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Abstract

Pricing variance swaps have become a popular subject recently, and most research of this
type come under Heston’s two-factor model. This paper is an extension of some recent
research which used the dimension-reduction technique based on the Heston model. A
new closed-form pricing formula focusing on a log-return variance swap is presented
here, under the assumption that the underlying asset prices can be described by a mean-
reverting Gaussian volatility model (Ornstein–Uhlenbeck process). Numerical tests in
two respects using the Monte Carlo (MC) simulation are included. Moreover, we discuss
a procedure of solving a quadratic differential equation with one variable. Our method
can avoid the previously encountered limitations, but requires more time for calculation
than other recent analytical discrete models.

2010 Mathematics subject classification: 91B70.

Keywords and phrases: variance swaps, Ornstein–Uhlenbeck process, closed-form
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1. Introduction

As the financial market becomes more and more internationalized, the financial
problems in some local areas are very likely to spread and become a serious global
issue. The closing down of Barings Bank in 1955 serves as a classic example. In
addition, the Asian financial crisis in 1997 also caused a series of strong fluctuations
in financial circles in Asia, Europe and America. Thus, the financial market represents
obvious volatility as the price of stocks rises and drops sharply. Market practitioners
ranging from individuals to financial institutes and pension funds, have strong interests
in trading future realized volatility or variance against the current implied volatility or
variance and hedging risks effectively, because high volatility or variance means high
risks and high risks mean high profits. In this financial background, the corresponding
volatility derivatives play an important role. The most accepted and popular derivatives
are volatility and variance swaps.
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Generally, there are two types of volatility and variance swaps products. The
historical-variance-based volatility derivatives include products whose payoff depends
on the realized variance of the underlying asset. The other type of volatility products
is the implied volatility-based products, like the VIX (volatility index) futures traded
in the Chicago board options exchange (CBOE). In this paper, we will focus on the
former with realized variance being sampled discretely.

Although market practitioners did not begin to trade variance and volatility swaps
until the 1990s, considerable research interests have been drawn in terms of developing
appropriate valuation approaches and trading strategies. In this paper, we focus on the
valuation approaches for variance swaps, which are generally classified into two types:
numerical and analytical methods.

There are two subcategories of the analytical methods. In one subcategory, the
most influential pioneer works were conducted by Carr and Madan [9] and Demeterfi
et al. [10]. Carr and Madan [9] proposed various methods of trading the realized
volatility, such as taking a static position in options, delta-hedging an option position,
and so on. Demeterfi et al. [10] provided a nice review on the pricing behaviour and
theory of both variance and volatility swaps. However, as pointed out by Carr and
Corso [6], the drawback of this replication strategy is that it assumes a continuous
sampling time of the variance swap, which does not accord with what the actual
financial market tells us. In this way, the results of the method can only be regarded
as an approximation of the actual cases in financial practice, whose sampling time is
discrete. The second kind of analytical methods are the stochastic volatility models.
Grunbichler and Longstaff [13] first developed an analytical method for volatility
futures based on a mean-reverting squared-root volatility process. Heston [15] derived
an analytical solution for both variance and volatility swaps based on the generalized
autoregressive conditional heteroskedasticity (GARCH) volatility process. Brockhaus
and Long [5] provided an analytical approximation for the pricing of volatility
swaps. Other typical examples of these studies include those of Javaheri et al. [16],
Swishchuk [27], Carr and Lee [7, 8], Elliott et al. [11] and Sepp [25]. Most of these
stochastic volatility models share a limitation: their results are based on the assumption
that the realized variance is defined by a continuously sampling approximation, which
may fall short of providing pricing results with sufficient accuracy when the actual
discrete sampling becomes less frequent.

Numerical methods, as an alternative, have also been developed quite recently.
Little and Pant [19] developed a finite-difference approach for the valuation of
the discretely sampled variance swaps in an extended Black–Scholes framework
with a local volatility function. Windcliff et al. [28] also explored a numerical
algorithm to evaluate discretely sampled volatility derivatives using a numerical partial
integro-differential equation approach, which can be regarded as an improving the
previous pricing algorithm for the discretely sampled volatility derivatives by allowing
jumps in the asset price process. Although the two numerical methods based on
discretely sampled realized variance achieve high accuracy, their models do not
incorporate stochastic volatilities. To remedy this drawback, Little and Pant [19] and
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Windcliff et al. [28] pointed out, respectively, in the conclusions of their papers, that for
better pricing and hedging general variance swaps, one needs to adopt an appropriate
model that incorporates the stochastic volatility characteristics observed in financial
markets.

Very recently, Broadie and Jain [4] presented a closed-form solution for volatility
as well as variance swaps with discrete sampling based on integrating the underlying
stochastic processes directly, which can be used in a variety of situations such as
the Black–Scholes model [3], the Heston stochastic model [14], the Merton jump-
diffusion model [20] and the Bates and Scott stochastic volatility and jump model [2,
24]. Under Heston’s two-factor stochastic model, there are a variety of approaches to
obtain a closed-form formula for variance swaps based on discretely sampled realized
variance. Inspired by Little and Pant [19], Zhu and Lian [31, 32] used the dimension-
reduction technique [19] on the basis of a Fourier transform to solve a two-stage
stochastic differential equation (SDE) and thus obtaining an analytical solution of
Raccati equations. Zhu and Lian [33] also used the expectation of the characteristic
function to solve the same question based on the Feynman–Kac formula [12]. In
addition, by the joint moment function, Zheng and Kwok [30] obtained a much simpler
form of the analytical method to price variance swaps and used it in other applications
of generalized variance swaps such as gamma swaps, corridor variance swaps and
conditional variance swaps. In addition to the characteristic function, Rujivan and
Zhu [22, 23] regarded general assets and their logarithmic form as a contingent claim
directly to obtain the analytical solution of Riccati equations. However, when put into
the operation of log-return realized variance, their method makes the equations more
complex. Lian et al. [18] took advantage of a Taylor series to obtain the approximation
form of the characteristic function, and then used the analytical form of variance swaps
to get the closed-form formula of volatility swaps, variance options and volatility
options.

In this paper, the dimension-reduction technique is used to price variance swaps
based on the mean-reverting Gaussian volatility model, that is, the Ornstein–
Uhlenbeck process which was applied in the Heston model by Little and Pant [19] and
Zhu and Lian [32], and was later used by Jia et al. [17] to price actual-return realized
variance swaps. This paper can be regarded as an extension of [17, 19, 32], in which
the referring method is used to price log-return realized variance. In the meantime, we
further clarify that this method can be used in many situations where the distribution of
the variance or volatility can be calculated to price discretely sampled variance swaps.

The rest of this paper is organized as follows. In Section 2, the Ornstein–Uhlenbeck
process and variance swaps are introduced, followed by the analytical approach for the
variance swaps. In Section 3, several numerical tests, as well as the correctness of our
solution from various aspects, are demonstrated. Moreover, a discussion of a procedure
to solve a quadratic differential equation with one variable is shown, which has been
also mentioned in some previous articles [27, 29]. Finally, Section 4 concludes the
paper.
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2. Our model

In this section, we briefly review the mean-reverting Gaussian volatility model to
describe the dynamics of the underlying asset. Then, we use the Fourier transform
to obtain the associated partial differential equation (PDE), and arrive at the analytical
solution, based on the dimension-reduction technique proposed by Little and Pant [19].

2.1. The mean-reverting Gaussian volatility model Considering that volatility
follows an Ornstein–Uhlenbeck process, as assumed by Stein and Stein [26], the
stochastic process of the underlying asset price S t and the stochastic instantaneous
volatility vt can be described asdS t = µS t dt + vtS t dBS

t ,

dvt = κ(θ − vt) dt + σ dBv
t ,

where µ is the expected return of the underlying asset, θ is the long-term mean of
volatility, κ is the mean-reverting speed parameter of the volatility, σ is the so-called
volatility of volatility. The two Wiener processes dBS

t and dBv
t describe the random

noise in asset and volatility, respectively. They are assumed to be correlated with a
constant correlation coefficient ρ, that is, (dBS

t , dBv
t ) = ρ dt.

Under no arbitrage there exists a risk-neutral measure Q, such that the prices of all
nondividend paying assets are martingales under this measure. In this measure, we can
describe the process as dS t = rS t dt + vtS t dB̃S

t ,

dvt = κ∗(θ∗ − vt) dt + σ dB̃v
t ,

(2.1)

where r denotes the riskless interest rate, κ∗ = κ + λ and θ∗ = κθ/κ + λ are the risk-
neutral parameters, the new parameter λ is the premium of volatility risk. In the rest of
the paper, we focus on a risk-neutral probability measure.

2.2. Variance swaps A variance swap is a derivative contract that pays at a fixed
maturity T , the difference between a given level (fixed leg) and a realized level of
variance over the swaps life (floating leg). They can be useful for hedging volatility risk
exposure or for taking positions on future realized volatility. When a maturity is given,
such as T > 0, the payoff of a variance swap can be written as VT = (σ2

R − Kvar) · L,
where σ2

R is the annualized realized variance over the contract time [0, T ], Kvar is the
annualized delivery price for the variance swap, and L is the notional amount of the
swap in dollars per annualized volatility point squared.

Classically, there are two methods to calculate discretely-sampled variance swaps
(see [30–33]), which can be categorized into two different definitions: the log-return
realized variance defined by

σ2
R,d1(0,N,T ) =

AF
N

N∑
i=1

log2
( S ti

S ti−1

)
1002 =

1
T

N∑
i=1

log2
( S ti

S ti−1

)
1002, (2.2)
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and the actual return-based realized variance defined by

σ2
R,d2(0,N,T ) =

AF
N

N∑
i=1

(S ti − S ti−1

S ti−1

)2
1002 =

1
T

N∑
i=1

(S ti − S ti−1

S ti−1

)2
1002, (2.3)

where S ti is the closing price of the underlying asset at the ith observation time ti, and
there are N observations in all. AF is the annualized factor converting this expression to
an annualized variance. If the sampling frequency is every trading day then AF = 252,
(here we assume that there are 252 trading days in one year), if every week then
AF = 52, if every month then AF = 12, and so on. Typically, we set T = N/AF
and assume equally-spaced discrete observations, so that the annualized factor is of
a simple expression AF = N/T = 1/∆t.

In the risk-neutral world, the payoff of a variance swap at time t is the expected
present value of the future payoff Vt = EQ

t [exp−r(T−t)(σ2
R − Kvar)L], where Q is the risk-

neural probability measure, EQ
t [·] = EQ[·|At] is the conditional expectation at time t

and At is the filtration up to time t. The price of variance swaps should be zero at the
beginning of the contract, since there is no cost for either party to enter into a swap
contract. Therefore, the fair variance delivery price is easily defined as K = EQ

0 [σ2
R].

The valuation problem for a variance swap is, therefore, reduced to calculating the
expectation value of the future realized variance in the risk-neutral world. Jia et al. [17]
solved the analytical solution of the expectation with respect to (2.3), using the method
of Little and Pant [19]. In this paper, we will focus on the expectation of log-return
realized variance in (2.2).

2.3. Pricing approach for variance swaps As mentioned above, the solution of
our approach to price variance swaps can be regarded as finding out the expectation of
σ2

R,d1, which can be defined as

EQ
0 [σ2

R,d1(0,N,T )] = EQ
0

[AF
N

N∑
i=1

log2
( S ti

S ti−1

)]
1002 =

1002

N∆t

N∑
i=1

EQ
0

[
log2

( S ti

S ti−1

)]
. (2.4)

Thus, this problem can be reduced to calculating N expectations in the form

EQ
0

[
log2

( S ti

S ti−1

)]
(2.5)

for some fixed time period ∆t and N different tenors ti = i∆t (i = 1, . . . ,N). In the next
part, the expectation in equation (2.5) will be focused on. Consider i as a constant;
thus, tenors ti and ti−1 are also constants. We assume that the current time is t0.

There are two kinds of situations: i > 1 and i = 1. Because S ti−1 is known when i = 1,
we just need to take the expectation of one variable, while in the former there are two
variables, which makes it difficult to solve the expectations of them simultaneously.
We start with the former situation. A new variable defined as a Dirac delta function It
is introduced as

It =

∫ t

0
δ(ti−1 − τ)S τ dτ =

S ti−1 , ti−1 ≤ t ≤ ti,
0, 0 ≤ t < ti−1.
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The property of the Dirac delta function will be used to turn the two-variable
expectation into two one-variable expectations in the next part of this section.
Considering a contingent claim Ui = Ui(S , v, I, t) whose payoff at expiry ti is
log2(S ti/Iti ), a PDE for Ui can be obtained according to general asset valuation
theory [12], that is,

∂Ui

∂t
+

1
2

v2S 2 ∂
2Ui

∂S 2 + ρσvS
∂2Ui

∂S ∂v

+
1
2
σ2 ∂

2Ui

∂v2 + rS
∂Ui

∂S
+ [κ∗(θ∗ − v)]

∂Ui

∂v
− rUi + δ(ti−1 − t)

∂Ui

∂I
= 0 (2.6)

with terminal condition
Ui(S ti , vti , Iti , ti) = log2

(S ti

Iti

)
. (2.7)

From the Feynman–Kac theorem [12], it is known that Ui(S ti , vti , Iti , ti) has the
property

EQ
0 [Ui(S ti , vti , Iti , ti)] = erti Ui(S 0, v0, I0, 0). (2.8)

This formula establishes a relationship between certain variables such as v0 at time 0
and vti at time ti. We will begin at time ti, and obtain the analytical solution at time ti−1,
then at time 0. Finally, the conditional expectation in (2.5) is solved by using (2.8).
Since at time t , ti−1, δ(ti−1 − t) = 0, equation (2.6) can be rewritten as:

∂Ui

∂t
+

1
2

v2S 2 ∂
2Ui

∂S 2 + ρσvS
∂2Ui

∂S ∂v
+

1
2
σ2 ∂

2Ui

∂v2 + rS
∂Ui

∂S
+ [κ∗(θ∗ − v)]

∂Ui

∂v
− rUi = 0.

Although the simplified PDE ignores the influence of variable I, it is not ignored in
equation (2.7). In the meantime, because of the property of I, it should be considered in
two situations: t < ti−1 and t ≥ ti−1. From the property of I it is known that the value of
I is a jump as time increases from 0 to ti−1, its value turns from 0 into S ti−1 . Because of
the no-arbitrary assumption, the value of Ui cannot jump at time ti−1. Mathematically,
the jump condition can be written as:

lim
t↑ti−1

Ui(S , v, I, t) = lim
t↓ti−1

Ui(S ,V, I, t).

The original expectation has two unknown variables; theoretically, one of them can
be solved in one step only. We may as well use the property of I and U to divide
the above PDE into two stages. The time can be divided into two ranges [0, ti−1] and
[ti−1, ti], in each of which I can be regarded as a constant, because its value does not
change. Thus, the PDE can be solved in [ti−1, ti] first, and then in [0, ti]. Accordingly,
the PDE can be expressed by two systems as follows:

∂Ui

∂t
+

1
2

v2S 2 ∂
2Ui

∂S 2 + ρσvS
∂2Ui

∂S ∂v
+

1
2
σ2 ∂

2Ui

∂v2

+ rS
∂Ui

∂S
+ [κ∗(θ∗ − v)]

∂Ui

∂v
− rUi = 0,

Ui(S , v, I, ti) = log2
(S

I

)
, ti−1 ≤ t ≤ ti,

(2.9)
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and 

∂Ui

∂t
+

1
2

v2S 2 ∂
2Ui

∂S 2 + ρσvS
∂2Ui

∂S ∂v
+

1
2
σ2 ∂

2Ui

∂v2

+ rS
∂Ui

∂S
+ [κ∗(θ∗ − v)]

∂Ui

∂v
− rUi = 0,

lim
t↑ti−1

Ui(S , v, I, t) = lim
t↓ti−1

Ui(S ,V, I, t), 0 ≤ t ≤ ti−1.

(2.10)

Note that system (2.9) should be solved first, and then the limit condition in (2.10)
may be used to solve the next system. The generalized Fourier transform method
(see [21]) will be utilized to solve the first system.

Proposition 2.1. If the underlying asset follows the dynamic process (2.1) and a
European-style derivative written on this underlying asset has a payoff function
U(S , v, T ) = H(S ) at expiry T , then the solution of the corresponding PDE system
of the derivative
∂U
∂t

+
1
2

v2S 2 ∂
2U
∂S 2 + ρσvS

∂2U
∂S ∂v

+
1
2
σ2 ∂

2U
∂v2 + rS

∂U
∂S

+ [κ∗(θ∗ − v)]
∂U
∂v
− rU = 0,

U(S , v,T ) = H(S )

can be expressed as

U(x, v, t) = F −1[eC(ω,T−t)+D(ω,T−t)v+E(ω,T−t)v2
F [H(ex)]

]
,

where

E(ω, τ) =
c1(−1 + e2Bτ)

A(−1 + e2Bτ) + B(1 + e2Bτ)
,

D(ω, τ) = −
2c1(−1 + eBτ)2θ∗κ∗

B{A(−1 + e2Bτ) + B(1 + e2Bτ)}
,

C(ω, τ) =
1
2

log
A(−1 + e2Bτ) + B(1 + e2Bτ)

2B
+ τ

(
b −

B + A
2
−

c1θ
∗2κ∗2

B2

)
+
θ∗2κ∗2c1{2A(−1 + eBτ)2 + B(−1 + e2Bτ)}

B3{A(−1 + e2Bτ) + B(1 + e2Bτ)}
,

(2.11)

and A = κ∗ − iρσω, c1 = (ω2 + iω)/2, B =
√

A2 + 2c1σ2, b = (iω − 1)r, i =
√
−1,

τ = T − t, x = ln S , ω is the Fourier transform variable.

The proof of this proposition is given in Appendix A.
We believe that there might be other forms of the payoff function. However, whether

there are other suitable forms of the payoff function or not will be put aside now. All
of the previous research has paid attention to only one form (A2). Although recently
certain papers [22, 29] pointed out a limitation to this form, in this paper, we examine
the correctness of (A2) in the payoff function. At the end of this section, we discuss
the payoff function in our model as well as [29].
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Before getting the solution in Proposition 2.1 based on the inverse Fourier
transform, we first introduce a characteristic of the Fourier transform and Fourier
inverse transform.

Lemma 2.2. Based on the generalized Fourier transform, we can perform the
transformation as

F [xn] = 2πinδ(n)(ω),

where δ(n) is the nth order derivative of the generalized delta function satisfying∫ ∞

−∞

δ(n)(ω)Φ(ω) dω = (−1)nΦ(n)(0).

Note that I is a constant, and H(S ) = log2(S/I). The generalized Fourier transform
of H(x) with respect to x is given by

F [(x − log I)2] = 2π[−δ(2)(ω) − 2iδ(1)(ω) log I + δ(ω) log2 I].

Using Lemma 2.2, the solution of the PDE (2.9) is obtained as

Ui(S , v, I, t) = F −1[eC(ω,ti−t)+D(ω,ti−t)v+E(ω,ti−t)v2
2π[−δ(2)(ω)

− 2iδ(1)(ω) log I + δ(ω) log2 I]]

=

∫ ∞

−∞

[eC(ω,ti−t)+D(ω,ti−t)v+E(ω,ti−t)v2{
−δ(2)(ω)

− 2iδ(1)(ω) log I + δ(ω) log2 I
}
exωi] dω

= − f (2)(0) + 2i f (1)(0) log I + f (0) log2 I, (2.12)

where

f (ω) = eC(ω,ti−t)+D(ω,ti−t)v+E(ω,ti−t)v2+xωi, f (1)(0) =
d f (ω)

dω

∣∣∣∣∣
ω=0

, f (2)(0) =
d2 f (ω)

dω2

∣∣∣∣∣
ω=0

.

Up to now, the first stage to solve system (2.9) has been done by the Fourier transform
and the inverse Fourier transform. To finish off the calculation of EQ

0 [log2(S ti/S ti−1 )],
the system (2.10) needs to be solved.

Using the condition limt↓ti−1 log S t = log I, which is derived from the definition of I,
we take the limit on the left hand side of equation (2.12) to obtain

lim
t↓ti−1

Ui(S , v, I, t) = e−r∆tg(v)

= e−r∆t[−(C(1)(0))2 − 2vC(1)(0)D(1)(0) − v2(D(1)(0))2

− 2v2C(1)(0)E(1)(0) − 2v3D(1)(0)E(1)(0) − v4(E(1)(0))2

−C(2)(0) − vD(2)(0) − v2E(2)(0)], (2.13)

where

C(1)(0) =
∂C(ω,∆t)

∂ω

∣∣∣
ω=0, C(2)(0) =

∂2C(ω,∆t)
∂ω2

∣∣∣∣∣
ω=0

;

D and E are defined similarly; C(ω, τ), D(ω, τ) and E(ω, τ) have been given in (2.11).
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At this stage, it may seem that the value of Ui(S , v, I, t) will become complex, since
all parameters in (2.1) are real and it is obvious that all the derivatives of A, B, c1, b
with respect to ω = 0 are complex, such as

∂B
∂ω

∣∣∣∣∣
ω=0

=
i(σ2 − 2σκρ)

2κ
, 0.

Due to the complexity of analytic formulas C(1)(0), D(1)(0), E(1)(0),C(2)(0) and so
on, it is necessary to directly give these formulas, but we indicate that the value
of Ui(S , v, I, t) is not complex from another point of view. Before using the Fourier
transform and the Fourier inverse transform to obtain the analytical formula of
Ui(S , v, I, t), we assume that the analytical form of Ui(S , v, I, t) exists in (2.9), which
contains no term with i, because all pricing models are built on a real number field
according to their practical meaning. It is absolutely true that F −1[F [Ui(S , v, I, t)]] =

Ui(S , v, I, t). Thus, (2.13) is actually built on a real number field, and the last number
of it is real even if some terms involve the coefficient i. Put another way, the derivative
(2.13) exists in real number field when ω = 0 (see Zhu and Lian [32]).

The initial value condition in (2.10) is a function with independent value v. Later,
the distribution of v will be obtained and will be used to solve system (2.11).

Proposition 2.3. If the underlying asset follows the dynamic (2.1) and a European-
style derivative written on this underlying asset has a payoff function U(S , v, T ) =

G(vT ) at expiry T , then the solution of the corresponding PDE system of the derivative

∂U
∂t

+
1
2

v2S 2 ∂
2U
∂S 2 + ρσvS

∂2U
∂S ∂v

+
1
2
σ2 ∂

2U
∂v2

+ rS
∂U
∂S

+ [κ∗(θ∗ − v)]
∂U
∂v
− rU = 0,

U(S , v,T ) = G(v)

(2.14)

can be denoted in the form

U(S , v, t) =

∫ ∞

−∞

e−r(T−t)G(vT )p(vT |vt) dvT , (2.15)

where 
p(vt |v0) =

1
√

2πσ̂(t)
e−(vt−µ(t))2/2σ̂(t)2

µ(t) = e−κ
∗tv0 + θ∗(1 − e−κ

∗t)

σ̂(t)2 =
σ2

2κ∗
(1 − e−2κ∗t).

The proof of this proposition is in Appendix B.
According to equations (2.15) and (2.13), for 0 ≤ t < ti−1,

Ui(S , v, I, t) =

∫ ∞

−∞

e−r(ti−1−t)−r∆tg(vti−1 )p(vti−1 |vt) dvti−1 .
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Then we use (2.7) and (2.8) based on the Feynman–Kac theorem to arrive at the
calculation of expectation (2.5) as

EQ
0

[
log2

( S ti

S ti−1

)]
= erti Ui(S 0, v0, I0, 0) =

∫ ∞

−∞

g(vti−1 )p(vti−1 |v0) dvti .

Besides variable vt, we need to get the conditional expectation of v2
t , v3

t and v4
t

in g(vt). Thus, the expectations of the last three variables should be solved. Using
D(vt) = E(v2

t ) − [E(vt)]2, the expectation

EQ
0 (v2

t ) = µ(t)2 + σ̂(t)2. (2.16)

Let kt = (vt − µ(t))/σ̂(t), which has a standard normal distribution. Since EQ
0 (k3

t ) = 0,

EQ
0 (v3

t ) − 3EQ
0 (v2

t )µ(t) + 3EQ
0 (vt)µ(t)2 − µ(t)3 = 0.

Accordingly, the expectation of v3
t

EQ
0 (v3

t ) = 3µ(t)σ̂(t)2 + µ(t)3. (2.17)

In the meantime, note that k2
t is chi-squared distributed with mean 1 and variance 2.

Thus, the expectation of k4
t is 3 according to (2.16). Then it follows that

EQ
0 (v4

t ) − 4EQ
0 (v3

t )µ(t) + 6EQ
0 (v2

t )µ(t)2 − 4EQ
0 (vt)µ(t)3 + µ(t)4 = 3σ̂(t)4. (2.18)

Based on the results of (2.16) and (2.17), the expectation of v4
t

EQ
0 (v4

t ) = 3σ̂(t)4 + 6σ̂(t)2µ(t)2 + µ(t)4.

After getting the corresponding expectations of certain variables including vt, the
expectation in (2.5) is obtained as

EQ
0

[
log2

( S ti

S ti−1

)]
= gi(v0), (2.19)

where

gi(v0) =

∫ ∞

−∞

g(vti−1 )p(vti−1 |v0) dvti−1

= {−2C(1)(0)D(1)(0) − D(2)(0)}µ(ti−1) + {−(D(1)(0))2 − 2C(1)(0)E(1)(0) − E(2)(0)}

× {µ(ti−1)2 + σ̂(ti−1)2} − 2D(1)(0)E(1)(0){3µ(ti−1)σ̂(ti−1)2 + µ(ti−1)3}

− E(1){3σ̂(ti−1)4 + 6σ̂(ti−1)2µ(ti−1)2 + µ(ti−1)4} − (C(1)(0))2 −C(2)(0). (2.20)

Using (2.18), the summation in (2.4) can now be carried out, except for the very
first period when i = 1. Finally, the case where i = 1 needs to be coped with, because
in this case ti−1 = 0 and S ti−1 = S 0, which is the current underlying asset price and a
known value. Thus, in this case, we just use Proposition 2.1 to get the expectation

EQ
0

[
log2

( S ti

S ti−1

)]
= g(v0). (2.21)
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Based on the solutions of (2.19) and (2.21), the fair strike price for variance swaps

Kvar = EQ
0 [σ2

R,d1(0,N,T )] =
1
T

[
g(v0) +

N∑
i=2

gi(v0)
]
1002, (2.22)

where N denotes the total sampling times of the swap contract. The above formula
is obtained by solving the two associated PDEs, and each one of them focuses on a
variable. This method avoids calculating the expectation of the payoff function directly,
where the connection between S ti and S ti−1 should be found due to the form of the
payoff function. When using this dimension reduction technique for price variance
swaps under different dynamic processes, all of the first stages are similar and a
group of Riccati differential equations [32] should be obtained and solved. In the
second phase, the transition probability function of vt at different times should be
founded, which is simpler than that of S t. Whether this method can take effect in
other dynamic processes or not will be discussed in our future research. With the newly
found analytical solution, all the hedging ratios of a variance swap are also analytically
obtained by taking partial derivatives against various parameters in the model.

At the end of this section, we will discuss some differences among the analytical
pricing approaches in several recent articles. The same principles appeared in the
work of Zhu and Lian [31], Little and plant [19], Jia et al. [17] and our model. The
first difference between them is that the models of the first two articles are based on
the Heston model, which means that the volatility vt follows a noncentral chi-square
distribution, while vt in the last two models is normally distributed. The advantage
of the Heston model in pricing variance swaps is obvious. It can make the derivation
process easier than the Ornstein–Uhlenbeck (O–U) process when solving a group of
ordinary differential equations (ODEs). As for the article based on the O–U process
such as Zhang [29], which has the same principle as that of Rujivan and Zhu [22, 23],
its model has a seemingly easier principle than ours. Except for the distribution of vt

and the Feynman–Kac formula [12], our model is much more complex when solving
this formula, because the Fourier transform is used to solve it indirectly. In addition,
although both of the two models use the Feynman–Kac formula, there is a difference
in this formula between the two models. By the Feynman–Kac theorem, the derivative
of a contingent claim about the riskless interest rate is included in our model, but not
in the other one. But, this indirect method has its advantage and we will talk about it
in the following section. Although papers [22, 23, 29] are based on the same principle,
which is to regard the determined form of underlying assets as the contingent claim
and to put it into the Feynman–Kac formula, there are a few differences between them
due to their different applications. When it comes to log-return variance swaps [23],
we need to solve a group of ODEs, which is more complex than actual-return variance
swaps. However, it will stay in first order instead of second, which means the result of
the ODEs has a simpler form than [22, 29]. In addition, its result will not be local. The
principle of all of the recent methods to solve the question on the analytical pricing
approach with respect to variance swaps, is to avoid solving the expectation of S ti and
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S ti−1 directly and to find their transition density function. Instead, they first use the
characteristic of the connected dynamic processes of vt and S t to make S ti and S ti−1

disappear and then use the distribution of vt to solve this question. In the following
section, we also talk about the running time of two different analytical methods.

3. Numerical tests and discussions

We now implement our method and present numerical examples to show the
accuracy of it, based on the O–U stochastic volatility model. There are seven
parameters that need to be assigned a value. Since our purpose is to find and verify
an exact solution for the valuation and analysis of variance swaps, how the values of
these parameters are determined (see [1]) has nothing to do with us. In this section,
we use the following values for the parameters: v0 = 0.04, θ∗ = 0.022, κ∗ = 11.35,
ρ = −0.64, σ = 0.618, r = 0.1 and T = 1. The method used to test our model is the
Monte Carlo (MC) simulation, assuming S 0 = 1.

3.1. MC simulation Our aim is to ge at benchmark value for our solution (2.22). In
the MC simulation, we employ a simple Euler–Maruyama discretization for the O–U
process S t = S t−1 + rS t−1∆t + vt−1S t−1

√
∆tW1

t ,

vt = vt−1 + κ∗(θ∗ − vt−1)∆t + σ
√

∆t(ρW1
t +

√
1 − ρ2W2

t ).
(3.1)

From Zhang’s work [29], we know that the analytical solution of the continuous
model with an O–U process yields

K∞ =1002 EQ
0 [σ2

R] dt =
1002

T

∫ T

0
EQ

0 [v2
t ] dt =

1002

T

∫ T

0
(σ̂(t)2 + µ(t)2) dt

=

[
θ∗2 +

σ2

2κ∗
+

2θ∗(v0 − θ
∗)

κ∗T
(1 − e−k∗T ) +

(v0 − θ
∗)2 − σ2/(2κ∗)
2κ∗T

(1 − e−2κ∗T )
]
1002.

Theoretically, if our model is correct, the values of both the MC simulations
and our discrete model should approach the continuous model as sampling fre-
quency increases. (The number of paths reaches 200 000 in the MC simulation.)
Assuming T = 1, we verify the correctness of our model by Matlab and present the
result in Figure 1. From the graph, it is clear that the value of our model matches
the MC simulation very well. Moreover, the two values approach that of continuous
approximation when the sampling frequency tends to be infinite. In this paper, we
cannot prove that the analytical formula of the continuous model is the limit of the
discrete model due to the complexity of our model, which contains derivation process.
Even so, our method is at least numerically reasonable by the graph.

To further show the numerical test and the gap between the solution of our
model and the benchmark value, we present specific data of the discrete model, the
continuous model and the MC simulation in Table 1.

Due to the similarity between the mean-reverting Gaussian volatility model and
the Heston model, we can test our analytical solution from another point of view:

https://doi.org/10.1017/S1446181117000268 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000268


[13] Pricing formula for variance swaps 95

Figure 1. A comparison of fair strike values based on the discrete model, continuous model and (3.1).

Table 1. The numerical results.

Sampling frequency Discrete model Continuous model MC simulation
Monthly (N = 12) 309.4316 166.5172 307.1123
Fortnightly (N = 26) 211.7691 166.5172 212.5393
Weekly (N = 52) 188.6041 166.5172 187.4576
Daily (N = 252) 170.5176 166.5172 170.6220

the Heston model [15]. First of all, we introduce the relationship between the Heston
model and the mean-reverting volatility Gaussian model. In the Heston model, the
process of the variance of underlying assets is

dv̂t = κ̂∗(θ̂∗ − v̂t) dt + σ̂
√

v̂t dB̃v̂
t v. (3.2)

Since vt in the O–U process denotes volatility, v̂t = v2
t . Using the Itô formula for v2

t ,
the process of v2

t is obtained, and substituting v̂t for v2
t yields

dv̂t =
(
σ2 + 2κ∗θ∗

√
v̂t − 2κ∗v̂t

)
dt + 2σ

√
v̂tdB̃v̂

t . (3.3)

Comparing (3.2) and (3.3), we conclude that

κ̂∗ = 2κ∗, σ̂ = 2σ, θ̂∗ =
σ2

2κ∗
.

To ensure consistency of the two models, another condition θ∗ = 0 must be satisfied.
Assuming v0 = 0.2, κ∗ = 11.35/2, σ = 0.618/2 and other parameters in the O–U

process are unchanged, at this moment the associating parameters in the Heston model
become κ̂∗ = 11.35, σ̂ = 0.618, v̂0 = 0.04, θ̂∗ = 0.0084, and other parameters in this
model are equal to that with the O–U process. We substitute these predetermined
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Figure 2. A comparison of fair strike values based on the discrete model, continuous model and (3.4).

Table 2. The numerical results of the parameters-changed model.

Sampling frequency Discrete model Continuous model MC simulation
Monthly (N = 12) 234.7829 111.8411 235.5147
Fortnightly (N = 26) 161.1387 111.8411 160.3153
Weekly (N = 52) 138.6451 111.8411 136.5840
Daily (N = 252) 116.8177 111.8411 116.9222

parameters into the corresponding process and take numerical tests on our discrete
model. In this way, the MC algorithm should be based on the following Euler–
Maruyama discretization for the Heston modelS t = S t−1 + rS t−1∆t +

√
|vt−1|S t−1

√
∆tW1

t ,

vt = vt−1 + κ∗(θ∗ − vt−1)∆t + σ
√
|vt−1|

√
∆t

(
ρW1

t +
√

1 − ρ2W2
t

)
,

(3.4)

where W1
t and W2

t are two independent standard normal random variables. The results
of our tests are shown in Figure 2 and Table 2.

From the results in the graph and data, it is clear that the two values of our discrete
model and the MC simulation tend to be consistent as shown in Figure 1. Note that
these two values have a limit of 111.8411 for the continuous model (see [32]).

3.2. Discussion on the special form of (A2) in Appendix A As mentioned in
Section 2.3, several papers (see [22, 29]) pointed out the limitation of the form of
the solutions of the Riccati equations. For example, Zhang’s paper [29] is also about
the O–U process, and there is a group of Riccati equations similar to ours:

dE
dτ

= 2σ2E2 + (2ργσ − 2κ∗)E +
1
2
γ(γ − 1). (3.5)
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Table 3. The numerical results of our model and Zhang’s model.

Sampling frequency Our discrete model Zhang’s model MC simulation
Quarterly (N = 4) 482.9213 481.8 + 2.0722e−5i 483.9658
Monthly (N = 12) 460.4125 458.5 + 2.0003e−5i 461.2613
Weekly (N = 52) 451.0328 457.4 + 1.9593e−5i 452.1572
Daily (N = 252) 450.1174 452.1 + 1.9594e−5i 450.7324

If (2κ∗ − 2ργσ)2 − 4σ2γ(γ − 1) < 0, the analytical form should change. Otherwise,
the last strike price of variance swaps will become a complex value rather than a real
number. This is determined by the property of the quadratic differential equation with
one variable in the real fields. Although there is a similar group of equations in the
deduction process of our model, the strike price of our discrete model will not become
a complex number, regardless of the change of parameters. We take for example,
v0 = 0.2, κ∗ = 0.0134, θ∗ = 0.2, ρ = −0.64, σ = 0.1, r = 0.0953 and show the results of
the strike price of variance swaps of Zhang’s [29] and our model in Table 3.

One reason why the strike price of our discrete model will not be a complex number
regardless of the change of parameters, is that our differential equation is set up in a
complex number field, unlike the models of Rujivan and Zhu [22] and Zhang [29].
In this way, no matter how these parameters change, the solution can be simplified to
one form. Although this is suitable for differential equations in a real number field,
sometimes the solution is just local instead of being global. For example, the solution
of (3.5) is

E(γ, τ) =
1

4σ2

[ √
−ĉ(γ) tan

( √
−ĉ(γ)
2

τ − φ(γ)
)

+ â(γ)
]
, (3.6)

where ĉ(γ) = (2κ∗ − 2ργσ)2 − 4σ2γ(γ − 1), â(γ) = 2κ∗ − 2ργσ, and τ is the
independent variable. From the solution we known that the range of τ is τ ∈
[0, (π − 2φ(γ))/

√
−ĉ(γ)] and φ(γ) = arctan(−â(γ)/

√
−ĉ(γ)). Transforming (3.6) into

an exponential form yields

E(γ, τ) =
γ(γ − 1)(eHτ − 1)

(G + H)eHτ −G + H
, (3.7)

where G = 2κ∗ − 2ργσ and H =
√

G2 − 4σ2γ(γ − 1). In equation (3.7), the range
of τ is τ ∈ [0,∞], which is different from that in (3.6). Thus, the procedure of
transformation is wrong, while if (2κ∗ − 2ργσ)2 − 4σ2γ(γ − 1) > 0, the global solution
(3.7) can be obtained without ambiguity. When using (3.6) to calculate the last results
in (2.20) a complex value will be obtained, but using (3.7) to calculate the last results
will yield a real value.

On the other hand, in some formulas of our model including the derivative of
C(ω, τ), D(ω, τ), E(ω, τ) such as (2.12), (2.13) and so on, theoretically there should be
complex numbers, because

∂B
∂ω

∣∣∣∣∣
ω=0

=
i(σ2 − 2σκρ)

2κ
, 0,

https://doi.org/10.1017/S1446181117000268 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000268


98 J.-P. Cao and Y.-B. Fang [16]

Table 4. The time spent in four approaches (in seconds).

Sampling Our model Zhu’s model Zhang’s model MC simulation
frequency
Quarterly (N = 4) 0.1600 0.1210 0.0031 0.5930
Monthly (N = 12) 0.4910 0.3070 0.0060 1.8010
Weekly (N = 52) 1.9030 1.5120 0.0170 7.6910
Daily (N = 252) 9.4050 7.6910 0.0210 36.2820

Table 5. The sensitivity of the strike price of the variance swap (daily sampling).

Parameter Value Sensitivity (%)
κ∗ 11.35 −0.0375
θ∗ 0.022 1.073
σ 0.618 −0.0264
v0 0.04 0.28

but the last strike price is still a real number. Beside our analysis in Section 2.3, it
is known that in our last formula the coefficient of i becomes 0 in the process of
integrating polynomials. So, similar to the work of Zhu and Lian [32] and Jia et al. [17],
the parameters in our model are allowed to change randomly.

3.3. Efficiency and sensitivity One of the aims is to improve our efficiency to
price variance swaps with a dynamic underlying asset. In this section, we show the
efficiency of our discrete model. In order to make a comparison conveniently, we show
the running time of the kinds of procedures for algorithms that include our model and
the models of Zhu and Lian [32], Zhang [29] and the MC simulation in MATLAB in
Table 4.

It is clear that the efficiency of the three analytical solutions is better than the MC
simulation. The two models using dimension reduction are obviously less efficient
than Zhang’s method, because the derivation process makes our model much more
complex, and the last analytical equation (2.5) in the two models is longer than
another formula. In this way, the shortcoming of the two applications of the dimension
reduction technique is their running time, especially when the sampling frequency is
large. However, compared to the MC algorithm, this method saves time as well.

Finally, to demonstrate how sensitive the strike price is to the change of key
parameters in the model, some sensitivity tests are taken for the example presented
in this section. The results of the percentage change of the strike price are shown in
Table 5, which is caused by model parameters changed by 1% from their base values
used in the example presented in this section. As certain papers showed before, it is
clear that the strike price is most sensible to the long-term mean volatility θ for the
cases studied. The spot volatility v0 also has an important influence on the strike price,
and the least sensible parameter is the mean-reverting speed parameter κ∗.
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4. Conclusion

In this paper, we extend the approach proposed by Little and Pant [19] and Zhu
and Lian [32] to price variance swaps with the realized variance defined as the average
of the squared log returns of the underlying asset, and obtain a closed-form exact
solution based on the O–U process. This model supports the fact that the method of
Zhu and Lian [32] is indeed quite versatile, and can be used for other definitions of
the realized variance as well. Based on the relationship between the Heston model and
mean-reverting volatility model, we use the MC simulation based on the two dynamic
processes to test our model, and find that our model is correct. There is the same
procedure which solves our model, and other models such as Zhang [29] and Rujivan
and Zhu [22], but our model can avoid the limitation as pointed out in these two
articles, and allows parameters to change randomly. Thus, we do not need to worry
that the strike price is a local solution in our model. The disadvantage of our model is
its long running time; however, it is at least faster than the MC simulation.

There are different stochastic processes consisting of the simultaneous movement of
an underlying asset and its volatility. We can extend the applications in pricing variance
swaps based on the Heston model into other processes such as Merton’s jump-diffusion
model [20], Bates and Scott’s model [2, 24], and so on. In addition, we may add the
movement of stochastic interest rate, and make these kinds of stochastic processes
include three variables.
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Appendix A

We rewrite the system in Proposition 2.1:
∂U
∂t

+
1
2

v2S 2 ∂
2U
∂S 2 + ρσvS

∂2U
∂S ∂v

+
1
2
σ2 ∂

2U
∂v2 + rS

∂U
∂S

+ [κ∗(θ∗ − v)]
∂U
∂v
− rU = 0,

U(S , v,T ) = H(S ).

Firstly, let τ = T − t, x = ln S, then the converted PDE system can be obtained
∂U
∂τ

=
1
2

v2 ∂
2U
∂x2 + ρσv

∂2U
∂x∂v

+
1
2
σ2 ∂

2U
∂v2 +

(
r −

1
2

v2
)
∂U
∂x

+ [κ∗(θ∗ − v)]
∂U
∂v
− rU,

U(x, v, 0) = H(ex).

Then, we apply the generalized Fourier transform to the PDE with respect to x.
Before obtaining the solution, the formula for the characteristic of the transform should
be introduced.
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TheoremA.1. If n > 0 and n is an integer, and lim|x|→∞ f (r)(x) = 0 for r = 0,1, . . . ,n − 1
with f (0)(x) ≡ f (x), then

F [ f (n)(x); ξ] = (−iξ)nF(ξ).

After transform, the corresponding PDE system can be obtained:

∂Ũ
∂τ

=
1
2
σ2 ∂

2Ũ
∂v2 +

[
−

1
2

v2(ω2 + ωi) + rωi − r
]
Ũ

+ [v(ρσωi − κ∗) + κ∗θ∗]
∂Ũ
∂v

Ũ(ω, v, 0) = F [H(ex)].

(A1)

Following Rainer Schöbel’s [26] deduction process in the mean-reverting stochastic
model, we might as well assume

Ũ(ω, v, τ) = eC(ω,τ)+D(ω,τ)v+E(ω,τ)v2
Ũ(ω, v, 0). (A2)

Let c1 = (ω2 + iω)/2, b = (iω − 1)r, A = κ − iρσω, B =
√

A2 + 2c1σ2. Then we
substitute this function into (A1) to obtain a Riccati differential equation group:

dE
dτ

= 2σ2E2 − 2AE − c1,

dD
dτ

= 2σ2DE − AD + 2Eκ∗θ∗,

dC
dτ

=
1
2
σ2(2E + D2) + κ∗θ∗D + b

with initial conditions E(ω, 0) = 0, D(ω, 0) = 0 and C(ω, 0) = 0. The analytical
solutions of these equations are given in (2.11). After obtaining the solutions, an
inverse Fourier transform should be utilized to get the solution of the original PDE
as

U(x, v, τ) = F −1[Ũ(ω, v, τ)]

= F −1[eC(ω,T−t)+D(ω,T−t)v+E(ω,T−t)v2
F [H(ex)]].

Appendix B

The Feynman–Kac formula tells us that the solution of PDE (2.14) can be written
as a conditional expectation

U(S , v, t) = EQ
t [er(T−t)G(vT )].

The expectation is actually not related to the process S t, since the payoff function
is independent of S . Thus, we only need to know the distribution of vt to find its
expectation. Given that vt follows the dynamic (2.1), we apply the Itô formula to eκ

∗tvt

deκ
∗tvt = κ∗eκ

∗tvtdt + eκ
∗t[κ∗(θ∗ − vt)dt + σdB̃v

t ]

= κ∗θ∗eκ
∗tdt + σeκ

∗tdB̃v
t . (B1)
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Integrating both sides of (B1),

vt = e−κ
∗tv0 + θ∗(1 − e−κ

∗t) + σe−κ
∗t
∫ t

0
eκ
∗ sdB̃v

s. (B2)

Note that the random variable
∫ t

0 ek∗ sdB̃v
s appearing on the right-hand side of (B2), is

normally distributed with a mean of 0 and variance∫ t

0
e2κ∗ s ds =

1
2κ∗

(e2κ∗t − 1).

Therefore, vt is normally distributed with a mean e−k∗tv0 + θ∗(1 − e−k∗t) and variance
(σ2/(2κ∗))(1 − e−2κ∗t).
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