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Conditions for bubble elongation in cold ice-sheet ice
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ABSTRACT. Highly clongated bubbles are sometimes observed in ice-sheet ice. Elonga-
tion is favored by rapid ice deformation, and opposed by diffusive processes. We use simple
models to show that vapor transport dominates diffusion except possibly very close to the
melting point, and that latent-heat effects are insignificant. Elongation is favored by larger
bubbles at pore close-off, but is nearly independent of bubble compression below close-off.
The simple presence of highly elongated bubbles indicates only that a eritical ice-strain rate
has been exceeded for significant time, and provides no information on possible disruption

of stratigraphic continuity by ice deformation.

INTRODUCTION

Flow disruption of stratigraphic continuity in ice cores is a
serious concern for paleoclimatic reconstructions (Grootes
and others, 1993; Taylor and others, 1993). Duplicate cores
allow identification of such disturbances, but are quite
expensive and time-consuming to collect and process.
Analyses of trapped gases can reveal disturbances (e.g.
Bender and others, 1994), as can physical studies of the ice
(e.g. Alley and others, 1995; Thorsteinsson and others, 1997).
Such disturbances may be evident in characteristies of
grains (sizc, shape, ¢ axis fabric), of solid inclusions (folding
of cloudy or dusty layers) or of bubbles (folding of elongated
bubbles or of unusual concentrations of bubbles) (e.g
Hudleston, 1977; Hooke and Hudleston, 1978; Alley and
others, 1997).

Highly elongated bubbles are frequently observed in
highly deformed ice (e.g. Kamb, 1972; Hudleston, 1977; Hooke
and Hudleston, 1978; Nakawo, 1979). Here, we focus on the
occurrence of highly elongated bubbles in non-temperate
ice-sheet ice. Such elongated bubbles have been found in some
cores (e.g. Russell-Head and Budd, 1979; Alley and Bendley,
1988; Fitzpatrick, 1994; Voigt and others, 1997), but other parts
of those cores and many other cores lacked strongly elongated
bubbles (Fig. 1). We estimate the conditions under which
bubbles may become significantly elongated, and whether
this provides any clues to stratigraphic disturbance. Our
conclusion, that significant elongation is achicved at a
strain-rate threshold without any “odd” deformation, should
be somewhat reassuring to ice-core stratigraphers. However,
increased local strain associated with “odd” deformation may
make elongation of bubbles more likely:

APPROACH

The basic problem is outlined, and a sketch solution given,
by Hooke and Hudleston (1978). Ice deformation causes
bubbles in the ice to deform somewhat more rapidly than
the bulk sample. Diftusional processes tend to restore non-
spherical bubbles toward spherical, with the rate of restor-
ation increasing with the deviation from spherical. The
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balance between deformational and diffusive processes over
bubble history will determine how elongated a bubble
becomes.

To make this more quantitative, we follow the standard
approach for model development in sintering theory (e.g.
Kuczynski, 1949; Hobbs and Mason, 1964; Maeno and
Ebinuma, 1983; Wilkinson, 1988). One first identifies the
many processes that are likely to contribute to observed ma-
terial changes. Next, geometric simplifications are made so
that a rate equation can be written in closed form for each of
these processes. Using standard material parameters and
physical constants, the rate equations are then evaluated to
identify those processes that contribute significantly, the
functional dependence of the material changes on controlling
variables, and the approximate rates of material changes.

Errors in this approach arise from the geometric simpli-
fications, and from assumptions about the active processcs.
The geometric simplifications typically are accurate to
much better than an order of magnitude. Errors in other
assumptions are difficult to assess. If, for example, onc
assumes that the equilibrium vapor pressure over glacier
ice 1s equal to that obtained in laboratory experiments with
ice grown from highly purified water, one implicitly
assumes that impurity effects are insignificant. Because we
know so little about the distribution of impurities in ice, this
assumption is not easily tested. And because of the geo-
metric simplifications used, one cannot tell whether devia-
tions between model and observed behavior are linked to
crrors in geometric or other assumptions.

Experience with these techniques shows nonetheless that
they are quite useful, and are a logical first step in under-
standing active processes (e.g. Maeno and Ebinuma, 1983
Wilkinson, 1988). Analogy might be drawn with the Nye-
Kamb generalization of the Weertman sliding theory
(Weertman, 1957; Nye, 1969; Kamb, 1970). The original
geometry assumed by Weertman for the glacier bed was
obviously not accurate, but the subsequent generalizations
found the same functional dependence on controlling vari-
ables and only required adjustment of geometric constants
(Paterson, 1994, ch. 7).
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Fig. 1. Photographs of bubbles in thick sections from the Taylor
Dome, Antarctica, ice core ( Fitzpatrick, 1994). Depths and
scale are indicated. The transition from nearly spherical bub-
bles (a), to somewhat elongated bubbles (b)), to highly elong-
aled bubbles (¢ ) is striking. Statistical analysis of the bubble
populations, and interpretation in terms of the model devel-
oped here and other data, is ongoing.
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MODEL

Abubble inice is assumed to begin as a sphere. Deformation
of the ice matrix causes deformation of the bubble. Because
the bubble does not transmit deviatoric stresses, near-bubble
stresses are perturbed from far-field values, and bubble
deformation is not a passive indicator of strain. However,
the bubble strain rate is expected to be related to the mean
ice strain rate. Once the bubble becomes elongated, curva-
ture and surface tension cause diffusive fluxes that tend to
minimize the surface energy by returning the bubble to a
spherical shape. The diffusive “strain rate” can be cal-
culated, and compared to the deformational strain rate. If
the diffusive strain rate balances the deformational strain
rate for bubbles only slightly deformed from a sphere, then
one would not observe significantly elongated bubbles.
However, if the diffusive strain rate is relatively small,
highly elongated bubbles will develop.

Bubble deformation

Proper treatment of bubble deformation is likely to prove
quite difficult. We take the simplest possible approach, and
use a published solution (Gay, 1968) for clongation of linear-
viscous inclusions (bubbles) in a linear-viscous matrix.
Probable implications of this assumption are treated in the
Discussion section below.

Gay (1968) showed that for sparse inclusions, and taking
the limit of the inclusion viscosity approaching zero, ini-
tially spherical inclusions in a umaxially extensional stress
state deform into prolate spheroids with an instantancous
strain rate equal to 5/3 of the bulk strain rate. Gay (1968,
appendix) showed further that for irrotational general
strains, the instantancous strain rate of the low-viscosity in-
clusion is 5/3 of the bulk strain rate. For highly elongated
bubbles, Smith (1975) suggested that the factor 5/3 drops
towards 1; given the other geometrical uncertainties in our
subsequent treatment, this change is not large.

If a bubble elongated in some direction is subjected to
uniaxial extension in a different direction, Gay (1968)
argued that a numerical solution is required. The result is
that the bubble rotates so that the direction of greatest
bubble elongation approaches the bulk elongation direction,
and the elongation rate approaches 3/3 of the bulk strain
rate (Gay, 1968),

This solution allows consideration of simple shear, which
is pure shear (extension in one direction, compression nor-
mal to it, with neutral deformation normal to the plane of
the extension and compression) combined with a rigid-
body rotation in the extension—compression plane. An ini-
tially spherical inclusion is not affected by the rotation until
it becomes elongated. Elongation then is initially at 45 to
the shear plane, followed by continued elongation and rota-
tion toward the shear plane. For small strains (less than a
factor of a few), the inclusions will remain at an angle to
the shear plane; with increasingly large strains, the long
axes will approach the shear planc. Elongation is
calculated numerically (Gay, 1968), but scales roughly with
the same 5/3 factor as previously.

Based on these results, we approximate bubble strain
rates as simply being 5/3 the ice strain rate. The direction
of greatest bubble elongation is taken to be the same as the
direction of most rapid bulk elongation for irrotational de-
formations, and to approach the shear plane in simple shear.


https://doi.org/10.3189/S0022143000003129

Diffusion in non-spherical bubbles

We treat a bubble as a prolate spheroid with longer semi-
axis a along the x axis and shorter semi-axes b along the y
and z axes (Fig. 2). The bubble volume is

dmab®/3 = dnr’/3 (1)

where r is the radius of the spherical bubble with equivalent
volume.

/l
Ice ’ / ’

 B=n /[
»)’_/""/.f / “““"“““\
e
/ Air Bubble >$/=b

Fig. 2. Coordinate system used. A prolate spheraid has major
semi-axis @ along the x axis and minor semi-axes b along the
iy and z axes.

Owing to curvature and surface tension, diffusion will
tend to return the bubble to spherical, With reference to Tig-
ure 2, the concentration of vacancies in the ice, Cyy, will be
higher, and the concentration of vapor molecules in air, C,.
will be lower, near (x,y, z) = (a,0,0) than near the bubble
surface near = 0. ("The notation would be different, but
would reach the same results, if we made the probably more
accurate assumption that diffusion in ice is by interstitials
rather than vacancies; Hondoh and others, 1987) From the
usual Kelvin relation (e.g. Hobbs and Mason, 1964) one
obtains

ool
AC\'_\' = T Ky
= —_— ﬂ\' A
AC}I P LT Ry (2)
20 b 1

for AC' = C,_, — C,—y, where §2is the molecular volume, k
is Boltzmann’s constant, T" is absolute temperature, p, and
C'yo are the equilibrium vapor density and the equilibrium
vacancy concentration over a planar surface, respectively, p;
is the density of ice, and 7 is the iceair surface tension. The
curvature term, k., is the difference between the sums of the
inverses of the principal radii of curvature of the ice—air sur-
faces at x = a (both principal radii b*/a) and 2 = 0 (prin-
cipal radii /b and b). Equations (2) were calculated
assuming that the curvature causes only small concentra-
tion deviations from equilibrium with a planar surface; this
appears accurate for curvatures typical of natural ice.

We next make geometric approximations: (i) diffusion
distance = a/2; and for A, the difTusive cross-sectional area,
(ii) A = wb* for vapor, (iii) A = 27bé, for surface diffusion,
where 6, is the thickness of the disordered surface region,
and (iv) A = 27b? for lattice diffusion, assuming most flow
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occurs through a region of approximate thickness b around
the bubble circumference of 27b. The molecular or vacancy
transfer rates, J. for lattice, surface and vapor diffusion,
respectively, then are:

s — D]’%(gﬂ-b?)

gy = — Dh’% (2mhd,) (3)
a

S A(C' (7b”) .
1

Measured self-diffusion coefficients Iy and D, are obtained
from the vacancy diffusion coefficients (shown primed in
Equation (3)) by

D)= D/Cly2 (4)

and similarly for D, with Cy,Q2 being the fraction of mol-
ecules adjacent to a vacancy and thus capable of moving at
any time. This allows us to calculate mass transfer to # = a
rather than vacancy transfer from & = a. We also approxi-
mate
da JQ
at - wh?
where the volume transfer J is taken to accrete to area
b, t is ime, and .J. and .J; are subtracted to give mass-
rather than \'a(‘am‘y—lr;msft‘r rates.
Combining Equations (2)-(5), and dividing by a to
obtain a“strain rate”, we obtain

19a 40y ( 2 b 1 Do, Do
Tadt KT (ub'—’ al a!b) (DI L 20 )
(6)

The collection of terms containing diffusivities is the

standard result for mass transfer in a diffusive system,
obtained by Shewmon (1964). Substitution of physical con-
stants into this allows one to estimate the relative importance
of lattice, surface and vapor diffusion in mass transfer. In this
case, using the constants in'Table 1, vapor diffusivity for 10° Pa
(1atmosphere), and b = 10 *m, and setting the vapor-dillu-
sivity term to unity, we obtain lattice:surface: vapor terms of
approximately 10 *:10 ™:1 at 7= 213K, 10 ":107°:1 at
T = 243K, and 10 *:10 %:1 at T = 273 K. Compression of
bubbles can reduce vapor diffusivity about two orders of mag-
nitude hefore formation of solid clathrate—hydrate inclusions
(e.g. Gow and Williamson, 1976; Shoji and Langway, 1987).
Thus, vapor diffusion dominates in all cases here (cf.
Whillans and Grootes, 1983),

We note that as temperatures approach the melting
point, activation energies may change, so care is required
in applying these results to warm ice (significantly warmer
than —10°C, or 263 K). In particular, the thickness of the
pscudo-liquid layer contributing to enhanced diffusion
along the ice surface increases with temperature and
becomes unbounded as the temperature reaches the bulk
melting point (Dash and others, 1995). Also, increased im-
purity concentration might thicken the pseudo-liquid layer.
And very small bubbles may be less than the b = 0.1 mm
assumed here, In the calculations above, decreasing vapor
ditfusivity hy two orders of magnitude, and b by one order
of magnitude, and increasing the thickness of the disordered
surface layer by 23 orders of magnitude would allow sur-
face diffusion to be as important as vapor diffusion. We thus
consider it possible that in very warm and perhaps impure
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Table I Variables used, with units. Numerical values of phy-
sical constants are taken from sowrces listed in Alley and others
(1986) unless otherwise noted

Variable ~ Meaning Value or units

a Spheroid  major semi- m
axis

A Area for diffusion m’

b Spheroid  minor semi- m
axis

Ci Concentration of water m
molecules in air

s Concentration of m

vacancies in ice

Civo Equilibrium concen- m
tration vacancies under
planar ice surface

oy Vacancy diflusivity m’s !
i = 1.5 Lattice, surface
D Lattice diffusivity 568 % 10 * exp[-104 x 107"/ (kt)]m’s !
T Surface diffusivity 568 %10 7 exp[-6.93 x 10 */ (kt)]m*s !
D Vapor diffusivity m’s !
Dy, Vapor diffusivity at 879 x 107" 2 !
latmosphere
H Latent-heat llow W
Ji Diffusive {low g
i = 1, s, v Lattice, surface, vapor
k Boltzmann'’s constant 138 x10 ¥ JK !
K Ice thermal conduc- 24Wm 'K
tivity (Paterson, 1994)
7 Latent heat 26%10"Jm ?
(Whillans and Grootes, 1985)
m Water molecular mass 299 %1072 kg
B | atmosphere 10° Pa
B Close-off atmospheric Pa

]H‘('HNI“"'

s Equilibrium vapor 359 %107 exp[—Qy/(kt)]Pa
pressure (Whillans and Grootes, 1985)
e Equilibrium vapor-pres- 848x 10 ]
sure activation energy (Whillans and Grootes, 1985)
i Bubble-equivalent radius m
ro Initial bubble-equiva- m
lent radius
t Time s
T Absolute temperature K
& Distance coordinate m
¥ lee—air surface tension 0109 ] m
B [ce-surface thickness 45%10 “m
AC Concentration dillerence m*
AT Temperature difference K
€ (afr—1)fora=r
K Surface curvature m'
pi Ice density 920 kgm *
Py Vapor density kem *
Q Molecular volume in ice 325 %10 > m?

ice both surface diffusion and vapor diffusion are signifi-
cant; for other ice, only vapor diffusion appears significant.

Vapor diffusion also dominates neck growth between
grains in low-density firn. Hobbs and Mason (1964) argued
that in neck growth, diffusion is slowed relative to the rate
given in their equivalent of Equation (6) because of the
effects of latent-heat deposition. If the site of condensation
is warmed by the latent heat, its vapor pressure will be
raised, reducing the gradient causing diffusion and so the
diffusion rate. In the case of bubbles, however, we can show
that the latent heat is not significant because of heat conduc-
tion through the surrounding ice. (In comparison to bub-
bles, a narrow neck between spherical ice grains has
greater insulation by air combined with stronger curvature
differences between source and sink, causing latent-heat
ctfects to be larger,)
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We approximate the equilibrium vapor pressure as an
exponential in temperature with activation energy Q. fol-
lowing Whillans and Grootes (1985; see Table 1), If the latent-
heat flow produces a small temperature deviation AT from
the temperature T', a'laylor expansion for the vapor pres-
sure yields

QAT
ol ki

Using the perfect gas law, this reduces the concentration dif-
ference of Equation (2) by

o 2 THeOT
aLh kT( mT ) (8)

Py — Pyo =Py

where m is the mass of a water molecule.
We estimate AT from the heat flow H deposited by the
diffusive vapor transfer,

B = —wbiL% (9)

where L is the volumetric latent heat. Heat flow can occur
through the vapor, along the surface or through the lattice
from bubble-surface regions where condensation dominates
to where sublimation dominates. The small volume of disor-
dered ice—air surface, and the small thermal conductivity of
air (roughly two orders of magnitude lower than for ice;
Whillans and Grootes, 1985) cause the heat flow to occur
primarily through the ice lattice. Setting the temperature
gradient over distance a and through cross-sectional area
27h? proportional to the heat flow and conductivity
(Fourier’s law) yields
La da

2K Ot
Substituting Equation (10) into Equation (8), subtracting
this from Equation (2) assuming that only vapor diffusion
is significant, and then solving for the strain rate restoring
a bubble toward spherical yields a more accurate version of
Equation (6):

1da 1 (aa) (
= (o 1+
a ot a \dt no latent heat
(11)

Using values from Table 1 for T = 243 K, we find that this
differs from the no-latent-heat case by less than 0.1%.
Bubble compression will reduce Dy, and hence the effect of
the latent heat. We thus ignore latent-heat effects in further
calculations and use Equation (6) with vapor diffusion only.

AT = (10)

D.Qp,Q,L\
mkT?K ’

Pore close-off to form bubbles occurs at near-surface air
pressure P, which may differ from the nominal air pressure
P, = 10° Pa for which vapor diffusivity is tabulated. Subse-
quent compression of bubbles from initial radius ry to some
equivalent radius r also affects diffusivity. To good approxi-
mation, vapor diffusivity is inversely proportional to the air
pressure in a bubble owing to its effect on the mean free path
of diffusing water molecules (e.g. Whillans and Grootes,
1985). For simplicity, we rewrite Equation (6), using the per-
fect gas law to eliminate the vapor density and using this in-
verse dependence of vapor diffusivity on air pressure in a
bubble, to obtain

1da ay? P2 b 1
‘aa—t—?’*(ﬁ) Dubupis (E‘—‘—f)

(12)

Site conditions affect the vapor diffusivity Dy, and equi-
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librium vapor pressure P, through temperature 7', and also
alfect Py /P, rg, and r. These and material constants (Table
1) allow calculation of the diffusive strain rate returning
bubbles towards spherical. Differentiation of Equation (12)
with respect to @ shows that for specified r, the diffusive
strain rate is a monotonically increasing function of @ and
so of bubble elongation.

For nearly spherical bubbles, we can approximate
a=7(1+¢€)andb = r(1 —¢/2), with € small. Substituting
these into the geometric terms in Equation (12) and
assuming that all terms of order ¢” are insignificant yields

1 (Oa G N e
S [ = 127| = | DvaProm
a (0f) nearly spherical : (kT) R () 2

The diffusive strain rate of nearly spherical bubbles thus in-

2

(13)

creases lincarly with the bubble elongation.
Without assuming small clongation, we can use Equa-
tion (1) to replace bin Equation (12) to obtain

1/0a %2 P 1 TAE yTAE

1 (Oa 1=107—0.19 —6142\ P, 1
—;(E) =094 10TF exp — —

™™g rnd
- Q-0 (15

a a
using the values in Table 1. For significant elongation
(@ = 7), the terms involving r/a are insignificant, and the
diffusive strain rate is independent of geometry. For smaller
elongation, the diffusive strain rate does depend on bubble
shape through r/a, but not directly on the equivalent bubble
radius 7.

We thus reach the simple result that for typical condi-
tions in cold ice, the diffusive strain rate restoring clongated
bubbles toward spherical depends on the initial bubble size
(large bubbles become elongated more casily; Hooke and
Hudleston, 1978; Nakawo and Wakahama, 1981), but is inde-
pendent of compression of those initial bubbles because of
compensating effects of compression on vapor diffusion
and on geometric factors. The diffusive restoration increases
linearly with elongation initially, but approaches a constant
value for large clongations.

Sensitivity of the diffusive strain rate to initial bubble
size, bubble clongation, temperature and surface air pres-
sure is shown in Figure 3. For comparison, the bulk vertical
strain rate in central Greenland (GISP2) where bubbles are
nearly spherical, with an accumulation rate of just less than
03ma 'and an ice thickness of about 3000 m, is about 0.3/
3000 = 10" a2, A typical Siple Coast (West Antarctica) ice
stream increases in velocity by a few hundred ma 'in a few
hundred km along flow, giving a longitudinal stretching rate
of 10 *a ', which is sufficient to develop elongated bubbles,

DISCUSSION OF ASSUMPTIONS

We made several assumptions in this derivation, related to
material properties, geometric approximations, etc. The
effect of these 1s certainly to cast doubts on the exact numer-
ical values for bubble behavior. However, we trust the func-
tional forms.

Most experiments and field analyses indicate that ice is
not a lincar-viscous material at high stresses and strain
rates, but exhibits a strain rate proportional to the cube of
the stress (e.g. Paterson, 1994). We used a linear-viscous
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Fig. 3. Restoring strain rate_from vapor diffusion, per year, as
a function of bubble elongation a /v, temperature, the ratio of
site vapor diffusivity to sea-level diffusivity for a given lem-
perature ( laken as the inverse of the site pressure in bars ), and
the initial bubble radius. For each parameter, the arrow shows
the value wsed in calculations for which other parameters are
varied (afr =15, T = —30°C; P, = 2B bar; v = Imm).

solution for the simple reason that it exists; we could not find
an analytical solution for power-law deformation, and we
did not wish to use numerical approximations.

It is almost certain that the strain rate for bubble elonga-
tion increases monotonically with the strain rate for bulk
deformation, that bubbles clongate somewhat more rapidly
than the bulk ice around them, and that any accurate
solution for the bubble deformation will be qualitatively
similar to the one used here. We also note that, given the
ability of a bubble surface to serve as a sink for dislocations
and perhaps also as a source (e.g. Duval and Lliboutry,
1985), we cannot with confidence assume that the ice rheol-
ogy in the region very close to the bubble is identical to that
in the bulk. Furthermore, one set of experiments on rapid
laboratory elongation of bubbles found that the viscous
model matched observations rather closely (Nakawo and
Wakahama, 1981). We thus believe that it is acceptable to
usc a linear-viscous approximation, although a power-law
rheology should be explored in the future.

We assumed that bubbles are sparse so that the bubble-
induced perturbations of the stress field do not overlap or
interact. Air content, initially approximately 10% by
volume at pore close-off] is reduced to typically <1% within
a few tens of meters of depth increase in an ice sheet as the
hubble pressure rises to the ice-overburden pressure (Gow,
1975). Gay (1968) estimated that for inclusions occupying
10% by volume of'a material, the bulk viscosity is perturbed
from the zero-inclusion state by only about 10-20%. Creep
experiments of ice support this result, with as much as about
10% air by volume having little effect on bulk flow of the ice
(e.g. Hooke, 1981).

As noted in the Introduction, the obvious inaccuracics
associated with use of geometric approximations usually
prove to be inconsequential in assessing magnitudes, con-
trolling variables, ectc., although they certainly affect
detailed calculations. We believe that physical uncertainties,
related to such factors as the zone of enhanced diffusivity
near bubbles in response to pscudo-liquid layers or regions
of changed dislocation density, or to anisotropy in surface
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tension and its dependence on temperature and impurity
loadings, are more important.

We treated ice deformation as a homogencous process,
which it certainly is not. Ice deforms primarily by glide on
the basal plane (e.g. Budd and Jacka,1989), and to the extent
that neighboring grains have differently oriented basal
planes, bubbles in adjacent grains will be deformed in differ-
ent ways. Where bubbles cross from one grain to another,
there should be some tendency of the differently oriented
glide planes to cause bubbles to bend or even to split (such
behavior may be evident in Figure lc). Groups of bubbles
may deviate in orientation from neighboring groups of bub-
bles in response to organized deformation across many
grains (Alley and others, 1997), grains that include many
bubbles, or similarly large regions formed by grain growth
even if subdivided by polvgonization into multiple grains
with similar orientations. This may explain the observations
of Voigt and others (1997) in a core from Upstream C on the
Siple Coast.

IMPLICATIONS

The simple, and intuitively obvious, result of our analyses is
that high strain rates of ice cause bubbles to become signifi-
cantly elongated, but low ice strain rates allow diffusive pro-
cesses to maintain nearly spherical bubbles. Bubble
elongation is favored by high surface air pressure (low ele-
vation), large initial bubble sizes, rapid ice deformation and
low temperatures.

Diftusional restoration of nearly spherical bubbles
increases linearly with clongation, but with increasing
clongation the diffusive asymptotically
approaches a maximum rate independent of the elongation.
Bubbles subjected to bulk strain causing elongation at less

restoration

than this maximum restoration ratec will reach a steady
form under steady conditions; however, bulk strain faster
than this will cause continuing elongation. We speculate
that sufficient elongation would allow splitting of bubbles,
owing to the differing deformation in neighboring grains
or subgrains, to the effects of only some of the many possible
slip planes being active in grains, or to other “accidents” of
deformation in real ice.

For specified bulk strain rate of ice, lower temperature
favors bubble elongation by lowering the vapor pressure,
with an activation energy of approximately 31k] mol £
(The very weak additional dependence on T' in Equation
(15) has litde effect) For typical ice-sheet temperatures, a
7°C cooling roughly halves the diffusive strain rate restor-
ing a bubble to spherical. Note, however, that for specified
stress, lower temperature reduces the strain rate elongating
bubbles, with a larger activation energy of about 60 k] mol '
(Weertman, 1973). This means that lower temperatures
weakly favor spherical bubbles under constant stress: a tem-
perature change of approximately 40°C is required for a
two-fold change in the ratio of the elongation and diffusive-
restoration strain rates.

The dependence on initial bubble volume is interesting.
Irom Gow (1968a), one expects that about one bubble forms
for each grain at pore close-ofl. Pore close-ofl occurs at
about 10% air by volume, with much less variation than in
grain-size, so bubble size (or number density) is primarily
controlled by grain-size at pore close-off. This in turn de-
pends on the relative rates of grain growth and firn densifi-
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cation. We are working on a time-dependent, coupled,
grain-growth/firn-densification model, but we present some
qualitative considerations here.

Firn densification involves a stabilizing feedback that
causes differences between depth-density profiles at differ-
ent sites to be small. For example, an increase in temperature
causes faster densification. However, faster densification
causes a given density to be reached with a lower load.
Because densification rate increases with load as well as with
temperature, the lower load provides a negative feedback,
and densification is not accelerated as much as one would
expect from the temperature increase and an appropriate
activation energy. Assuming a similar activation energy for
grain growth and firn densification (Gow, 1975; Alley, 1987),
warming would then be expected to increase grain-size,
hence bubble size, hence likelihood of bubble elongation.

Countering this, an accumulation-rate increase would
decrease the time required for transformation of snow to
ice, and thus the grain-size, bubble size and degree of bubhble
clongation. Relative magnitudes can be compared using
“Gow’s rule” (Gow, 1968b), in which the effect on a depth—
density profile of a 4°C temperature increase is approxi-
mately offset by a doubling of accumulation rate. At a site
subjected to a 4°C warming and an accumulation-rate
doubling, grain-growth rate would increase about 40%
(Gow, 1975), but the time for grain growth hefore pore
close-off would be halved, producing smaller grains at pore
close-off, smaller bubbles and less likelihood of bubble
elongation. We are studying these considerations relative
to the bubble elongation observed in the Taylor Dome,
Antarctica, ice core and illustrated in Figure 1. We also note
that if these considerations are accurate, initial bubble size
should be controlled by accumulation and temperature at a
site. Bubble size (or number density) in ice cores thus might
be used to check proposed temperature and accumulation-
rate histories reconstructed from other ice-core data.

The dependence of diffusion on the initial bubble size in
our model may have implications for bubbles that split owing
to inhomogeneous deformation during extreme elongation.
Splitting of a bubble is equivalent to reducing the initial bub-
ble size, because splitting decreases the diffusion distance
without affecting the vapor diffusivity. Depending on the
relation between the maximum diffusive strain rate and the
imposed strain rate, splitting of a bubble may allow neither
or one part or both parts to return to nearly spherical forms.
A small bubble formed by uneven splitting of a large one
would be especially likely to return to a nearly spherical
shape.

CONCLUSIONS

Bubbles are elongated by strain in ice, but returned towards
spherical by diffusive processes. Strongly elongated bubbles
will develop when the elongating strain rate exceeds the re-
storing strain rate. The elongating strain rate of bubbles will
typically be slightly faster than the bulk ice strain rate (by a
factor of about 5/3) but will be directly related to the ice
strain rate (Gay, 1968).

Using simple geometrical arguments and generally
accepted material constants, we estimate that diffusion
restores an clongated bubble towards spherical primarily
through vapor diffusion with latent-heat effects insignifi-
cant, but that surface diffusion may be significant in espe-
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cially warm or impure ice. Where vapor diffusion is domi-
nant, the restoring strain rate increases with temperature,
bubble elongation, the inverse of atmospheric pressure at
pore close-off; and the inverse of bubble volume at pore
close-ofl; but is independent of bubble compression after for-
mation. If surface diffusion is important, then bubble com-
pression increases the restoring strain rate.

Bubble elongation will reach a steady state in which the
long axis is less than twice the equivalent-sphere radius, pro-
vided the ice strain rate is smaller than some critical value
that can be estimated from the equations here, For higher
ice strain rate, bubble elongation will increase monotoni-
cally over time. Exceptionally elongated bubbles may split
owing to “accidents” of ice deformation. Bubble splitting
makes it more likely that the smaller bubbles produced will
be able to maintain a nearly spherical form; small bubbles
split off the ends of larger ones are likely to return to nearly
spherical while the larger ones become more elongated.

In non-basal ice of ice sheets, highly elongated bubbles
are favored by high strain rate at low temperature (hence
high deviatoric stress), by low surface elevation, and by large
hubbles at pore close-oft. Large bubbles in turn are favored
by large grains at pore close-off, and thus by conditions that
speed grain growth relative to densification. The mere
presence of elongated bubbles provides no information on
possible flow disturbances that would perturb stratigraphic
continuity in ice cores; it only shows that deformation is
rapid compared to diffusive restoration. In addition,
because of local perturbations to ice flow caused by the ani-
sotropy of ice crystals, elongated bubbles with varying
orientations in anice core are possible without stratigraphic
disturbances at paleoclimatically significant scales.
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