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A tetrad of Mobius tetrahedra consists of a set of 4 mutually inscribed
and therefore circumscribed tetrahedra whose 16 vertices and 16 faces form
a Rummer's 166 configuration (5; 11; 12; 21). As pointed out by the referee,
fundamental to all work on the 166 figure are the 10 quadrics, called funda-
mental for the associated Rummer's quartic surface (13). To every quadric
F correspond a matrix scheme of the 16 points or planes, arranged in 4
rows or columns, such that the 8 Rosenhain tetrahedra (7) formed of the
rows and columns are all self-polar for F. The rows form one and the columns
another tetrad of Mobius tetrahedra. Nine new schemes can be derived from
one such scheme to make the total ten as explained by Baker (3, p. 133)
leading to 80 Rosenhain tetrahedra in all. The 16 nodes (5; 8) or tropes of
the Rummer's quartic are the 16 common elements of the 10 schemes such
that the nodes and tropes are poles and polars for any one of the 10 quadrics.
Each trope touches the quartic along a singular conic through the 6 points
of the figure lying therein. The lines tangent to the surface at its each node N
generate a quadric cone which is enveloped by the 6 tropes through N (12).

The present paper is one in continuation of the two appeared earlier
(15; 16), and deals with the 12 nets of quadrics circumscribing the 12
pairs of Mobius tetrahedra arising from one of the 10 said schemes. There
the treatment is synthetic, while here it is analytic based mostly on the
symmetrical algebra of Edge (8) for the net of quadrics associated with one
such pair of tetrahedra. Six special webs of quadrics arise from the 12 nets,
each web having a pair of generators common with 4 fundamental quadrics.
Quadrics associated with Gopel tetrahedra (12), as related to the said nets,
are also considered. The derivation of an allied pair of conjugate triads of
desmic tetrahedra (1; 4—7; 9; 10; 12—14; 17; 19—21; 25) from a tetrad of
Mobius tetrahedra too is indicated.

An attempt is made to give afresh an account of relevant known results
for ready reference and necessary development of the subject.

1. Introduction

a. It is well known (11) that there exist sets of 4 tetrahedra such that
68
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[2] Tetrads of Mobius tetrahedra 69

every two of a set are Mobius in the same se,nse and thus form a Mobius 84

configuration (7). That is, the 2 transversals of the 4 joins of the correspond-
ing vertices of every two tetrahedra of a set belong to the same system
of generators of a quadric F for which the 4 tetrahedra of the set are all
self-polar.

Let the vertices or faces of the 4 tetrahedra of one such set or tetrad be
arranged in 4 columns of the scheme (cf. 2. p. 138, Ex. 15; 3, p. 133)

M =

XQ X^ X2 X3

k h h

The rows of M are also seen to form a similar tetrad, called conjugate
of the former.

b. In one formulation the elements of M are the linear functions of the
coordinates (which may be--"taken to represent either planes or points)
obtained from the product Ujf: of the orthogonal matrices

U =

a b c d~
b a d —c
c d —a —b
d —c b —a

and V =

x t —z y
y z t — x
z —y x t

J —x —y ~z_

Since U, V are orthogonal, UV is orthogonal. Consequently we have (cf. 12,
pp. 30—31):

(u = a, b, c, d;r,s = x, y, z, t\ p, q = 0, 1, 2, 3) .

The relation (i) shows that the pair of conjugate tetrads Tv =
TT EH r0r1rfir3 represented by M constitute 8 Rosenhain tetrahedra, all
self-polar for the quadric F == ̂ V2 = 0, and (ii) shows the Mobius character
of the pairs of tetrahedra of either tetrad.

It may be observed here that the tetrahedron T of reference is distinct
from the Rosenhain tetrahedra (see § le below).

c. In a second formulation, xoyozoto is taken to be the tetrahedron of
reference and the conjugate scheme M, interchanging the rows and columns
of M, is introduced such that its elements are obtained from the product of
the matrices W and V (cf. 2, p. 138, Ex. 14; 3, p. 141, Ex. 9; 5), where
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such that the submatrix L = (lit) of the matrix W and therefore W too are
orthogonal. Hence the elements of rows or columns of L may be taken as the
direction cosines of 3 mutually perpendicular lines referred to a rectangular
axes (22, pp. 10—11; 23, p. 31; 24, pp. 37—38).

The scheme M too behaves like M to represent a pair of conjugate tetrads
of Mobius tetrahedra such that the tetrahedron T = TQ of reference is now
one of the 8 Rosenhain tetrahedra, and the relations (i), (ii) hold true here
too, ]£M2 being replaced by unity as the value of the product |W|| W| of the
determinant \W\ of W and that of its conjugate W.

d. The 4 joins of the corresponding vertices of a pair of Mobius tetrahedra
of either tetrad Tv or Tr and the 4 joins of the complementary pair have
2 common transversals (3, p. 133) which are generators of the quadric
F (§ lb) or 8 Kummer lines of a group-set cut a pair of directrices (12, p. 77).
Thus there are 3 pairs of such generators of one system of F for Tp and 3
pairs of the second system for Tr such that every pair of the former system
meet a pair of opposite edges of every tetrahedron of Tr, and every pair of
the later system meet likewise a pair of opposite edges of every tetrahedron
of Tp. The 3 pairs of either system are mutually harmonic (21). Every two
tetrahedra of Tv are harmonically inverse (15; 16) of each other w.r.t. one of
the said 3 pairs of generators of the first system, the other two tetrahedra
being likewise harmonically inverse w.r.t. the same pair of generators, and
every two as well as the other two tetrahedra of Tr behave similarly w.r.t. a
pair of generators of the other system.

Every one of the 3 pairs of generators of one system form a skew quadri-
lateral with every one of the 3 pairs of the other system. Thus there are 9
such quadrilaterals in all such that the 9 pairs of their skew diagonals form
the 18 edges of an allied pair of conjugate, associated or related triads of
tetrahedra (1; 4, pp. 99—102; 6; 7; 9; 10; 12; 13; 14; 17; 19; 20; 25) forming
desmic systems as analysed analytically by Baker (5) using the scheme M
(§ lc) and synthetically by Rao [21] using the scheme M (§ lb). In fact, they
have derived Tv and TT from every one of the 6 tetrahedra of the 2 desmic
systems and another tetrahedron, all self-polar for the quadric F, by the
well known operations of harmonic inversions (10; 18) only. If a, b; c, d be
2 pairs of mutually harmonic generators of one system of a quadric F,
a', b'; c', d' 2 similar pairs of the other system, we may define or introduce
conjugate generator quadrilaterals (cgqs) like ab'ba', cd'dc' or ac'bd', a'cb'd
to prove the following Lemma required to establish the said results of Baker
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and Rao.

LEMMA. The 2 pairs of diagonals of a pair of cgqs formed of the generators of
a quadric F meet at the vertices of a tetrahedron self-polar for F.

e. The 9 skew quadrilaterals of the preceding section may be recognised
to form 9 of the 15 fundamental tetrahedra, the other six being those arising
from the intersections of their 18 diagonals forming the 18 edges of the 6
tetrahedra of the pair of allied desmic systems derived there, thus giving rise
to Klein's 6016 configuration (12). Thus the tetrahedron T of reference is
fundamental or Rosenhain according as we follow the scheme M (§ lb) or
tt (§ lc).

f. On account of the perfect duality between point and plane, every
theorem has its dual. Hence it is not necessary to state the dual in every
case. By denoting the point and plane by the same symbol in both the sche-
mes M and M, no confusion arises, but on the contrary, the duality of the
166 figure is clearly brought out by this nomenclature. Thus the 6 elements
of one kind incident with any element of the other kind are given by the row
and column containing that element (12). Attention must always be drawn
to this dual nomenclature to give the right meaning to the statements
made hereafter.

g. The 10 fundamental quadrics arising from the scheme (§ lb) M as its
10 non-zero elements by putting a = x, b = y, c = z, d — t are well known
(12). The same may be designated (as suggested by the referee) as

Fn

F31

= x2-y*-z*+t
== 2{xy-zt),
= 2(zx+yt),

F = x*+y*+z*+t*,
:2, F12 = 2(xy+zt),

J7 — T 2 1 , ,a n.2 1 /2
i 22 — •*• "Tif * i" >

F32 = 2{yz—xt),

F13

F23

F33

= 2(zz—yt),

= 2(yz+xt),
= _ a ; 2 _ 2 / 2 _

They have the properties, which can be easily verified, as follows: (i) Each
pair is mutually apolar such that one is outpolar as well as inpolar to the
other (1; 2). (ii) Each is self-reciprocal w.r.t. to every other, (iii) They can
be arranged in 15 sets of four which have a pair of common generators,
polars w.r.t. each of the other six, viz.

F , F a , F i 2 , F i 3 ; F , F l f , F 2 f , F3f] F i f , F i g , F j h , F m (i, j , k, f , g , h = 1, 2 , 3 ) .

The 15 pairs of these generators form the 30 edges of the 15 fundamental
tetrahedra which split in 10 ways into 2 sets of 9 and 6 as in § le, 9 inscribed
to each quadric for which the other six are self-polar.

h. As a property of an orthogonal matrix M or ffl of order 4, we have 18
new identities like xoy1 — xxy0 = z2t3 — z3t2. . .. (iii) besides the 12
enumerated already as the relations (ii). Every one of these 30 bilinear
relations represents a set of 8 associated points (12, pp. 32, 77) or planes
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which form a Mobius 84 configuration (§ la) giving rise to 4 pairs of Mobius
tetrahedra having the same vertices and faces (15) but belonging to 4
different schemes. The 18 new identities suggest the formation of the 9
new schemes to give us 72 new Rosenhain tetrahedra arising from the same
166 configuration.

2. Interlocking quadrics and associated nets

a. From the identities (ii), we can at once deduce the 6 triads of inter-
locking quadrics containing respectively the pairs of skew quadrilaterals
ypZPyazv, xvtpxQt,, zvxvzqxQ yj^yj,; xvyvxqyq, zvtvzata and designate
them as follows (cf. 8; 16):

Q'v* = *,*, + xvx<i = ~ y*y<, - tp*,.

Ypq = XpXq ~T" VpVq = zpZa tj>K-

A triad of such quadrics (p, q = 0, / in the scheme M) is taken by Edge [8]
as the basis of the net of quadrics circumscribing a pair of Mobius tetrahedra
To, Tf to deduce a family of Kummer surfaces, each being the envelope of a
set of quadrics belonging to the net, and many more results. Thus there arise
6 such nets n{pq) for a tetrad Tv of Mobius tetrahedra, one net for each pair
of them or for each pair of values of p, q.

b. Similarly we may deduce the 6 triads of interlocking quadrics con-
taining respectively the pairs of skew quadrilaterals

Visosi> r2rzs2sz; r0r2s0s2, r^s^Si, rQr3s0s3,

and designate them as follows:

Qr, = r<>so + r i s i = — r2s2 - 'aH,

Q'r, = >0S0 + r2S2 = — r3S3 ~ ^1S1-

Qr, = *0S0 + r3S3 = - r l S l — y2S2-
Each triad,of such quadrics form a basis of the net of quadrics n(rs) circum-
scribing a pair of Mobius tetrahedra TT, Ts of the conjugate tetrad of To

thus giving us 6 new nets, one for each such pair of tetrahedra or for each
pair of values of r, s.

c. There are thus 36 interlocking quadrics, 18 forming in triads the basis
of the 6 nets n(pq) and 18 similarly related to the 6 nets n(rs), associated
with a scheme of a pair of conjugate tetrads of Mobius tetrahedra which
obviously inscribe as well as circumscribe or interlock in pairs the basis
triads: of the corresponding nets as disclosed by their very construction
Thus they are all apolar to the quadric F (§ lb). It is now not difficult to
prove that they are all self-reciprocal for F (8).
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d. Again we may observe that the 4 pairs of Mobius tetrahedra arising
from a Mobius 84 configuration interlock simultaneously a triad of inter-
locking quadrics which then repeat for the 4 corresponding schemes (§ lh).
Hence there are in all 36 x 10/4 = 90 interlocking quadrics and 12 x 10/4
= 30 nets associated with a 166 configuration.

3. Special webs of quadrics

a. Following the scheme M (§ lb), we observe that the 36 interlocking and
9 fundamental quadrics Fu (§ lg) are related as follows:

2Qik = F'kl Fn + F'n Fkl, 2Q'jk = F'k2 Fj2 + F'j2 Fk2,
2Qoi = F'klFa —P'nFn> 2Q'ot = F'k2Fj2 — F'j2Fk2,
2Qmn= FlnF'lm+FlmF'ln, 2Q'mn= F2nF'2m+F2mF'2n,
2Qu = F

lnF'lm-FlmF'ln, 2Q'nn= F2nF'2m—F2mF'2n,

2<?o'< = F'k3Fi3 -F'j3Fk3;
2Q'mn— FZnF'3m-\-FZmF'Zn,

where i, j , k are the even permutations of 1, 2, 3 and 1, m, n of x, y, z;
Fix = Fn, Fiy = Fi2, Fiz = Fi3; F'u is obtained from Fit by putting
x = a, y — b, z = c, t = d.

If we follow the scheme M (§ lc), we may establish the same relations re-
placing F by C, where Cti are the 9 linear combinations of sets of three of
the quadrics Fit (as suggested by the referee) expressed as the 9 elements of
the matrix (Ci!c) = (lij){Fjk). Thus CH play the role of 9 fundamental
quadrics arising from the scheme ffi, the tenth being the same F whether
we follow M or M.

b. As an immediate consequence of the above relations, we may note that
the 6 quadrics QVQ are each expressible as a linear combination of two of the
3 quadrics Fa or Cn, and therefore belong to a special web w (say) having a
pair of generators common with the quadric F by the property (iii) of § lg
and obviously a quadric common with each of the 6 nets n{pq) (§ 2). Simi-
larly are related the 5 hexads of quadrics Q'pq, Q'pq, Qrs, Q'rs, Q'r's to the triads
of Fi2 or Ci2, Fi3 or Ci3, Fu or Cu, F2i or C2i, F3i or C3i respectively, and
therefore belong to 5 special webs w', w", w1, w2, w3 (say), each having
a pair of generators common with F and a quadric common with each of
the 6 nets n(pq) or n(rs). Hence follows

THEOREM 1. With every tetrad of Mobius tetrahedra Tp are associated
6 nets and 3 special webs of quadrics such that every net has a quadric common
with every web. The quadric F, for which Tp are self-polar, belongs to all the
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3 webs. The 18 interlocking quadrics common to the 6 nets and the 3 webs are
all apolar to and self-reciprocal for F such that the pair of Mobius tetrahedra
determining a net interlock the 3 basis quadrics of the net (§ 2c). The same is
true of the conjugate tetrad too.

c. From the construction (§ 2a) of the quadrics Qvq and § 3b follows that
the three of them through one of the 4 tetrahedra of the tetrad Tp have
2 pairs of generators of opposite systems common and are therefore linearly
related or belong to a pencil. Thus the 6 quadrics Qva belong by threes to
4 pencils. Similar is then the situation for all the 6 such hexads of quadrics.
From the relations of § 3b then follows

THEOREM 2. The 6 interlocking quadrics belonging to a special web associ-
ated with a tetrad of Mobius tetrahedra Tv behave like the vertices of a quadri-
lateral whose 3 diagonal points represent 3 fundamental quadrics belonging to
the web besides the one for which Tv are self-polar such that the 3 such quadri-
laterals have each a diagonal point common with each of those arising similarly
from the conjugate tetrad (cf. 16).

d. Consequently from the Theorems 1—2 and §§ lg, 2c, 3a follows

THEOREM 3. With every 166 figure are associated 90 interlocking quadrics
(Q) besides the 10 fundamental ones (F), 15 special webs (w), 30 nets (n) and
60 quadrilaterals (q) such that (i) every pair of (F) and the pair of (Q) linearly
related to them belong to 2 (w) and are respectively represented by a pair of
diagonal points and the pair of vertices on their join common to 4 (q); (ii) the
2 triads of (Q) circumscribed to 2 complementary pairs of Mobius tetrahedra of a
tetrad are apolar to and self-reciprocal for 4 (F) which belong to a (w) associated
with the conjugate tetrad; (iii) 12 (Q) belong to each (w) and are represented by
the vertices of 4 (q) forming a desmic system whose one of the 3 'diagonaV-
tetrahedra (19) represent the 4 (F) belonging to it; (iv) the pair of (n) circum
scribed to 2 complementary pairs of Mobius tetrahedra of a tetrad have each a
(Q) common with 6 (w), 3 associated with it and 3 having each a pair of (F)
common with a (w) associated with its conjugate tetrad; (v) each (w) has a (Q)
common with each of 12 (n); (vi) each (F) belongs to 6 (w) and is therefore
represented by the common diagonal point of 18 (q).

The incidences of this theorem may be put down in the following self-
explanatory table:

F

Q

?

w

Total
No.

10

90

60

15

F

-

-

3

4

Q

-

-

6

12

?

18

4

-

4

w

6

2

1

-
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4. Common generators of the special webs

a. The equations of the generators of the 2 systems of the quadric F
(§ lb) are given respectively by (15; 21)

x + Iy-u{z + It) = 0 = u{x -Iy)+z- It;

x + Iy — v(z — It) = 0 = v(x — Iy)+z + It,

where u, v are their respective parameters and I2 = — 1. The respective
pairs of the common generators of the 3 webs w, w', w" (§ 3b) are easily
seen to be given by u = ± 1; ± / ; 0, oo for both the schemes M and ffl
(§§ lb, lc), and those of wi by the same values of v if we follow the scheme
M, but by v = (± 1 — /«)/(Ja — Ila), or, by the equations

Ex + Gz + Ht = Ey + Hz- Gt

(E=l- liZ, G = lt9la T Ilta, H = lala ± Ila)

If we follow the scheme ffl. The statements made above (§§ Id, 3b) can now
be readily verified.

b. The pair of common generators of wi for a particular value of * can be
readily identified with the pair of transversals e, f, of Edge (8), of the 4
joins of the corresponding vertices of the pair of Mobius tetrahedra To, Tt.
Hence they are the pair of transversals of the 4 joins of the corresponding
vertices of the complementary pair of Mobius tetrahedra Tjt Tk too of the
tetrad Tv (§ Id). Therefore they form a pair of polar lines (8; 15) for every
quadric of either net n(0i), n(jk). Again when harmonic inversion (13; 15; 18)
is performed w.r.t. a pair of generators or polar lines of a quadric, it inverts
into itself. Hence follows

THEOREM 4. The pair of common generators e, f of a special web of quadrics
associated with a tetrad of Mobius tetrahedra form a pair of polar lines for the
quadrics through the vertices of either of 2 complementary pairs of tetrahedra
of its conjugate tetrad such that all the said quadrics are harmonically self-
inverse w.r.t. e, f (cf. 8). It can also be deduced from §§ lg (iii), 3a or Th. 3(ii).

5. Gopel tetrahedra and quadrics

a. There are 36 Gopel tetrahedra of tropes, associated with a scheme of 8
Rosenhain tetrahedra forming 2 conjugate tetrads (§1), each formed of the
4 common faces r „, ra, sp, sa of 2 pairs of Mobius tetrahedra TP,TQ;Tr,T,,
one pair from each tetrad (12), such that the 4 singular conies of the asso-
ciated Rummer's quartic lying in the faces of each Gopel tetrahedron lie on
a Gb'pel quadric Qvars passing through the 12 vertices Tv, Tq, Tr, Ts and
therefore outpolar to the fundamental quadric F for which the tetrahedra
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of the scheme are self-polar (16). Obviously each QsqT, belong to the 2 nets
n(pq) and n(rs) associated with the scheme.

Thus follows the following

THEOREM 5. With every scheme of 8 Rosenhain tetrahedra forming 2
conjugate tetrads T v, Tr are associated 36 Gopel tetrahedra of tropes and 36
Gb'pel quadrics, each belonging to 2 nets, one associated with Tv and the other
with Tr. Thus: The 6 nets associated with Tv or Tr, having no quadric common
with one another, have each a Gb'pel quadric common with each such net associ-
ated with the conjugate tetrad such that the 36 Gopel quadrics are all outpolar
to the fundamental quadric F for which TP, Tr are self-polar.

b. Further we may observe that: If 3 of the 4 parameters p, q, r, s be
fixed, the fourth varying one (say s) determine 3 quadrics QvqTt which form
a pencil passing through the 2 conies (as their common degenerate quartic)
lying in the 2 faces rv, rq of the third tetrahedron TT common with the pair of
Mobius tetrahedra Tv, TQ corresponding to the fixed parameters. Thus:
If we fix one of the 2 pairs of parameters p, q; r, s (say p, q), we obtain 6
quadrics QvqT, belonging to the net n(pq) with r, s varying such that they
belong by threes to 4 pencils corresponding to the 4 values of r or s showing
that each pencil has a Gopel quadric common with the other three (16).
Therefore they behave like the 6 vertices of a quadrilateral whose diagonal
points represent the 3 interlocking quadrics of n(pq) by relations of § 3a.

Again if we pair the parameters differently, say as p, r; q, s, and fix
one pair (say p, r), we obtain a pencil of 3 quadrics Qvars for each value of q
when s varies and another for each value of s when q varies. Thus: We have 2
triads of pencils, one for the 3 values of q and the other for s such that the
pencils of either triad have no quadric common with one another and every
pencil of one has a Gopel quadric common with every pencil of the other.
Their 9 common quadrics are observed to have a singular conic lying in the
face rv common to the 2 tetrahedra TV,TT corresponding to the given values
of p, r. Thus follows the following

THEOREM 6. With every scheme M forming 2 conjugate tetrads of Mobius
tetrahedra Tv, Tr are associated 3 Gopel tetrahedra of tropes having 2 faces
common such that their 3 associated quadrics belong to a pencil, and 9 such
Gopel tetrahedra having one face common such that their 9 associated quadrics
can be represented by 9 points of a quadric R lying by threes on 2 triads of its
generators of opposite systems representing the 2 triads of pencils to which
they belong by threes. The 6 Gopel quadrics of a net associated with Tv or Tr

common with the 6 nets associated with the conjugate tetrad can be represented
by the 6 vertices of a quadrilateral q' whose diagonal points represent the 3
interlocking quadrics of the net. The 36 Gobel quadrics (G) thus associated
with M are then represented by the vertices of 2 hexads of quadrilaterals (q'),
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the diagonal points of one hexad representing the 18 interlocking quadrics (Q)
associated with Tv and of the other representing those associated with T r, such
that their 48 sides lie by sixes on 16 quadrics (R) as 2 triads of generators of
opposite systems, the sides of one hexad belonging to one system and of the other
to the second system, each side being common to 2 (R) and each (G) being
represented by a point common to 4 (R).

c. As an immediate consequence of what precedes follows the following

THEOREM 7. With a 16, figure are associated 60 Gb'pel quadrics (G), 30
quadrilaterals (q') and 160 quadrics (R) besides 10 (F), 15 (w), 30 (n),
60 (q) and 90 (Q) as in the Theorem 3 such that (i) the 3 (Q) of every (n) are
represented by the diagonal points of a (q') whose vertices represent 6 (G);
(ii) the 2 hexads of (G) belonging to 2 (n) determined by 2 complementary pairs
of Mobius tetrahedra of a tetrad are outpolar to 4 (F) beloning to a (w) associated
with the conjugate tetrad; (iii) the sides of (q1) lie by sixes on 160 (R) as 2 triads
of generators of opposite systems, each generator being common to 8 (JR);
(iv) each (G) is represented by a common vertex of 3 (q') and by a point common
to 24 (G), and is outpolar to 6 (F); (v) the vertices of (q) lie at the diagonal
points of (q').

Thanks are due to the referee for the present form of the paper, and to
Prof. B. R. Seth for his generous, kind and constant encouragement in my
pure pursuits.
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