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Abstract
Objective: To validate an automated food image identification system, DietCam,
which has not been validated, in identifying foods with different shapes and com-
plexities from passively taken digital images.
Design: Participants wore Sony SmartEyeglass that automatically took three images
per second, while two meals containing four foods, representing regular- (i.e.,
cookies) and irregular-shaped (i.e., chips) foods and single (i.e., grapes) and
complex (i.e., chicken and rice) foods, were consumed. Non-blurry images from
the meals’ first 5 min were coded by human raters and compared with DietCam
results. Comparisons produced four outcomes: true positive (rater/DietCam
reports yes for food), false positive (rater reports no food; DietCam reports food),
true negative (rater/DietCam reports no food) or false negative (rater reports food;
DietCam reports no food).
Setting: Laboratory meal.
Participants: Thirty men and women (25·1 ± 6·6 years, 22·7 ± 1·6 kg/m2, 46·7 %
White).
Results: Identification accuracy was 81·2 and 79·7 % in meals A and B, respectively
(food and non-food images) and 78·7 and 77·5 % in meals A and B, respectively
(food images only). For food images only, no effect of food shape or complexity
was found.When different types of images, such as 100 % food in the image and on
the plate, <100 % food in the image and on the plate and food not on the plate,
were analysed separately, images with food on the plate had a slightly higher
accuracy.
Conclusions:DietCam shows promise in automated food image identification, and
DietCam is most accurate when images show food on the plate.
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Accurate dietary assessment is essential to understand
how diet impacts health(1). Commonly used self-reported
dietary assessment methods (i.e., 24-h dietary recall, food
record, FFQ) are prone to errors due to limited accuracy
in capturing all items and portion sizes consumed(2,3).
These methods are labour intensive in data collection
and/or analysis(4,5). Self-reported dietary data appear to
have systematic bias, in which populations with obesity
are more likely to underreport intake(6–13).

The incorporation of technology via images, using
active and passive methods, into dietary assessment is
one way to improve dietary assessment accuracy(14).
Active image-assisted dietary assessment methods require
individuals to manually capture images or videos with

digital cameras, smartphones and other picture-capturing
devices(14). Studies on active methods show that these
methods provide comparable accuracy of dietary informa-
tion when compared with objective dietary assessment
methods(15–17). However, these active methods are not fully
automated in identifying food or estimating portion sizes,
still creating burden for participants and providers/staff
in documenting information accurately (i.e., participants
may need to provide additional information other than
images to assist with accuracy, and images may need to
be viewed by providers/staff to identify items and portions
consumed). Most importantly, active methods still rely on
humans to manually capture images; thus, if images are not
taken or images are of poor quality, accuracy is diminished.
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Passive image-assisted dietary assessment methods, in
which images or videos automatically capture dietary intake
through the use of wearable devices/tools, are the next
generation of image-assisted dietary assessment methods
developed. It is believed that thismethod can reduce human
errors as the process of collecting dietary information
requires less effort and training than the active methods
for both participants and providers/staff(14). Research in
this area is still in its infancy and has developed as tech-
nology has advanced, but results of reviewed passive
methods showed promise in accuracy of assessing dietary
information, with some methods automating portion size
estimation(18–21).

To fully automate image-assisted dietary assessment
methods, valid image identification methods need to be
developed. Jia et al.(22) conducted the only validation study
of an automatic food detection method using images col-
lected from a wearable device (eButton), in which images
were classified as containing food or non-food only.
Investigators found the accuracy rates of 91·5 and 86·4 %
when averaged between true positive (TP; correctly iden-
tifying food images) and true negative (TN; correctly iden-
tifying non-food images)(22). Thus, currently none of the
passive-assisted dietary assessment methods possess auto-
matic food identification that can identify specific food
items. One additional challenge of images collected pas-
sively with wearable devices is that because images are
captured when the participant is moving and eating, the
items being consumed are not fully captured (partial
images) or fully clear (may be partially blocked by hands,
hair, etc.) and may not be on a flat surface (i.e., being held
in a hand or on a utencil), making identification more chal-
lenging. Therefore, the purpose of this proof-of-concept
investigation was to validate an automated food image
identification system, DietCam, using images pasively
taken by Sony SmartEyeglass (wearable device) to identify
food items with different shapes and complexities.
Furthermore, the type of food images (i.e., full or partial)
was examined for accuracy of identification. The specific

aims were (i) to describe the agreement between human
raters and DietCam in identifying foods and no food in
images taken by Sony SmartEyeglass, (ii) to describe the
agreement between human raters and DietCam in identify-
ing foods in different shapes (regular v. irregular) and com-
plexities (single food v. mixed food) and (iii) to describe the
agreement between human raters and DietCam for types of
coded food images (i.e., when 100 %of the food available is
in the image and on the plate, when <100 % of the food
available is in the image and on the plate and when the
food is not on the plate (on an eating utensil or in a hand))
in identifying foods in different shapes and complexities.

Method

Study design
A mixed factorial design was used, with between-subject
factor of meal orders (1 or 2) and within-subject factors
of meals (meals A and B), food shapes (regular and irregu-
lar) and food complexities (single food and mixed food)
(see Table 1). Participants were randomised into one of
the two meal orders. In each meal, participants were
given a meal that included a regular-shaped single food
(i.e., cookie or grapes), an irregular-shaped single food
(i.e., chips or ice cream), a regular-shaped mixed food (i.e.,
sandwich or wrap) and an irregular-shaped mixed food
(i.e., pasta dish or chicken and rice dish). Dependent var-
iables were the identification of foods (percentage of TP,
false positive (FP), false negative (FN) and TN).

Participants
Thirty participants were recruited through flyers posted
around the University of Tennessee Knoxville campus (see
Fig. 1 for participant flow). Interested individuals were
phone screened for eligibility. Eligibile participants were
aged 18 and 65 years, had a BMI between 18·5 and
24·9 kg/m2, had no food allergies/intolerance to study
foods, had no dietary plan/restriction that prevented

Table 1 Description of study design

Meal
order Meal session 1 Meal session 2

1 (n 15) Meal A Meal B
Turkey and Provolone Cheese Sandwich (regular-shaped
mixed food)

Ham and Cheddar Cheese Wrap (regular-shaped mixed
food)

Chicken and Wild Rice (irregular-shaped mixed food) Pasta with Broccoli in Alfredo Sauce (irregular-shaped mixed
food)

Chocolate Chip Cookie (regular-shaped single food) Red Seedless Grapes (regular-shaped single food)
Potato Chips Original (irregular-shaped single food) Chocolate Ice Cream (irregular-shaped single food)

2 (n 15) Meal B Meal A
Ham and Cheddar Cheese Wrap (regular-shaped mixed
food)

Turkey and Provolone Cheese Sandwich (regular-shaped
mixed food)

Pasta with Broccoli in Alfredo Sauce (irregular-shaped mixed
food)

Chicken and Wild Rice (irregular-shaped mixed food)

Red Seedless Grapes (regular-shaped single food) Chocolate Chip Cookie (regular-shaped single food)
Chocolate Ice Cream (irregular-shaped single food) Potato Chips Original (irregular-shaped single food)
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the consumption of study foods, reported a favourable
preference for study foods (rated each food item ≥3
out of 5 on a Likert scale), were able to complete all meal
sessions within 4 weeks of the screening session, were
not legally blind without corrected lenses and were able
to eat a meal while wearing Sony SmartEyeglass. Individuals
were excluded if theywore electronic medical devices (pace-
makers and implantable defibrillators) that would be effected
by the controller of Sony SmartEyeglass(23).

Study procedure

Screening session
Following phone screening, eligibile participants were
invited to a 30-min in-person screening in which partici-
pants signed consent forms and filled out demographic
questionnaire. Height and weight measures were taken
to confirm eligibility.

Meal sessions
Participants were scheduled for two 40-min meal ses-
sions, with approximately 1 week between each session.

Participants were asked to stop eating a minimium of
2 h prior to the scheduled meal sessions and only con-
sume water during that period. During meal sessions, par-
ticipants were instructed that after putting on the Sony
SmartEyeglass to initiate the recording via the controller
of the Sony SmartEyeglass. After the recordingwas initiated
and prior to starting to eat, participants were instructed to
look at each provided food at the table. Then, participants
were also instructed to turn their head towards their left
shoulder, look at each food from the side and then repeat
the same step by turning their head towards the right
shoulder. Participants were then asked to start the meal
by taking one bite of each provided food. For the first bite
of each food, participants were instructed to hold the food,
either in their hand or on a fork or a spoon (depending on
the food), approximately 12 inches in front of the Sony
SmartEyeglass and to look at the food. Following taking
the first bite of each provided food, participants were
instructed to eat normally until satisfied. Participants were
given 30min to eat. The second meal session followed the
same procedure as the first meal session. After the second
meal session was completed, participants were given a $20
gift card.

Uninterested = 3
Unable to reach = 11

Phone screened = 40

Ineligible = 8

Self-reported BMI outside eligible range = 5
Legally blind without correct lenses = 1
Dislike foods = 1
Have food allergies/dietary restriction = 1

Ineligible = 2

Measured BMI outside eligible range = 2

Randomized to meal orders = 30

meal order 1 (n 15)
meal order 2 (n 15)

Interested participants = 54

Screening session = 32

Fig. 1 Flow of study participants
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Meal
The meals contained foods categorised into two food
shapes (regular and irregular) and two food complexities
(single food and mixed food). Each meal contained four
foods (see Table 1), with the four foods representing the
four potential food categories. Eachmeal provided approx-
imately 50 % of daily estimated energy needs for each
sex(24). Thus, each meal provided different portions of
foods to males and females, in which the overall amount
provided was approximately 5125·4 kJ for males and
3974·8 kJ for females. Each food provided approximately
25 % of the energy for each meal.

Wearable device: Sony SmartEyeglass
Sony SmartEyeglass, developed by Sony Corporation, is an
eyeglass that is intended to be operated as an Android sys-
tem mobile device(25). Sony SmartEyeglass has a display,
built-in camera, sensors and a touch-sensitive controller
and keys(25). Sony SmartEyeglass is designed to be worn
as usual eyeglasses, and the user is able to operate the eye-
glasses via the touch-sensitive controller(25). The controller
can also be connected to an Android system device
wirelessly(25). In the current study, an application was
developed for Sony SmartEyeglass to automatically take
approximately three images every second.

Automatic analysis tool: DietCam
DietCam(26) is an application that has an algorithm called
multi-view food recognition designed to automatically
recognise foods from images. In the current paper, we
use an updated DietCam algorithm with a deep learning
technology(27). The newDietCam is composed of automati-
cally trained neural network features and detector(27). New
DietCam has the advantage of extending more categories
of food detection and higher detection rate and accu-
racy(27). DietCam was used to analyse images taken by
the Sony SmartEyeglass.

Process of food identification of images

Training DietCam
Fourteen randomly selected images from each meal, a
total of twenty-eight images, from ten randomly selected

participants were used as training images for DietCam.
DietCam was trained for food identification for the
general food categories (e.g., sandwich, cookie, wrap,
grapes, etc.). Foods in the selected images were framed
and annotated with food category or categories (each
image could have a range of 0–4 food categories anno-
tated) using MATLAB version R2017b with coded pro-
gramme written by a research staff. Each framed and
annotated food category was then cropped out into small
image patches for data augmentation by adding addi-
tional external images for training and generalisation
purpose. The version 2012 dataset from the PASCAL
Visual Object Classes(28) with over 17 000 images was
used for the data augmentation during training. The
training achieved an average of 97 % accuracy.

Automatic image analysis by DietCam
All food images from the remaining twenty participants
were input into DietCam for automatic image analysis.
Processed food images were labelled with names of the
food categories appearing in the image, with a rectangle
frame around the identified foods, and provided in a text
file with a list of foods identified in each image (e.g.,
see Fig. 2).

Reference coded by human raters
To determine the accuracy of food identification by
DietCam, images captured in the first 5 min of each meal
session, with the 5-min period starting when the first food
image appeared in the meal, were selected. This period
was selected because it captured the start of the meal when
participants were instructed to capture images of the food
from several angles before starting to eat and also captured
images of the food while eating. As approximately three
images were taken each second, over a 5-min period, it
was anticipated that approximately 900 images would be
collected per meal. As images were to be coded in twenty
participants for two meals, it was anticipated that approx-
imately 36 000 images would be coded. The selected
images were coded by human raters (who were one of
the investigators and research staff) into one of the three
codes: (i) blurry image, (ii) no food or (iii) specific food

Fig. 2 Results of DietCam food identification. On the left, a processed image by DietCam is shown, with each rectangle frame
representing one food identification, which also appears on the associated text file showed on the right and is highlighted

Food identification dietary assessment 2703

https://doi.org/10.1017/S1368980020000816 Published online by Cambridge University Press

https://doi.org/10.1017/S1368980020000816


in an image. For images that contained a food, three codes
for each food were used for further classification: (i) 100 %
of the food visible on the serving plate (100 % food images),
(ii) <100 % of the food visible on the serving plate (partial
food images) and (iii) the food in the image but not on the
plate (no plate food images), such as when food was on a
fork or held in hand. When images contained food, they
were coded into all possible food codes, meaning one
image could include more than one food image code (e.g.,
see Fig. 3).

To determine inter-rater agreement for image coding,
33 % of all coded images were coded by two raters. Two
raters coded one meal until 90 % agreement was achieved.
Once 90 % agreement was achieved, the raters coded thir-
teen meals independently. Percentage agreement between
the raters was determined by dividing the total numbers of
images in which agreement occurred between raters by the
total numbers of images, then multiplying by 100.

Comparison of results: human raters v. DietCam
Results from human raters were compared with results in
the text file of food identification by DietCam. For each
image, the comparison produced four outcomes shown
in Table 2 for each potential food in the image: TP (rater
and DietCam both identify the food), FP (rater does not
identify the food while DietCam identifies the food), FN

(rater identifies the food while DietCam does not identify
the food) or TN (rater and DietCam both do not identify
the food). The performance of DietCam in food identifica-
tion was evaluated using measures of sensitivity, specificity
and accuracy.

Sensitivity ¼ TP
TPþ FN

;

Specificity ¼ TN

TNþ FP

and

Accuracy ¼ TPþ TN

TPþ TNþ FNþ FP
:

Statistical analyses
Data were analysed using SPSS version 24.0 (SPSS Inc.).
Demographic information was collected using self-
reported questionnaire, which included commonly used
classification by the National Institutes of Health (https://
grants.nih.gov/grants/guide/notice-files/not-od-15–089.
html). For nominal/ordinal data, χ2 tests, and for interval/
ratio data, independent sample t tests, with the between-
subject factor of meal orders, were conducted to examine
the difference between meal orders on participant char-
acteristics. Due to significance found between meal
orders for race and ethnicity, these variables were used
as covariates in subsequent analyses.

For the first aim, to describe the agreement of identifica-
tion between raters andDietCam for each specific food and
no food images, a mixed ANCOVA, with within-subject fac-
tors of meals (meals A and B), food categories in each meal
(meal A: cookies, chips, chicken and rice, sandwich and no
food; meal B: grapes, ice cream, pasta dish, wrap and no
food) and comparison outcomes (TP, FP, FN and TN), with
covariates of ethnicity, race and meal orders, was con-
ducted. For this overall analysis, the three codes for the
types of food images (100 % food images, partial food
images and no plate food images) coded by human raters
were recoded and combined into one variable as an overall
food code.

For aims 2 and 3, the images coded by raters as no food
were excluded from the analyses; thus, the same numbers
of images were used in both aims. For aim 2, similar to aim
1, all types of food images (100 % food images, partial food
images and no plate food images) coded by human raters
were combined into one variable as an overall food code.
A mixed ANCOVA was conducted, with within-subject fac-
tors of meals (meals A and B), food shapes (regular and
irregular), food complexities (single food and mixed food)
and comparison outcomes (TP, FP, FN and TN), with cova-
riates of ethnicity, race and meal orders. For aim 3, the
same analyses were conducted, but each analysis only
included one type of code for the image. For within-subject

Fig. 3 Example image coded by raters. This image was coded
by raters as grapes 100% available and visible on the serving
plate, ice cream100%available and visible on the serving plate,
pasta dish less than 100% available and visible on the serving
plate and pasta dish in the image but not on the plate

Table 2 Definition of four comparison outcomes: true positive (TP),
false positive (FP), true negative (TN) and false negative (FN)

Actual (human raters)

Predicted (DietCam)

Specific food
present

Specific food
not present

Specific food present TP FN
Specific food not present FP TN
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comparisons, Greenhouse–Geisser corrections were used
to adjust for sphericity. Post hoc pairwise comparisons
using Bonferroni corrections were used to determine-
which groups differed in percentage agreement. For sig-
nificant outcomes, α was <0·05.

Results

Participant characteristics
Participant characteristics by meal orders are presented in
Table 3. Participants were aged 25·1 ± 6·6 years with a BMI
of 22·7 ± 1·6 kg/m2. Participants were 56·7 % female, 43·3 %
male, with 96·6 % having some college education and
86·7 % never married. No significant difference occurred
between meal orders 1 and 2 for age (P= 0·68), BMI
(P = 0·59), sex (P= 0·27), education level (P = 0·15) and
marital status (P= 1·00). For race, participants were predomi-
nately White (46·7 %) and Asian (46·7 %). Significance was
found between meal orders for race (χ2(3)= 13·7, P= 0·003)
with 80·0 % of participants in meal order 1 identifying as
Asian and 73·3 % of participants in meal order 2 identifying
asWhite. Significance was also found betweenmeal orders
for ethnicity (χ2(1)= 6·0, P= 0·01] with 100% of participants
identifying as non-Hispanic/Latino inmeal order 1 and 66·7 %
identifying as non-Hispanic/Latino in meal order 2.

All food and no food images
A total of 36 412 images were coded, in which 2106 images
(5·8 %) were coded by raters as blurry. Thus, after excluding
blurry images, a total of 34 306 images (17 279 in meal A and
17 027 in meal B) were included in analyses.

References coded by human raters
For images included in analyses, 31 617 images (92·2 %)
were coded as having foods. A total of 2689 images
(7·8 %) were coded as having no food. The total number
of codes for both meals A and B identified by human
raters was 64 040, with 51·0 % in meal A and 49·0 % in
meal B. Rater results are presented in Table 4.

The mean meal percentage agreement between raters
was 84·5 ± 3·7 % (images from thirteen meals), and the per-
centage agreement for meal A (images from six meals) was
85·3 ± 3·4 % and for meal B (images from seven meals)
was 83·9 ± 4·0 %.

Identification by DietCam
DietCam identified 26 737 images (77·9 %) with food and
7569 images (22·1 %) with no food. The total number of
codes for both meals A and B identified by DietCam was
40 401 codes, with 51·5 % in meal A and 48·5 % in meal B.
The results of the identification by DietCam are presented
in Table 4.

Food and no food identification
For the identification of each specific food and no food, the
overall mean of TP was 22·8 ± 3·4 %, FP was 1·1 ± 0·3 %, TN
was 56·7 ± 6·8 % and FN 19·4 ± 4·8 % (see Table 2 for the
definition of outcomes). After adjusting for race, ethnicity
and meal order, a statistical significance of comparison out-
comes was found (F3,48= 4·608, P = 0·04). Post hoc tests
using Bonferroni correction indicated statistical signifi-
cance between all comparison outcomes (P< 0·01). The
comparison of identification results between human raters
and DietCam for each meal is shown in Table 5. The accu-
racy of identification was 81·2 % for meal A and 79·6 % for
meal B. The results of sensitivity, specificity and accuracy
are shown in Table 6.

All food images: food shape and complexitiy
For the identification of specific foods in images only con-
taining foods, the overall mean of TP was 24·7 ± 3·1 %, FP
was 1·0 ± 0·4 %, TN was 53·4 ± 5·8 % and FN was
20·9 ± 4·5 %. A main effect of comparison outcomes
was found (F3,48 = 4·9, P = 0·03). Post hoc tests using
Bonferroni correction indicated statistical significance
between all comparison outcomes (P < 0·05). No signifi-
cant main effects or interactions were found with food
shapes or complexities. The comparison of identification
results between human raters and DietCam for each meal
is shown in Table 5. The accuracy of identificationwas 78·7 %
for meal A and 77·5 % for meal B. The results of sensitivity,
specificity and accuracy are shown in Table 6.

Types of food images
The comparison of identification results between human
raters and DietCam for different types of images is shown
in Table 5.

Table 3 Participant characteristics (mean and SD)

Meal order 1
(n 15) *

Meal order
2 (n 15)*

Mean SD Mean SD

Age (years) 25·3 6·2 24·8 7·1
Sex (%)
Male 53·3 33·3
Female 46·7 66·7

BMI (kg/m2) 22·6 1·6 22·8 1·7
Marital status (%)
Married 13·3 13·3
Never married 86·7 86·7

Education status (%)
High school (10–12 years) 6·7 0
Some college (<4 years) 6·7 33·3
College/University degree 40·0 46·7
Graduate/professional education 46·7 20·0

Race (%)
American Indian/Alaskan Native 0 6·7
Asian 80·0a 13·3b

White 20·0a 73·3b

Other 0 6·7
Ethnic heritage (%)
Hispanic/Latino 0a 33·3b

Not Hispanic/Latino 100·0a 66·7b

*See Table 1 for the description of meal orders.
a,bValues with different superscripts are significantly different (P< 0·05).
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Hundred percentage food images
For 100 % food images, the overall mean of TP was
11·5 ± 2·9 %, FP was 14·2 ± 2·8 %, TN was 65·1 ± 4·9 %
and FN was 9·2 ± 2·7 %. A main effect of comparison out-
comes was found (F3,48 = 11·3, P < 0·0001). Post hoc
tests using Bonferroni correction indicated statistical sig-
nificance between TP and TN (P < 0·0001), TP and FN
(P = 0·033), FP and TN (P < 0·0001), FP and FN
(P < 0·0001) and TN and FN (P < 0·0001). No statistical
significance was found between TP and FP (P = 0·11).

A significant interaction of food shapes × comparison
outcomes occurred (F3,48 = 4·4, P = 0·022). The pairwise
comparisons indicated statistical significance between
regular and irregular food shapes for all comparison out-
comes (P< 0·05). For regular-shaped foods, the overall mean
was 14·8± 5·6 % for TP, 16·9 ± 4·5 % for FP, 62·9± 6·2 % for
TN and 5·3 ± 3·5 % for FN. For irregular-shaped food, the
overall mean was 8·2± 3·7 % for TP, 11·5 ± 3·4 % for FP,
67·2 ± 7·2 % for TN and 13·2 ± 4·1 % for FN. No statistical

significance was found for interactions with food complex-
ities or for amain effect of food shapes or complexities. The
accuracy of identification was 77·6 % for meal A and 75·2 %
for meal B, as shown in Table 6. The accuracy of identifi-
cation was 77·7 % and 75·1 % for regular-shaped foods and
irregular-shaped foods, respectively.

Partial food images
For partial food images, the overall mean of TP was
13·0 ± 2·9 %, FP was 12·6 ± 2·9 %, TN was 63·8 ± 4·4 %
and FN was 10·5 ± 3·3 %. A main effect of comparison out-
comes was found (F3,48= 9·8, P< 0·0001). Post hoc tests
using Bonferroni correction indicated statistical signifi-
cance between TP and TN (P< 0·0001), FP and TN
(P< 0·0001) and TN and FN (P< 0·0001). No significant dif-
ference was found between TP and FP (P= 1·00), TP and
FN (P= 0·16) and FP and FN (P= 0·42).

A significant interaction of food shapes × comparison
outcomes occurred (F3,48= 4·9, P = 0·005). The pairwise

Table 4 Distribution of codes: DietCam and human raters

DietCam Human raters

Numbers of codes % Numbers of codes (%) %

Meal A= 17 279 images
Chocolate chip cookies (total) 6801 32·7 8990* 27·5
Item 100% on the plate – 4624† 51·4
Item partially on the plate – 3987† 44·3
Item in the image but not on the plate – 379† 4·2

Potato chips (total) 3814 18·3 9830* 30·1
Item 100% on the plate – 4703† 47·8
Item partially on the plate – 4752† 48·3
Item in the image but not on the plate – 375† 3·8

Chicken and wild rice (total) 3364 18·3 6335* 19·4
Item 100% on the plate – 1496† 23·6
Item partially on the plate – 3985† 62·9
Item in the image but not on the plate – 854† 13·5

Turkey and Provolone Cheese Sandwich (total) 3090 14·9 5950* 18·2
Item 100% on the plate – 1605† 27·0
Item partially on the plate – 3214† 54·0
Item in the image but not on the plate – 1131† 19·0

No food 3724 17·9 1539 4·7
Total numbers of codes 20 793 32 644

Meal B= 17 027 images
Chocolate Ice Cream (total) 2119 10·8 9306* 29·6
Item 100% on the plate – 6238† 67·0
Item partially on the plate – 2762† 29·7
Item in the image but not on the plate – 306† 3·3

Grapes (total) 7583 38·7 10 209* 32·5
Item 100% on the plate – 4380† 42·9
Item partially on the plate – 5524† 54·1
Item in the image but not on the plate – 305† 3·0

Pasta with broccoli and Alfredo sauce (total) 3259 16·6 6256* 19·9
Item 100% on the plate – 1259† 20·1
Item partially on the plate – 3853† 61·6
Item in the image but not on the plate – 1144† 18·3

Ham and Cheddar Cheese Wrap (total) 2802 14·3 4475* 14·3
Item 100% on the plate – 1928† 43·1
Item partially on the plate – 1828† 40·8
Item in the image but not on the plate – 719† 16·1

No food 3845 19·6 1150 3·7
Total numbers of codes 19 608 31 396

*Percentage calculated from the total numbers of codes.
†Percentage calculated from the total numbers of codes under each food.
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Table 5 Comparison of identification results: DietCam v. human raters

Meal A

Numbers of codes (%)

Food and no food
images

(n 17 279)
All types of food images

(n 15 740)
100% food images

(n 15 740)
Partial food images

(n 15 740)
No plate food images

(n 15 740)

n % n % n % n % n %

Chocolate chips cookies True positive 6456a 37·4 6456a 41·0 3373a 21·4 3069a 19·5 212a 1·3
False positive 345b 2·0 255b 1·6 3338a 21·2 3642a 23·1 6499b 41·3
True negative 8244c 47·7 6795c 43·2 7778b 49·4 8111b 51·5 8862c 56·3
False negative 2234d 12·9 2234d 14·2 1251c 7·9 918a 5·8 167d 1·1

Potato chips True positive 3727a 21·6 3727a 23·7 2069a 13·1 1653a 10·5 182a 1·2
False positive 87b 0·5 55b 0·3 1713a 10·9 2129a 13·5 3600b 22·9
True negative 7688c 44·5 6181c 39·3 9324b 59·2 8859b 56·3 11 765c 74·7
False negative 5777d 33·4 5777d 36·7 2634c 16·7 3099a 19·7 193d 1·2

Chicken and wild rice True positive 3215a 18·6 3215a 20·4 866a 5·5 2348a 14·9 420a 2·7
False positive 149b 0·9 116b 0·7 2465a 15·7 983a 6·2 2911b 18·5
True negative 11 499c 66·5 9993c 63·5 11 779b 74·8 10 772b 68·4 11 975c 76·1
False negative 2416d 14·0 2416d 15·4 630c 4·0 1637a 10·4 434d 2·8

Turkey and Provolone
Cheese Sandwich

True positive 2939a 17·0 2939a 18·7 1292a 8·2 1582a 10·1 293a 1·9
False positive 151b 0·9 110b 0·7 1757a 11·2 1467a 9·3 2756b 17·5
True negative 11 715c 67·8 10 217c 64·9 12 378b 78·6 11 059b 70·3 11 853c 75·3
False negative 2474d 14·3 2474d 15·7 313c 2·0 1632a 10·4 838d 5·3

No food True positive 1332a 7·7 – – – –
False positive 2392b 13·8 – – – –
True negative 13 348c 77·2 – – – –
False negative 207d 1·2 – – – –

Meal B Food and
no food
Images
(n 17 027)

All types of
food images
(n 15 877)

100% Food
images

(n 15 877)

Partial food
images

(n 15 877)

No plate
food images
(n 15 877)

Chocolate Ice Cream True positive 2000a 11·7 2000a 12·6 1407a 8·9 594a 3·7 47a 0·3
False positive 119b 0·7 101b 0·6 694a 4·4 1507a 9·5 2054b 12·9
True negative 7883c 46·3 6751c 42·5 8945b 56·3 11 608b 73·1 13 517c 85·1
False negative 7025d 41·3 7025d 44·2 4831c 30·4 2168a 13·7 259d 1·6

Grapes True positive 7312a 42·9 7312a 46·1 3247a 20·5 4065a 25·6 232a 1·5
False positive 271b 1·6 216b 1·4 4281a 27·0 3463a 21·8 7296b 46·0
True negative 6848c 40·2 5753c 36·2 7216b 45·4 6890b 43·4 8276c 52·1
False negative 2596d 15·2 2596d 16·4 1133c 7·1 1459a 9·2 73d 0·5

Pasta with Broccoli and
Alfredo Sauce

True positive 3139a 18·4 3139a 19·8 854a 5·4 2284a 14·4 506a 3·2
False positive 120b 0·7 108b 0·7 2393a 15·1 963a 6·1 2741b 17·3
True negative 11 556c 67·9 10 418c 65·6 12 225b 77·0 11 061b 69·7 11 992c 75·5
False negative 2212d 13·0 2212d 13·9 405c 2·6 1569a 9·9 638d 4·0

Ham and Cheddar Cheese
Wrap

True positive 2485a 14·6 2485a 15·7 1346a 8·5 992a 6·3 244a 1·5
False positive 317b 1·9 265b 1·7 1404a 8·8 1758a 11·1 2506b 15·8
True negative 12 449c 73·1 11 351c 71·5 12 545b 79·0 12 291b 77·4 12 652c 79·7
False negative 1776d 10·4 1776d 11·2 582c 3·7 836a 5·3 475d 3·0

No food True positive 1015a 6·0 – – – –
False positive 2830b 16·6 – – – –
True negative 13 047c 76·6 – – – –
False negative 135d 0·8 – – – –

Mean values within a column with different superscripts are significantly different (P< 0·05).
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comparisons indicated statistical significance between
regular and irregular food shapes for all comparison out-
comes (P < 0·01). For regular-shaped food, the overall
mean was 15·2 ± 4·5 % for TP, 16·5 ± 5·7 % for FP,
60·7 ± 4·4 % for TN and 7·6 ± 3·4 % for FN. For irregular-
shaped food, the overall mean was 10·9 ± 3·4 % for TP,
8·8 ± 3·8 % for FP, 66·9 ± 5·4 % for TN and 13·5 ± 4·9 % for
FN. No statistical significance was found for interactions
with food complexities or for a main effect of food shapes
or complexities. The accuracy of identification was 75·4 %
for meal A and 78·4 % for meal B, as shown in Table 6. The
accuracy of identification was 76·0 and 77·8 % for regular-
shaped foods and irregular-shaped foods, respectively.

No plate food images
For no plate food images, the overall mean of TP was
1·6 ± 0·9 %, FP was 24·1 ± 3·4 %, TN was 71·9 ± 2·9 % and
FN was 2·4 ± 1·1 %. A main effect of comparison out-
comes was found (F3,48 = 36·3, P < 0·0001). Post hoc tests
using Bonferroni correction indicated statistical signifi-
cance between all comparison outcomes (P < 0·05).

A significant interaction of food shapes × comparison
outcomes occurred (F3,48= 11·5, P= 0·001). The pairwise
comparisons indicated statistical significance between
regular- and irregular-shaped foods for FP (P < 0·0001)
and TN (P < 0·0001). For regular-shaped food, the over-
all mean was 1·5 ± 1·0 % for TP, 30·2 ± 4·4 % for FP,
65·9 ± 4·0 % for TN and 2·4 ± 1·7 % for FN. For irregular-
shaped food, the overall mean was 1·7 ± 1·4 % for TP,
17·9 ± 4·2 % for FP, 78·0 ± 4·3 % for TN and 2·4 ± 1·2 % for
FN. No statistical significance was found for interactions
with food complexities or for a main effect of food shapes
or complexities. The accuracy of identification was
72·4 % for meal A and 74·7 % for meal B, as shown in
Table 6. The accuracy of identification was 67·4 and
79·7 % for regular-shaped foods and irregular-shaped
foods, respectively.

Discussion

This validation study was designed to describe the agree-
ment between human raters and DietCam in identifying
specific foods and no food in images, examining foods
of different shapes and complexities for all food images
and foods of different shapes and complexities in various
types of food images. When identification examined the
presence of specific foods or no food in an image,
DietCam showed an averaged accuracy of 81·2 % for meal
A and 79·6 % for meal B. Jia et al.(22) examined an auto-
mated system identifying the presence of food or no food
in images and found an accuracy rate of 91·5 % when ana-
lysing images (3900 total images) collected by eButton in
thirty participants. When analysing more images (29 515
total images) collected in 1 week by a single participant,
the results showed an accuracy rate of 86·4 % in food
and no food identification(22). When analysing a compa-
rable amount of images, the current study found that
DietCam is similar, but slightly lower, in accuracy for
identifying food and no food images. This difference
may be a consequence of DietCam identifying specific
foods and no food being present in images (i.e., cookie,
ice cream, no food), while the previous investigation was
only trying to identify if food was present or not (i.e.,
food and no food). As DietCam was trained to perform
a more specific identification task, this may create more
opportunity for error.

The results of analyses for overall food images in shapes
and complexities indicate that DietCam shows promise in
automated food image identification as over 77 % of images
were identified correctly. DietCam also has a low false iden-
tification percentage (identifying a specific foodwhen it is not
in the image), 1·0 ± 0·4 %. The findings also suggest that there
was no difference in DietCam’s ability in identifying regular-
and irregular-shaped foods and single and mixed foods.

When analysing the results of specific types of food
images, there was an interaction of food shapes by com-
parison outcomes, with regular-shaped foods having a
slightly higher accuracy percentage for the 100 % food
images and the irregular-shaped foods having a higher
accuracy percentage for the partial and no plate food
images. This difference may be a consequence of the
partial and no plate food images showing incomplete
images of the foods, thus showing all foods as irregular
shaped, making it more challenging for DietCam to iden-
tify the regular-shaped foods. Overall, DietCam appears
to more accurately identify foods in both 100 % and par-
tial food images. For no plate food images, DietCam has
higher amounts of FP, over 20 %, as compared with 100 %
and partial food images (<20 %). This would also mean
that when analysing no plate food images, DietCam may
identify a specific food when the food is not present in
the image. These results suggest that only analysing 100%
and partial food images may optimise food identification
outcomes.

Table 6 Comparison results of sensitivity, specificity and accuracy

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Meal A
Food and no food
images

85·0 80·0 81·2

All types of food
images

96·8 72·0 78·7

100% food images 45·0 89·5 77·6
Partial food images 51·3 84·2 75·4
No plate food images 6·7 96·5 72·4

Meal B
Food and no food
images

81·4 79·0 79·7

All types of food
images

95·6 71·6 77·5

100% food images 43·9 85·5 75·2
Partial food images 50·8 87·4 78·4
No plate food images 6·6 97·0 74·7
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The findings in the current study are novel since none of
the previously investigated passive image-assisted dietary
assessment methods possess an automated food identifi-
cation system that has the ability to automatically identify
specific food items. Previous studies(18–21) validating dif-
ferent passive image-assisted dietary assessment methods
relied on participants or human raters to recognise
specific food items consumed. The automated food iden-
tification through DietCam completely eliminated human
effort in the food identification process. Boushey et al.(17)

validated an active image-assisted dietary assessment
method, mobile food record, with an automated system
to classify food items. However, the results of the auto-
mated identification required participants to review
and confirm while also giving the options for participants
to make changes as needed(17). The investigators also did
not provide any information on how frequently a partici-
pant needed to correct or change the automated identi-
fication conducted by mobile food record. In addition,
mobile food record required a specific colour fiducial
marker to facilitate the food identification process(29),
while DietCam does not require any reference objects
to facilitate the process.

For strengths, the current study included a larger and
more diverse sample compared with most previous stud-
ies investigating passive image-assisted dietary assess-
ment(18–22). Furthermore, the current study included
thousands of pictures in the analyses and analysed pic-
tures collected during an actual eating situation. Most
importantly, this was the first study to examine if food
characteristics and types of images influence accuracy
of automated identification.

The study has several limitations. First, the text files did
not specify if the rectangle frame was correctly placed on
the identified foods or not. For example, the text file may
identify that cookies were in the image, but the actual
image may have a rectangle frame around the sandwich
and label the frame cookies (i.e., frame around the wrong
food). Thus, there may be additional errors in identification
than what could be determined from the text file. Second,
the current DietCam system was trained on a limited num-
ber of images (n 28). Since the collected images captured a
wide variety of different angles of the foods, the small num-
ber of training images might not have captured all the
angles required to completely train the DietCam system
to identify each food item. Third, the current study included
limited types of foods to test the automated food identifica-
tion of DietCam. Thus, it is unclear on DietCam’s ability in
correctly identifying foods that are consumed in eating
occasions with greater variety of foods or across several
eating occasions in a day. This limits the generalisability
of the results of the investigation. Future investigations will
need to examine DietCam’s ability to identify foods in sev-
eral types of eating occasions, across several days in free-
living situations, which will allowmultiple types of foods to
be consumed in highly variable settings to increase the

generalisability of the findings. As this research is con-
ducted, ideally the capacity is enhanced regarding food
identification in DietCam that uses a standardised data sys-
tem for coding food, such as FoodEx2(30), to increase ability
to link collected image data to food composition data.

To better enhance the understanding of the accuracy of
DietCam in the automated food identification, future stud-
ies should investigate number of images that are needed for
the food identification in dietary assessment. Passive
image-assisted dietary assessment collects more images
than active image-assisted dietary assessment (i.e., thou-
sands of images v. two images (one before and one after
food consumption) during an eating occasion). Thus, from
a dietary assessment standpoint, the food identification
potentially may only need to be performed until no new
additional foods are identified in an eating occasion. For
this type of process, a specific food, once it was identified
in at least one image, does not need to be correctly identi-
fied in every image since that food would be considered a
consumed item. From this perspective, as all foods consumed
were identified in at least one image,DietCamhas 100%accu-
rate identification, but there is not 100%accuracy in all images
taken. For accuracy of dietary assessment, it is most important
that the automated food identification systemwould not iden-
tify a food in an image when that food was not actually there,
and thus not consumed.

Due to the number of images that passive image-
assisted dietary assessment collects, it also has the capabil-
ity to provide enhanced information about dietary intake,
such as speed of eating, introduction of other items con-
sumed that were not planned to be consumed at the start
of the eating occasion and the environment in which eating
is occurring. This additional information may be important,
particularly for interventions changing dietary intake. Thus,
this method of assessment has the capacity to collect more
detailed information in real time than active image-assisted
dietary assessment. Future research is needed to examine
this aspect of passive image-assisted dietary assessment.

In conclusion, DietCam shows promise in accurately
identifying specific food items with different shapes and
complexities. When the types of images are examined,
DietCam is most accurate when 100 % and partial food
images are analysed. Future research should focus on
enhancing DietCam’s ability to identify in greater detail,
beyond broad categories of food, components of foods
consumed and examining the feasibility of this system in
analysing images collected in free-living situations.
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