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Abstract. It is argued that the relativistic definitions of parallax, proper 
motion and radial velocity consistent with an accuracy of 1 //as should be 
considered only within a well-defined algorithm of relativistic reduction 
of observational data. Such an algorithm is formulated and the corre
sponding definitions of astrometric parameters are discussed. 

1. Introduction 

The accuracy of future space-based astrometric observations is expected to at
tain a level of 1 //as. In this paper we briefly describe a relativistic model of 
space-based optical positional observations valid at such a high-accuracy level 
and suggest, in particular, definitions of parallax, proper motion and radial 
velocity compatible with general relativity at a level of 1 //as. Although the def
initions are quite simple (see Klioner and Kopeikin, 1992), their interpretation 
at such a high level of accuracy is rather tricky. Parallax and proper motion 
are no longer two independent effects. Second-order effects due to parallax and 
proper motion as well as the effects resulting from interaction between the two 
effects are important. Moreover, parallax, proper motion and other astromet
ric parameters are defined operationally and have some meaning only within 
the particular model of relativistic reductions chosen. That is why the whole 
relativistic model of observations must be considered. It is also clear that in 
order to convert observed proper motion and radial velocity into true tangential 
and radial velocities of the observed object, additional information is required. 
Since that information is not always available, the concepts of "apparent proper 
motion", "apparent tangential velocity" and "apparent radial velocity" are sug
gested. These concepts represent useful information about the observed object 
and should be distinguished from "true tangential velocity" and "true radial 
velocity". Definitions of all these concepts are discussed below. 

Throughout this paper the following constraints on the various parameters 
are used to decide if a particular effect should be retained to attain the accuracy 
of 1 //as: (1) barycentric position of the observer: |xs | < 1 a.u. + 2 • 106 km; (2) 
barycentric velocity of the observer: |xs | < 4 • 104 m/s; (3) parallax x < 1". 

2. Relativistic model of positional observations 

A relativistic model for optical positional observations having an accuracy of 1 
//as is outlined below. It is assumed that the observations are performed from 

308 

https://doi.org/10.1017/S0252921100000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100000440


Relativistic Definitions of Astrometric Parameters 309 

an Earth satellite or a space station whose position xs relative to the Barycen-
tric Reference System (BRS) of the solar system is known for any moment of 
barycentric coordinate time t = TCB. The relativistic model to be discussed 
below consists of several subsequent steps accounting for the following effects: 

(1) aberration (effects vanishing together with the barycentric velocity of 
the observer). This step converts the observed direction to the source s into the 
unit BRS coordinate velocity of the light ray n at the point of observation xs; 

(2) gravitational light deflection for the source at infinity. This step converts 
n into the unit direction of propagation a of the light ray infinitely far from the 
solar system; 

(3) coupling of finite distance to the source and the gravitational light de
flection in the gravitational field of the solar system. This step converts a into 
a unit coordinate BRS direction k going from the source to the observer; 

(4) parallax. This step converts k into a unit BRS direction 1 going from 
the barycenter of the solar system to the source; 

(5) proper motion. This step provides a reasonable parameterization of the 
time dependence of 1 caused by the motion of the source relative to the BRS. 

2.1. Aberration 

The first step is to get rid of the aberrational effects related to the BRS velocity 
of the observer. Let s denote the unit direction toward the source as observed by 
the observer. Let p be the BRS coordinate velocity of the photon in the point 
of observation, (p is directed from the source to the observer.) The unit BRS 
coordinate direction of the light ray n = p / | p | can be computed as 

, s = - n + U + i f 2 + l f 3 + e?(c-4). (1) 

This formula contains relativistic aberrational effects f,- = f,(n,xs) up to third-
order in 1/c. Explicit form of f, can be found in (Klioner, 1991; Klioner, 
Kopeikin, 1992). Because of the first-order aberrational terms (classical aberra
tion) the BRS coordinate velocity of the satellite must be known to an accuracy 
of 10~3 m/s in order to attain an accuracy of 1 /xas. For a satellite with the 
BRS velocity \ks\ < 40 km/s, the first-order aberration is of the order of 28", 
the second-order effect may amount to 3.6 mas, and the third-order effects are 
~ 1 ^as. Note also that the higher-order aberrational effects are nonlinear 
with respect to the velocity of the satellite and cannot be divided into "annual" 
and "diurnal" aberrations as can be done with the first-order aberration for an 
Earth-bound observer. 

2.2. Gravitational light deflection 

The next step is to account for the general-relativistic gravitational light defec
tion, that is to convert n into the corresponding unit direction a of the light 
propagation infinitely far from the gravitating sources. Relativistic equations of 
light propagation can be written in the form 

xp(t) = Xp(t0) + c a (t - t0) + 6xp(t), (2) 

where to is the moment of observation, xp(to) is the position of the photon at the 
moment of observation (This position obviously coincides with the position of 
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the satellite at that moment xp(to) = xs(io).), a is the unit coordinate direction 
of the light propagation at past null infinity 

a— lim c~1xp(t), (3) 
t—*•—oo 

and Sxp is the sum of all the gravitational effects in the light propagation 
(Sxp(to) = 0, lim 6xp(t) = 0). If time dependence of the gravitational fields 

produced by the matter outside the solar system is negligible, those fields can be 
neglected while computing 6xp. Otherwise the external fields must be taken into 
account (e.g., for the observations of close binary stars, where the gravitational 
field of the companion can cause an additional time-dependent light deflection). 

The largest contribution to 6xp due to the solar system gravity comes from 
the spherically symmetric components of the gravitational fields of the massive 
bodies (see, e.g., Klioner and Kopeikin, 1992). Depending on the problem and 
the required accuracy, one can additionally consider the effects of quadrupole 
moments of the bodies, their rotational and translational motion as well as 
the post-post-Newtonian effect (Klioner, 1991a; Klioner, 1991b; Klioner and 
Kopeikin, 1992). It is easy to see that not only the major planets should be 
taken into account here, but also the Moon, Ceres and a dozen large satellites of 
giant planets. Detailed estimates of various effects will be published elsewhere. 

Coordinate velocity of the photon can be obtained by differentiating Eq. 
(2): Xp = ca + 6xp and then normalized to give the unit coordinate direction of 
the light propagation at the moment of observation 

n = a + g(n, 6xp(t0)). (4) 

2.3. Coupling of finite distance and gravitational deflection 

The next step is to convert a into a BRS direction from the source to the ob
server. Let xs(t) be the coordinate of the satellite at the moment of observation 
t and X(T) be the position of the source at the moment of emission T = T(t) 
of the observed signal. Let us denote 

k(t) = R(t)/R(t), R(t) = xa(t)-X(T), R{t) = \R(t)\. (5) 

Vector k is related to <r as (Klioner, 1991a): 

<r = k - k x (6xp x k)/R+0(c-4). (6) 

The only effect in Sxp to be accounted for here is the post-Newtonian gravita
tional deflection from the spherically symmetric part of the gravitational field of 
the Sun. The explicit formulas will be published elsewhere. The effect amounts 
to 10 ^ias for a source situated at a distance of 1 pc and observed at the limb of 
the Sun. One can check that the effect is larger than 1 fias if |X| < 10 pc and 
the source is observed within 2.3° from the center of the Sun. If at least one of 
these conditions is violated one can put k = <r. 

2.4. Parallax 

Now we have to get rid of the parallax (that is to transform k into a unit vector 
1 directed from the barycenter of the solar system to the source): 

1(*) = X(T) / |X(T) | . (7) 
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Let the parallax of the source be defined as 

jr(«) = l a . u . / | X ( r ) | , (8) 

the parallactic parameter II be given by 

n(t) = jr(t) x,(t) / 1 a.u., (9) 

and finally the observed parallactic shift of the source be defined as 

n(t) = 1(0 x (17(0 X 1(0). (10) 

With these definitions to sufficient accuracy one has 

k = -1(1 - |TT|2 /2) + -TT (1 + 1 • 77) + 0(w3). (11) 

The second-order effects in (11) proportional to 7r2 are less than 3 /was if |X| > 1 
pc. The second-order terms can be safely neglected if |X| > 2 pc. 

2.5. Proper motion 

The last step of the algorithm is to provide a reasonable parametrization of the 
time dependence of 1 and K caused by the motion of the source relative to the 
solar system barycenter. The following simple model for the coordinates of the 
source is adopted here 

X(T) = Xo + V A T + 0(AT 2 ) , (12) 

where AT = T - T0, X0 = X(T0), and V is the BRS velocity of the source 
evaluated at the initial epoch To. This model allows one to consider single 
stars or components of gravitationally bounded systems, periods of which are 
much larger than the time span of observations. In more complicated cases 
special solutions for binary stars, etc. should be considered. Depending on the 
source and time span of the observations higher-order terms in (12) can also be 
considered. Substituting (12) into definitions of 1 and TT one gets 

TT(0 = 7 r 0 ( l - l o - V / X o A r + 0(AT2)) , (13) 

1 = lo + l o x ( V x l o ) / X o A T + 0(AT 2 ) , (14) 

where XQ = |Xo|, no = T(*O) = 1 a.u./Xo. 
The signals emitted at moments To and T are received by the observer 

at moments to and t, respectively. Corresponding moments of emission and 
reception are related by the equations 

c ( * - r ) = | x . ( 0 - X ( T ) | (15) 

and similar equation for to and To- The relativistic effects in (15) can be shown 
to be negligible. Let us denote At = t — to as the time span of observations 
corresponding to the time span of emission AT. These two time intervals are 
related as 

At = ( l + c"1 lo • V ) AT - c"1 [x.(0 - x,(to)] • lo + 0(AT2). (16) 
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The first term in (16) is linear with respect to AT, the second term represents 
a quasi-periodic effect with an amplitude of about 500 s, giving a quasi-periodic 
term in apparent proper motion of the source (see, Klioner and Kopeikin, 1992). 
Eq. (16) results from a Taylor expansion of (15). Which terms of such an 
expansion are important depends on many factors. For example, for a large 
time span of observations terms quadratic in AT may become important. 

It is easy to see from (13) that time dependence of parallax ir can be used 
to determine radial velocity of the source. This question has been investigated 
in more detail in Dravins et al. (1999). The "true" tangential and radial com
ponents of barycentric velocity V of the source can be defined by 

V t a n = lo X (V X 10), Kad = 10 • V. (17) 

Eqs. (13)-(14) can be combined with (16) to get the time dependence of 1 and 
•K as seen by the observer. Collecting terms linear with respect to At we get the 
definition of apparent tangential velocity Vj*^ as the linear term in 1(f), and of 
apparent radial velocity V*^d as the linear term in x(£): 

V & = Vtan ( l + C- 1 K a d ) " ' , V£ = ^rad ( l + C"1 Vrad) " ' . (18) 

With these definition the simplest models for ir(t) and l(t) as seen by the observer 
read (the higher-order terms are neglected here): 

Jr(0 = 7 r 0 - * 0
2 O C P

d / l a . e . ) A * + . . . , (19) 

1(0 = lo + Map At + /xap c"1 ([x,(0 - x,(t0)] • lo) + • • •, (20) 

Map = 7 r 0 (V t
a ^ / l a . e . ) . (21) 

Apparent proper motion is denoted fiap here. The factor (l + c - 1 Kad)~ in (18) 
has been discussed in, e.g., Stumpff (1985) and Klioner and Kopeikin (1992). 
This factor may become very large and is one of the possible explanations of 
the well-known problem of superluminal motions in quasars and active nuclei of 
galaxies. 

If both V*^ and V£j^ can be determined from observations one can imme
diately restore the "true" velocities V t a n and Kad- However, even if it is not 
the case V*^, and V^ are useful by themselves. Note that the radial velocities 
as measured by Doppler observations are affected by a number of factors not 
influencing positional observations and do not coincide with either Vrad or V*^. 
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