator.

We now prove the following result.

LEMMA 2.3. Let Ko, K, c and z be as in the above lemma. Let v0 be a rank 1 valuation
of Ko with residue field k0 and w a residually transcendental prolongation ofv0 to K(c). Let
s be the smallest positive integer such that w(zs) = w(q), for some q in K0(c). If the
w-residue of zsIq is transcendental over k0, then one can explicitly construct an element of
K which satisfies the uniqueness property for v/v0, where v is the valuation of K obtained
by restricting w.

Proof. We may assume that c g Ko, for if c e Ko then as in [10, Prop. 4.3] it can be
easily seen that z Iq satisfies the uniqueness property for v/v0. Let c denote the other
root of Ha(X, 1), z the element x - cy and u, the unique non-trivial automorphism of
K(c)IK defined by <r(c) = c. We denote zsIq by £, the w-residue of any element TJ in the
valuation ring of w by TJ* and the residue field of w by /. Two cases are distinguished.

Case I. VQ has unique extension, say w0 to K0(c).
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We shall prove the following statements.
(i) If w(c7-(̂ )) > 0, then f + cr(£) satisfies the uniqueness property for v/v0.
(ii) If w(<r(£))<0, then f"1 + o-(£~') has the above property.

Proof of (i). Set / = £ + cr(£). First consider the possibility when w(cr(£)) = 0. Using
the equality zz=b, it is easy to see that in the present situation vo(b

5/q(r(q)) = 0 and
/* = £* + {bslqa{q))*£*-\ Hence, if /„ is the residue field of w0) then

Un-k{t*)} = 2. (1)
Applying Luroth's Lemma [13, p. 197], we see that

[K(c): K0(c, 0] = [K0(c, z): K0(c, t)] = Is. (2)

As in [10, Prop. 4.3], it can be easily seen that the value group of w is Ho + Z(wo(q)/s),
where Ho is the value group of w0. Thus if w0 denotes the Gaussian valuation obtained by
restricting w to K0(c, t), then the index of ramification of w/w'o is s. It now follows from
(1), (2) and the fundamental inequality [2, §8.3, Thm. 1] that w is the only prolongation of
wo to K(c). By virtue of the hypothesis of Case I, the Gaussian valuation v'o of K0(t) can
be uniquely extended to K0(c,t). This w is the only prolongation of v'o to K(c) which
implies that v is the unique prolongation of v'o to K as desired.

Consider now the situation when w(o-(£)>0; then t* = g*. The valuations w and
w ° cr of K(c) are different and both extend u0- Since w0 is the only extension of v'o to
K0(c,t), we conclude that w°a also extends WQ. Clearly the index of ramification of
w°o7w0 is the same as that of w/w'o which (as mentioned above in the proof of (i)) is s. It
now follows from the fundamental inequality [2, §8.3, Thm. 1] and (2) that w and w°a
are the only extensions of w0 to K(c). Since these valuations coincide with v on K, it is
the unique extension of v'o to K.

Proof of (ii). Proceeding exactly as in the above paragraph, one can prove (ii). We
omit the proof.

Case II. There are two extensions of v0 to K0(c).
Let w0 denote the prolongation of v0 to K0(c) obtained by restricting w, and w0 be

the other prolongation; then wo(d) = wo(a(d)) for all d s K0(c). By the Independence
Theorem [2, Cor. 3.14], we can choose d e K0(c) such that

wo(d) = O, wo{d) = vo(qcr(q))-vo(b
s). (3)

Set t = dg + (r(dg). Keeping in view (3) one can easily verify that

t* = d*£* + ( 1

and hence [/: ko(t*)] > 2. Arguing exactly as in the proof of assertion (i) of Case I, it can
be shown that w is the only prolongation of w0 to K(c). Since the restriction of the
valuation wa to K0(c, t) is the Gaussian valuation w0, we conclude that w°(r is the
unique prolongation of w0 to K(c). Thus w and w ° a are the only prolongations of v'o to
K(c). As these valuations agree with v on K, it is the unique extension of u0 to K.

DEFINITION. For a finite extension (F, u)/(F0, u0) of valued fields, the henselian defect
is defined to be [Fh :Fo]/ef, where "/i" stands for the henselisation with respect to the
underlying valuation and e, /for the ramification index and the residual degree of u/u0.
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A FUNDAMENTAL EQUALITY. If u0 is a valuation of a field Fo and uu..., um are all the
non-equivalent prolongations of w0 to a finite extension F of Fo, then it is well known (see
[2, p. 125 (17.3)]) that

F0) = fJ[(F,ui)
h:(FQ,u0)

h]
1 = 1

(4)
1=1

where "h" stands for henselisation and e,, fh d, denote respectively the ramification index,
the residual degree and the henselian defect of the extension ut/u0.

NOTATIONS. Let w0 be a valuation of a field Lo with value group Ho and residue field
/0. Let w be a residually tr. prolongation of w0 to a simple tr. extension L = L0(z) having
value group H and residue field /. As in [9], we shall denote by E, /, R (more precisely by
E(w/w0) etc.) the numbers defined by

E = min{[L : L0(f)] | £ e L, w(£) > 0, £* tr. over /„},

I=[H:H0],

R - [A: /0], where A is the algebraic closure of /0 in /.

Let / be an element of the valuation ring of w such that t* is tr. over /0. We shall
denote by Dh, the henselian defect of the finite extension (L, w)/(L0(f), w'o): (w'o denotes
the restriction of w to LQ(t))\ in view of [9, Thm. 2.2], Dh is independent of the choice of
residually tr. element t.

The following result of Matignon and Ohm (whose proof is omitted) is quoted for
future reference (see [9, Cor. 2.3.2]).

THEOREM 2.4. Let Lo c L, w0, w, E, I, R, and Dh be as above.
(i) There exists an element of L which satisfies the uniqueness property for w/w0 if

and only ifE = IRDh holds.
(ii) / / w0 is of rank 1, then any residually transcendental element t of L for which

[L : L0(t)] is E, satisfies the uniqueness property for w/w0.

We now recall some results from [5]. Let LoaL- L0(z), w0, w, lo^l, H0<=H and E
be as above. Fix an algebraic closure Lo of Lo and a prolongation w' of w to L'0(z).
Denote the restriction of w' to L'o by WQ and the w'-residue of an element TJ in the
valuation ring of iv' by TJ*. AS in [10, p. 205, 2.5], it can be easily seen that there exist a
and a' in Lo such that ((z - a)/a')* is tr. over /0. We denote w'(z - a) by /A. Therefore
for any f(z) = 2 c/(z - a)1' in LQ[Z], we have

(c/) + *>); (5)

in particular if y G LO, then

w'(z - y) = min(wo(a - y), fi). (5')

Define a subset D' of Lo by

Z ) ' = { y e L 0 | w 0 ( r - a ) > ) 4
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Choose an element /3 e D' such that [L0(j3): Lo] < [L0(y): Lo] for all y in D'. Let P(X)
denote the minimal polynomial of /3 over Lo of degree n (say); its roots /3 = /3i,... , fin

are arranged so that wg(a - /3,)^ /u for 1 < / < wi and wo(a - /3,-)</i for i 'sm + 1, It
follows from (5') that

w(/>(z)) = i" ' ' (z- |8,) = ro,*+ £ w&a-p,) = O (say).
1 = 1 i=m + l

Let s be the smallest positive integer such that sd e Hu where Hx is the value group of the
valuation WQ restricted to Lo(/3). We can choose a polynomial q(z) e Lo[z] of degree less
than n satisfying

(6)

By assertion (ii) of [5, Lemma 2.1], for any polynomial g(z) in Lo[z], none of whose roots
is in £>', one has

w'(g(z)). (7)

Since q(z) e L0[z], being of degree less than n, has no root in D', it follows from (6) and
(7) that w(P(zY) = w(q(z)). We shall denote P(z)s/q(z) by f By virtue of (5) and
[5, Thms. 1.4, 1.3] the w-residue of f is tr. over /0 and the residue field / of w is given by

/ = A(£*), (8)

where A is the residue field of the valuation obtained by restricting WQ to Lo(/3). It is also
clear from the proof of [5, Thm. 1.3(i)] that

E = E(w/w0) = sn. (9)

With the above notations we prove two lemmas.

LEMMA 2.5. If y is an element of D' which is algebraic of degree n over Lo, then its
minimal polymomial F(X) over Lo satisfies w(P(z)) = w(F(z)) and (P(z)s/q(z))*-
(F(z)s/q(z))* + 8, for some 8 algebraic over l0.

Proof. Suppose to the contrary that w(P(z))¥=w(F(z)). On interchanging the roles
of /3 and y if necessary, assume that w(P(z))<w(F(z)). Then the w-residue of
(P(z)s - F(z)s)/q(z) equals that of P(z)s/q(z) and hence is tr. over /0, which is impossible
as both P(z)s — F(z)s and q(z) are of degree less than E =sn. For the same reason, the
w-residue of (P(z)s - F(z)s)/q(z) must be algebraic over /0.

The following lemma can be quickly proved using (7) and the strong triangle law. We
omit its proof.

LEMMA 2.6. / / TJ = g(z)/h(z) e L'0(z) is such that W'(TJ) = 0 and no root of the
polynomial g(z)h{z) is in D', then TJ* =

3. Proof of Theorem 1.1. Since any valuation of a field has a unique prolongation
to a purely inseparable extension, it may be assumed that Ko is algebraically closed in K.
Without loss of generality, we may further assume that K is a regular function field of a
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conic over Ko, for if K = K0(x',y'), where x', y' satisfy an irreducible polynomial relation
of degreee 2 over Ko, then the assumption that K/Ko is not separably generated would
lead to y' being algebraic and purely inseparable over K0(x') and the theorem needs to be
proved for K0(x')/K0. From now on, K is as in Lemma 2.2; c, c, a are as introduced in
the opening lines of the proof of Lemma 2.3; and fj will stand for (T(T]) for any TJ in K(c).
In view of Theorem 2.4(ii), we need to prove the theorem only when c g Ko.

We fix a prolongation w' of v to KKQ = K0(z), where Kd is a fixed algebraic closure of
Ko. Let vv0, W0, W be the valuations obtained by restricting w' to KQ(c), Ko, and K(c)
respectively. We set Lo = K0(c), L = L0(z) = K(c) and retain the notations Ho, H, l0, /, E,
I, R, Dh introduced in the lines preceding Theorem 2.4; by this theorem we have

E = IRD". (10)

Let a, /I, D', /3, P{X) = " i CJT' + A"", S, q(X) and £ = P(z)slq{z) be as in the

paragraph preceding Lemma 2.5. Observe that if 0 e D' then wo(a)>p = w^{a'), which
imples that (z/a1)* = ((z - a)/a')* + (a/a1)* is tr. over l0 and the proof of the theorem
will be complete by virtue of Lemma 2.3. From now on it is assumed that 0 g D'.

Since zz = b, the monic polynomial Pi(z), defined by

<r(P(z)) = 2 c,t + z" = c0P,{z)lzn,
1=0

has degree n and is not divisible by z. If r denotes the degree of the polynomial q(z), then
it can be easily seen that cr{q{z)) = q\(z)lzr, where q^z) is a polynomial of degree at
most r. Consequently

a(t) = P1(zY/h(z), (11)

where h(z) = Co~szsn~rqi(z) is a polynomial of degree at most sn none of whose roots is in
D'. It now follows from Luroth's Lemma and (9) that

which in view of (10) yields

[K0(c,z):K0(c,{ + n]^2IRDh. (12)

Arguing similarly, we see that

[K0(c,z):K0(c,tn]^2IRDh. (13)

Two cases are distinguished.

Case I. w0 is the unique prolongation of v0 to K0(c). In this case, we shall prove the
following statements.

(i) Ifw(cr(£)) > 0 and cr(t-)* is algebraic over l0, then £ + cr(£) satisfies the uniqueness
property for v/v0-

(ii) Ifw(a-{^)) < 0, then g'1 + cr(^~I) satisfies the above property.
(iii) / / w(a(j;)) = 0 and £* is tr. over l0, then £&(£) satisfies this property.

Proof of (i). Set t = £ + o-(f). By hypothesis t* - £* is in the algebraic closure A of /0

in /. Recall that R = [A : /„] and, by (8), / = A(£*) = A(f *). Let v'o, w'o denote the Gaussian
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valuations of K0(t), ^o(c, 0 respectively obtained by restricting w. It is immediate from
the hypothesis of Case I that w'o is the unique prolongation of v'o to K0(c,t). Thus the
valuation w°a, being an extension of v'o, also extends WQ. Since a maps K0(c,t) onto
itself, it follows that the index of ramification, the residual degree and henselian defect of
the extension w°a/w'Q are the same as the corresponding ones of w/w'o, which are /, R,
Dh respectively. In view of (4) and (12), we conclude that w and w°cr are the only
prolongations of w'o (and hence of v'o) to K(c) = K0(c, z). It is now clear that their
restriction v to K is the unique extension of v'o, which proves (i).

The proof of (ii) is similar and is omitted.

Proof of (Hi). Here we denote £o-(£) by f. In view of (11), cr(f) = P](z)s/h(z), where
h(z) is a polynomial having no root in D'. Since <x(£)* is given to be tr. over /0, it follows
from Lemma 2.6 that at least one of the roots of P\(X), say y, is in D'. As each element
of D' is algebraic over K0(c) of degree not less than n, we see that P\{X) is the minimal
polynomial of y over K0(c). It is now immediate from Lemmas 2.5, 2.6 that

<r(0* = ((PMY/Q{z))*(q(P)/h(p))* = (£• + 8)8',

for some 5, 8' in A. Hence the residual degree of w/w'o is [A(£*): /0(f*)] = 2R. Since the
index of ramification of w/w'o is / and its henselian defect is Dh, we conclude by virtue of
(4) and (13) that w is the only extension of w'o (and hence of v'o) to K(c), which
immediately gives (iii).

Case II. v0 has two extensions to K0(c). Let vv0, w0 be two extensions of v0 to K0(c);
then wo(d) = wo(cr(d)), for all d in K0(c). We split into two sub cases.

Sub case (i). P\{X) has a root, say y in D'. Here P\(X) is the minimal polynomial of
y over K0(c). Let;' be a positive integer such that ;'w(<r(£)) is in the value group of w0. By
the Independence Theorem [3, Cor. 3.14], there exists d e K0(c) satisfying

wo(d) = 0, Wo(d) = -jw(o-(£)). (14)

We show that t = df'o-(df') satisfies the uniqueness property for v/v0. In view of
(14), w(t) = 0. Using (11) and Lemmas 2.5, 2.6, it can be easily seen that

P = §*>((•*

for some 8, 8' in A; consequently the residual degree of w/w'o is given by

[A(£*): /0(r*)] = [A(f*): A(f)][A(f *): lo(t*)] = 2jR. (15)

Applying Luroth's Lemma, (9) and (10), we see that

[K0(c, z): K0(c, 0] ̂  2;sn = 2jIRDh. (16)

Arguing exactly as in the proof of assertion (iii) of Case I, and using (15) and (16),
we conclude that w is the unique extension of w'o to K(c). Since the restriction of w ° a to
K0(c, t) is tv[), it follows that w ° a is the unique extension of w'o to /C(c). Thus, w, w ° o- are
the only valuations of K(c) (and hence v is the only valuation of K) extending v'o.

Sub case (ii). No root of P\{X) is in D'. In view of sub case (i) of Case II, it is
enough to construct an element y e K0(c,p)r\D' whose minimal polynomial Q(X)
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(say) over K0(c) is such that at least one root of the monic polynomial Q\{X) of degree n
is in D', where Q\(z) is defined by

cr(Q(z)) = dQ,(z)/z", deK0(c). (17)

To construct y, we consider two possibilities. Suppose first that c £ K0(f5). Let r
denote the automorphism of K0(c, j3)/X"0(/3) defined by r(c) = c and W] the valuation of
K0(c,p) obtained by restricting w'. By the Approximation Theorem [3, Thm. 3.13],
applied to the valuations wu w} ° r, there exists y! e A"0(c, /3) such that

> maxKO" 1 ) , /* - 2^/3)) , (18)

y 1 - ^ - I ) > A t - W o ( f e ) . (19)

Set y = \ly\. It is immediate from (18) that wi((3) = w1(y) and w^/3 - y) > /A. We
show that this choice of the element y of K0(c, 0)0 D' works. In view of (19), we have

which implies that br(y ' ) E D ' . Hence the proof of the desired assertion in the present
situation is complete once we show that br(y~l) is a root of Q\(z), where Q\(z) is as in
(17). Let a' be an automorphism of KKQ/K which coincides with r on K0(c, /?); such an
automorphism exists, because K being a regular extension of Ko is linearly disjoint from

KQ over Ko\ (see [6, Chp. 3, §1, Thm. 2]). On writing Q(z) as ft (z - 5,-) with 5, = y we
see that

n in

<*(Q(z)) = FI (z ~ o-'(S,-)) = I ! (t> - Za'iS^/z",
1=1 / = 1

which shows that bo-'(Si1) = 6T(y-1) is a root of (^(z).
The remaining case "when c e K"o(/3)" will be disposed of by showing that we can

find P' e D' which is algebraic of degree n over K0(c) such that c & K0(f3').
Since the valuation v0 has two extensions to the separable quadratic extension K0(c)

of Ko, it follows from [3, Thm. 2.12] that c e Ko, where X"o is the completion of A"o with
respect to v0. As Ko is dense in Ko, corresponding to the coefficients cQ,cu- • • of P(X) we
can choose aQ, au... in Ko such that

wo(Ci-ai)>nn+i\ (0</<n-l), (20)

where A = max(w'(j3), -w'(p)). Set

i=0

We claim that there exists a root j3' of R(X) such that w'(]8 - /?') > /n. Suppose not; then
for each root a, of R(X), w'((5 - a,) < /x; consequently
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this is impossible because in view of (20)

w'(P(fi) -.R(fi)) = w'("t (c, - a,)P') ^ min(iv'(c, - a,) - /A) > /i/t.
\,=o / i

Hence the claim.

It only remains to be shown that c $ K0(P'); for otherwise we have

In < [K0(c, n : K0(c)][K0(c): Ko] = [W): Ko] ̂  n.

The proof of the theorem is now complete.
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