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§ 1. If we write the product

Pn(x)=x(x+\)(x
in the form

the coefficients Cn
r have been called by Professor Nielsen (following

Thiele) the Stirling Numbers of the First Species, because James
Stirling, in his Methodus Differentialis (1730), was the first writer
to draw attention to their use, and furnished a small table of
their initial values.*

Thus C* is simply the sum of the r - ary products of
1, 2, 3, ... , n— 1. In particular,

( ? : - l ; C , J=«(n- l ) /2 ; C n - > = ( n - l ) !
But the explicit representation of C£ in terms of n and r is not
very simple.

For identical reasons, when 1/PB (a;) is expanded in ascending
00

powers of a; in the form 2 ( - 1)'F^ /xH+l, which is possible if

\x\ > n - 1, the positive integers F£ are termed the Stirling
Numbers of the Second Species.

Both series of numbers have been studied by various mathe-
maticians of note. Recently Nielsen (Annali di Matematica, 1904)
has discussed their properties, and shewn their relationship to the
Bernoullian Numbers and Polynomials. I propose here to furnish
an account of them. By use of a different basis I have been
enabled to reeast the theory. The relations with the Bernoullian
numbers have been brought more into prominence by means of a
series of linear transformations that seem peculiar to the Stirling
numbers, while a generalisation of both Stirling and Bernoullian
numbers is indicated.

* Page 11 and page 8, Meth. Diff.
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The importance of the r61e of these functions in the theory of
the Gamma Functions has been emphasised by Nielsen in his
well-known treatise. Since Pn (as) = F (x + n) / F (a;), the connection
with the Gamma Function is obvious enough. Owing to the
nature of their formation, the methods of Finite Differences are of
peculiar advantage in their discussion.

We may note
A P ( ) P ( l) (1)

2i>n(x) = - i - Pn+I(x-1) (2)
n+\

If n «£ m, we may write the product Pm (x) x Pn (x) in the
form

A(>Pn(x) + A1Pn+1(x) + ...+AnPm+n(x) (3)
by noting that Pm (x) may be written as

Pm(x) = A0 + Ai (x + n) + A2(x + n)(x + n+l) + etc.,
where

A0 = (-l)™nPm; AT = (-\)<<~nPm_rxmCr.
In particular,

[Pn{x)Y= £ ( - l ) » - ( n - r ) ! ,Cf
!P^(«) (4)

Similar conclusions hold for the product Pt (x) Pm (x) Pn (x), etc.
In particular,

[P.(x)y = A,P.(x) + ng\pn+t(x) (5)
where Ao = [Pn (a:)]*"1 when x = - n,

h xy]' when"=" *"n'
§2. Relations connecting the numbers €*, and their successive

calculation in terms of n and r.

If we put x = 1 in Pn (x), we find
P.(l)-C:+Ci+...+Cu-*-n\ (1)

Similarly, Pn (r) = r" CB» + r""1 CB' + ... + rCr1 - ^ ^ x n! (2)
for integral values of r ; and the determinant of order n + 1 whose
rows are the values of

r», r—1,...,!-, n+r.rC^
for any n + 1 positive integral values of r is equal to zero.

By noting that
x(x-l)...(x-n+ 1) = CB° x"-d <e-l + Cj JB"-2- etc.,
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and writing in succession 1, 2, ... , n —1 for x, we obtain the
M — 1 equations

CK»-I - Cn—
2 + C,,"-3 + . . . + ( - I)—1 C,° = 0 -I

Cn—' - 2Cn"-a + 22Cn—* + . . . + ( - 2)—1Cn° = 0 [ (3)
etc. J

So that if we take C° = 1, we have n — 1 linear equations for
C*..., Cf~l, which can then be expressed as the quotients of
determinants of a very special type. But the calculation of these
quotients is simply the problem of the calculation of C£ in another
form.

A number of recurrence-formulae for their successive calculation
may, however, be readily obtained.

From the identity

or 2 (C; + n C;-1) x"-r+l = 2 Cr
n+

we deduce
CUi-C.' + nCr* (4)

This relation is of fundamental importance. Moreover, if we take
Cf = 0 and C° = 1 for all positive integral values of n, and
restrict the upper index k in Cn* to be less than the lower index
n, then there is only one system of integral numbers thereby
determined. It has the defect that to calculate C *+1 we require
to know the values of Cn

r for the lower value n.
We proceed to find a formula not subject to this objection.
From the identity

or n Pn (x) = xAPn (x)
we find

+1)"-a"} C° +{(a;+l)"-1-«-1} d +etc.].
So that, on equating like powers of x on the two sides, we obtain

» <K = . cw , C? + »-iC, ci + n_,cr_t W+...+ „_,(?, c;.
Hence

rC; =nCr+1 Cn» +._1Cr CJ+ ... + n_r+1Cs O r 1 (5)
From this formula, taken with C^ = 1, we have a means of

obtaining C*, C*\ etc., in succession.
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Thus

Cn° = 1

Cl-n(n-l)/2

Gl = n (n - l ) (w-2) (3n- l ) /24

I. -iCn
3=M2(»i-l)2(n-2)(n-3)/48 or nP4n (n- l)/48

Cn
4 = MP5 (15«» - 30n2 + 5JI + 2)/5760

Gl = BP, n (n - 1) (3n2 - 'In - 2)/l 1520

.Cn
6=nP7(63n5-315«4+315n3 + 91n!-42n- 16)/ 252x11520.

The calculations begin to get laborious, but from the results given
a variety of conclusions are suggested, which are readily established
by induction.

The function Cj, as a function of n, is an integral function
of degree 2r.

It contains the factor* nPr+i = n ( n - 1) ... (n- r).
We observe that Cn

3 and C% contain the square factor
«2(n-l)2 . We proceed to shew that (7^*+1 always contains this
factor.

Dem.—If £ = x + n - 1
()

so that
2Cr

nx"-r = 2 ( - 1)« Ci (x + n - 1)"-.
Hence

c; = (-1)' c: + (-1)-1 crl .-^..c, (« -1)
+ ( - 1 ) ' - 2 c;-* n_r+zc2 (n - if +...,

so that, when r is odd and > 1,

2 C ; = C r 1 (n-\){n-r+l) + (n-\y-F(n) (6)

But C'~l contains the factor « - l .
.". G,' contains the factor (n - I)5 when r is odd.
Now C^ = C£+1 - n C*~l and C;+1 contains the factor n2

when r is odd. Hence C* contains the factors n2, and therefore
the factor ri*(n - I)2 when r is odd.

The same conclusion may be obtained as follows.

* These theorems are only true if r is independent of n. For example,
sinoe n\ = l + Ct] +Cn*+ ... + CJ-1 , all the numbers CP ...Cj"-1 cannot be
divisible by n ( n - l ) . A similar restriction applies to the presence of a
square factor in the Bernoullian Polynomials of even degree.
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6

By Newton's Interpolation Formula

Pick out the terms in x"~r.

( 7 l _ i _

When r is odd, the factor (n - I)2 appears in each term of the
equivalent of ICl, and we may reason as before to complete the
demonstration.

By introducing the Bernoullian numbers and polynomials
another recurrence formula may be obtained.

In P,(a;) = 2C,' a;""1" write in succession 1, 2, ... , x-1 for x
and add.

.-. (x-l)Pn(x)/(n+l) = ?C:Sn_r (9)
where

in which i^ , S2»
 etc-> a r e ^he Bernoullian numbers.

Substitute the corresponding values for Sn, etc., in (9) and
equate the coefficients of as""1'"1"1 on the two sides, when we deduce

f~tr n r— 1 fir p r—1 = *; /I

n + \ ~ n-r+1 2 + ,ti( j n-7Tl ' "

+ y i v nun

(10)
Cor.—If r is odd = 2&+ 1, then

is divisible by if, since all the terms with an odd upper index > 1
in (10) are divisible by n2.

From the identity
Pm+n(x)=x(x +1)... (x + m- 1)X (x + Til).. .(x + m + U - 1)
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7

or
2 Ci+. «ra+n-' = 2 C£ *"•- * 2 C» (a* + m)—

we find

Cm|n = 2 C* [CT.4-* + Cr*-1 ,._(+t+1C1 x m + ... + C: nCt_t »«-*].

For example,

More complicated expressions follow from such identities as

*) = •?« (*) x Pm (x +1) x P ,

§ 3. 2'Ae Stirling Numbers of the Second Species.

These are defined by the relation

' r.« /af+' (1)O ( ) . /
»=o

In particular,

r j _ l ; r * = 0 ; r * = l ; r * = 2 * + 1 - l : etc.

Since (x + n)/Pn+1(x) = l/P.(x),

.-. rr,+1-«r-\= r; (2)
This is the fundamental relation corresponding to (4) § 2 for Cj.

Moreover, there is only one syatem of positive integers
satisfying (2), provided F° = 1 for all positive integral values of
n and r}+*=0.

A number of other relations follow from the definition.

Since, for \x\ > n,

l/(x + n) = l/x- n/x2 + etc.
••• r;+ 1=r^+ wrr1+n2rr2+.. .+«T», (3)

e.g. r j = r j + 3 r r 1 + . . . + & r« = j (3r+* - 2'+3+1).

From the representation of n\/Pn+1(x) as a sum of partial
fractions in the form

(
«=o

it follows that
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8

r;+1= 1 i(-i)' .c,(n-s)«^ (4)
n) , = 0

Moreover, since for p > n,
A" («*)= 2"(- l ) ' n C, (as + rt-s)"

8 = 0

= S ( - 1)' nC. [^ + ,(7, a;*"1 (n - «) + ... + (n - . )*]
and since

S ( - l ) - , C . ( n - « ) " - 2 ( - 1)\C.

= An(0a) = 0 for a. < n

.: &»x? = n\ S pCrT^x"-' (5)
r=n

In particular,
A»(0"+I-) = n ! rn'+1 (6)

From Newton's Interpolation Formula

a;" = a;A(On)+ 2 xCr A'(0"),
r=2

and therefore, from (6)
a;n = r2"-1a; + r j - 2 a ! ( x - l ) + . . . + T°n+1 x(x - l)...(x-n+l) (7)

Recurrence Formula for the successive calculation of FJ,,
r*, etc.

Clearly, for suitable values of x,

1) £ (-i)T;/*«+p

r-0

=^ ( - i )• r: [ i K+-1 + i „+,_,//, / x"+'-i+t] (8)
( = 1

Pick out the terms in l/a;"+r-1 on both sides of (8) ;
r;-(n-i)rr»
r: - r̂ 1 .^.A + rr8 • ^ f f>- .+( - i )Tl .^

or
»• r ; - n+r_2Jff-2 r r 1 - «+r-,^ r ^ 2 + ... + ( - i r + 1 „_,//,+, r » . (9)

From (9) we can readily make the following conclusions:—
Pu

r , as a function of n, is, in general, of degree 2r.
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It is the product of (n - 1) n (n + 1)... (n + r — 1) by an integral
function of n of degree r — 1.

In particular,
FJ, =(n-.l)n/2, and .-. = C> .

F?, = (« - I)2 n2 (n + 1) (n + 2) / 48.
etc., etc.

Like Cl, F^ is divisible by ril(n - I)2 toAen r is odd and > 1.
It is sufficient to prove that Tr

n then contains (n - I)- as a
factor, for in such a case Fj+ 1 contains n°, and F^ = Fj+1 - n F^}
also contains n2.

If x + n-l= - £ , Pu(x) = (-
so that

= 2 F' j - ^ ; + ~^~^'";

Hence
(-i)Ti-ri -(»-i)^1ffIir+(»-i)'*i (10)

so that, when r is odd,
2 F;, | = ( n - 1) (n + r - 1) F;-1 - (n - I)2 A.

But F^1 , for r> 1, contains n - 1 as a factor. .-. etc.

§ 4 The analogy between the properties of C'n and F^ sug-
gested by the results so far given is carried farther by the
following analysis.

Consider the functional equation

where fn (x) is an integral function of degree m. If F (x) is to be
an integral function of x and if F (0) = 0, it is easy to shew that
it is a unique function of degree m + 2, when fm (x) is given.

Hence if we take /„ (x) = 1, we obtain a definite function f, (x).
By using the same equation, but for m = 2, we get a function
f4 (x); similarly f% (a:), etc.; and the system of functions may be
considered as solutions of

J\r (x+l) =f2r (x) + xf,r_., (x).
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10

Now CH+1 =C; +n C;-1 for all integral values of «, and
since f>r(x) is of finite degree 2r, the functions found from the
algebraic equation in x

/2r(tf+l)=/2r (*)+*/*._,(*) (1)
are simply the Stirling Numbers G* when x is an integer = n.

Similarly Tr
n satisfies the equation
f.2,(x) = +,r(x+l)-x+lr_2(x+l) (2)

In (2) write - y for a;, when it becomes
fe(-y) = \Mi -y ) + y ^ - 3 ( i - y ) : (3)

Write ^2,(1 -y)*=f2r(y) for all values of y, when (3) becomes

i.e. an equation identical with (1) but with y written for x. We
have therefore the important theorem.

If C£, as a function of n, =f>r (n), then Ff, = f,r (1 - n) • or if
r ;=/*(n), &n=Mi-n).

From this relation we may clearly deduce all the properties of
the one number from those of the other.

When r is =n or > re, Tr
H has a definite value, and C* may

then simply be assumed to be zero, having the vanishing factor
n -n.

The following are examples of the use of Stirling Numbers not here
discussed :—

(1) If Y=<p{y), and y = e',

(2) If r=0(y) , and t/=logx,

d*" " « - , i 0
 ( ~ " °n *V~ • (Sohlomiloh).

(3) ~ = 2 C;-P+I lx{x+l)....(x+8)
•** t=p-i

if JR(x)=-0. (Stirling).

An error in Stirling's second table (105056 instead of 118124 in the last
row—Stirling has omitted to add 13068 from the row above—see page 11,
Meth. Diff.) has been noted by Binet (Jour, de VEcole Poly., 1838).
Stirling's two tables, in oorreoted form, were, however, reproduced by
Emerson in Method of Increments, 1763—a work based on the Treatises of
Taylor and Stirling.
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§ 5. Identities connecting the two species of numbers.

The Stirling numbers are connected by a great variety of
identities, some of which we proceed to give with a view to further
application.

Since Pn (a;) = 2 C ; x"-r

»=o

and Pm(x)xl/PH(x)-l,

we find immediately the system

c ; r j - i

c° p -cir°=o
I ( i)

c*r; - c,; r r 1 +... + ( - lye ; r,?=o, *•<«
Cn° r ;+ i - c\r-+1-1 + ... + (-l)"-1 c^-1 r^+J = o.

Cor. T,;- + ( - l)r C; is divisible by rc2 (n - I)2 if r < w.
From these we may express, say, the quantities F^ in terms

of C° , Ci, etc., and deduce their properties.
Moreover, if from these we find

then «7ir =^(rn"(T,;,...)/(r?,)'+>
where F is an integral function in which each term is of weight r
in the upper indices.

From the identity
Pu{x)jP,i_r (x) = (x + n -r)(x + n-r+l)...(x + n- 1)

or SC**""5 x N J ( - l)T,,l r / a;"--1- = «?•+..., etc.,
it follows that, for t <£ 1,

/"»0 rr+l "/-*1 F ' + ' - ' i f " Fr+t-S — O • ^2\
O,, l , ,_ P -O n i „_, + t / n ! „_ , — . . . — U, (•*)

for the coefficient of I/a;' on the left side must vanish.
Also

C° rnir - c,: r ^ j +... + (-1)- c; r°_r=(- iy ̂ p r . (3)
The identities found from

are more complicated in expression.
From the particular case

1 P W / P l
x + n "

= 2 c,r *—r x 2 ( - 1 ) . r ^ / x"+i+<
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we find
nr=c,° rj+1-c.1 r - \ + ... + (-i)'<7,:r°+1. (4)

a result which holds for r > n if we assume C"+k = 0.
From the identity

x" = r?-» x + T$~-x (x - 1) + ... + r , ° + I x (x - l)...(x - n + 1)

the coefficient of x"~r on the right side must vanish.
• •• r;+1 c; - n cz\ + r ^ c t s -...(-1)- r^_r+icyr = o. (5)

§ 6. Some equivalent systems of linear equations.
The following two systems of equations are equivalent:—

rtl = 6'° 6, = 6,

a3 = Cl bs± C\ h + Clb,

a,, = G'° 6,, ± CJ &„_, + . . . + ( ± I ) ' - 1 6Yr ! *!
(A) -J and

6, = rs«]=«j

a.2+ r
«3 + r j

K - rn°+1«. + r,j«,._, + ... + ( +1 )-> r , - 1
 B l .

For, substitute the values of 6,, 6., ... bn, in terms of
ax , a*, ... an in an = C,,° bn ± etc.,

when the coefficient of an_r vanishes by (2) §5, save for r = 0,
when it is unity.

Or substitute from the first system in
K= r,,0+1aB + etc.,

when the result follows from (5) § 5.
We can thence deduce an interesting conclusion regarding the

interdependence of (2) §5 and (5) §5.
Ex. Since

••• «-- r»+1 pu(x)- v\ p^(x)+... + (-1)"-1 r
Similarly, since

x(x- l) . . .(a-n+l) = C,J aj-'-C,,1 a:"-'+ etc.,
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it follows that
a ^ r , " - 1 x + T."--x (x - 1) + ... +r,,°+1 x(x - l)...(x - w + 1). (2)

Cor. The sum

or

n +1 n " "

The equivalence of the two linear systems in (A), which is
to be found in Schlomilch's Compendium der H. Analysis, is only
one of several linear equivalences.

A generalisation of it is given by the following:—
If

ar = C * br + Ci br_x + C?L br_2 + ... + C ' r ' bt.
ar-l = ^ .i-l 0r_i + C/ „_, O,._.> + . . . + C nJ\ bt

(B) <; then

K = r.»+1 ar - vi Or_, + n _ , a,._5

6f_, = T» ar_, - ri_i «r-2 + etc.

For

rn°+l cr* - r,
for 0 < k < r, by (5) § 5, and T,?+1 Cl = 1:

(or because *2 ( - l ) m C n
n T^

\ m=o
Again, if

«,_, = C* 6r_, + CV

ithen, I
I 6_

(C) -{then, by( l )§5 ,

6r = T» ar - V,] ar_, + T* aP_2+ ...( - 1 ) -

r » a ^ , - etc.
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Also, if the signs of the b's in the first system are alternately
positive and negative, the signs in the second system are all
positive.

Ex. 1. From

we deduce
n — ^ n ' n + I ~ I - " * - 1 7 . + 1 + ^ » 1 » i + l ~ •••( ~ 1 1 < ^ n *• n + 1 1 • • • ( . " /

a result which holds even when r <£ w, provided we then assume
c;+* =0.

Ex. 2. Since, by (5) § 2,

('• - 1 ) c ; = ; = ^ ^ - C L - I + ^ . c ^ (?:,_, + etc.

it follows that

«Cr+i=rCn' rn°+1 - (r - 1) C£? r, ' + etc.
and

.-. ,A=(r- i)crir,l»+1-(r-2)c,rr1
2r,:

+ ...+(-l)'-=(7,,L,+2rnL-=+:! (6)

Ex. 3. Similarly, from

r r ; = ( - 1 ) - 1 [ ^ / / ^ rn» - „//,. r;, + etc.]
we obtain

( - l)r
nffr=(r - 1) ITS1 C»° - (r - 2) r ^ | Ci+1

+ (r - 3) r ^ J CM
2
+2 - . . . + ( - 1 )'-2 r , ^ , C ^ _ 2 . (7)

The expression for nPr is to be found from (3) § 5.

§7. Relations connecting the Stirling Numbers with the
Bernoullian Numbers and Polynomials.

Since the equation

c™ x"-1 - a xn~- + ci xn-' +...(-1)»-' c;-1 = o
has for roots 1, 2, 3, ... n - 1, write
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when we have from the theory of symmetric functions the system
of equations

-sr.-cj-o

S,-Ct?8r.1+... + (-l)'pC>=0 (1)
up to p = n - 1.

s,,+* - ci sn+k_, + ... + ( - 1 )-> sk+1 c . - 1 = o.
Hence, consider the linear system

CS S,-Ci S^ + CIS,,^- . . . + ( _ l ) " 8 a C . ' = 0
c,? A_, - +(-1)"-1^ c/-1 =( - lj'-'cr1

c,° se_2- + (-i)p-"-soc,,'-- =(-1)'-"-. 2 . c,

(which hold for p > n, provided we assume C," = C"+1 = ... = 0).
Multiply respectively by r,J , F,J , . . . , T,f, and add.

••• s , -(- i )H[r , Icr1 - s r^cr 2 + . . .+(-1)-^^ cn°].(
Similarly,

5^ - ( - ! )—[ etc.]

Hence, multiply in the new linear system by F", FJ, . . . , F / " 1 ,
and add.

• •• T,? 5P + F,: ^_ 1 + FB
2 S^+ ... + F / - ' 5 , = ^ ^ . ...(3)

Form a new linear system by writing p-1, p-2, etc., for
p in (3).

Multiply respectively by C°, - CJ,, + C£ , etc., and add.

- 2 c , , 2 r n " - 2 + . . . + ( - i )

If we form a new linear system from (4), as before, and
multiply by C°, - Ci , etc., we find, on adding,

CS 8,- Ci<S^,+ . . . - ( - \)^p.C* ,
which is the identity from which we started.
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I t is worthy of note that the relations obtained, holding for all
integral values of n while the degree in p is limited, furnish
algebraical identities in n true for all values of n.

From (1) and (3) it also follows that, in general, the following
functions are divisible by r?(n—\ )2:—-

8f+(-iyPc:i sp-Pr>; r;+(-i)'c;.
If we substitute for S, from (2) in Of Sp - C,1 Sp^l + etc. =0,

there results

r^ [c,0 crl +ci cjr- +... + c,r1 c y
- 2 rn

2 [c,? c r 8 + ci c,r3 +... + c>r"~ c?:]
+ sr» [c: cr3 +...]

+ (-i)"->rn'>cn
oc,? =pc,' (5)

Also from

it follows that
r,1 [r« cj^ - r;

which is obvious from (1) §5.
From S, = Ci T/-1 - 2 Cn

2 T,^8 + etc.
and rB» sp+r,: s ^ +... -p rB»,
it follows that

ci [r: rr'+ri rn-2 + ... + rn^rn«] (6)
- 2 eM

2 [rn« r*-*+etc.] + ... + ( - i ) ^p c / rn» r.»=P rn».

§8. Expression of Bernoullian Numbers in terms of Stirling
Numbers.

Write x+ 1 for x in (3) § 6.
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Equate like poVers of n on the two sides (the relation being
an identity in n).

^ a Bk = r» ,_M c%_w (P +1 - a*),

^ C ^ / (p + 2 - 2*) + ... + ( - 1)» r j + 1 C^i / (p +1) (1)
and

o=r^ t j c% t / (P - 2*) - r?+1_» c>+1_M/ (p + I - 2*)
+ . . .+(_ l y a - T ^ C ^ / ^ + l) (2)

We may, by suitably selecting )̂ and k, obtain therefrom the
following equations :—

0 = I^ftU-C^,-,,/ (p + 1 - 24) - ...

1_M / (p + l - 2*) - etc.

B> e t c .

ri po po
p+1—"J-^B-l-l—Bit A O4-3-
p + 1-2* p + 2-2*

P+1-2A

Multiply these respectively by

Cp°+1, - CU, , . . . , ( - 1)"+ 1 OSS1, and add.

. •. ( - I ) 1 {Cl+i PCU Bt - Cp
3
+1 rJO^ Bk_l+...

+ ( - 1 r 1 C^;1 ,_M+5C2 ̂ } / (p +1 - 2*)

o r / 1Y( ]or ( - 1 ) { . . .}_

Similarly, if we omit the first equation of the linear system,
multiply the rest in succession by Cj,0, - O,1, etc., and add, we
find, after a few reductions,
( - 1)*[Cp° P C « B t - Cp

s ^ G ^ B ^ + ... + (
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Cor. — From these very general results we may, by putting
p = 2k, deduce in particular the following :—

1 2 I 3 i (°k\'

r f 3 J - ^ j r^,. ...(5)

" ~ 2 2 ~ 3 * "2A + 2 "*+2

Also
( - I)1"1 [CWH ^ - CM

3
+1*M + ... + ( - I)*-1 C»+! /?,]
- * ( 2 * ) ! / ( 2 * + 2 ) (7)

and

C A ^ - C i /?,_,+ ... = ( - 1)-' | ^ ~ { y (2*- 1)! (8)

§ 9. Some Recurrence Formulae for Bx, Bit etc

The three recurrence formulae for calculating JS,, £„, etc.,
given in Pascal's Repertorium may be easily found as follows :—

In F^(x)

express that x - 1 is a factor
(i) when p = 2w, when we obtain Demoivre's formula (1730), viz.,

2m+lCl J3m — tm+l^S "m-\ + • • • ( — 1 ) " ~ 3m+i(/2m_i B\

+ ( - l ) - ( » - * ) - 0 . (1)
If we differentiate (Sjm+i (x) and express that *S'Smf, (1) is =0,

we simply find Demoivre's formula over again;

(ii) when p — 2m+ 1, when we obtain Jacobi's formula (1834),

+ (-l) I"W = 0. (2)
(iii) Subtract (1) from (2) and note that 2«+JC'r = 2«.+iCr

when we obtain the formula of Stern (Crelle, 84),

+ (-l)-J-0. (3)
Further, ^2^+, ( \ ) = 0.

• •• 2 m - ^ A .2>El+ ^C* 2*B2-...+(- l ) - ^ , ^ 25-.Bm = 0.

(4)
Since 2̂™+! (x) contains the factors x (x - 1) (2a; - 1), there-

fore F2m+1 (x) I (1 - x) (1 - 2os) is an integral function of x of degree
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But, for a suitable continuum for x, 1/(1 - x) (1 - 2a;) = 2 F / x",
and for the same continuum F,,m+1 (x) x 2 r3* x1 is equivalent to an
integral function of x of degree 2m - 1.

Hence the coefficients, in the product, of a;2"1, a?m+1, etc., must
vanish, so that

and

- r \ 2 m + 1c2 B, + H 2 n.+ 1c4,8,
mJBm = 0, (5)

a 2>»+l a+i » a+2*
.-, - ~ i s + Z< ( - 1) A j

Since r , a = 2a+1 - 1, the former of these may be written as

(2*" - 1) ta+IC, 5» - (2=— - 1) ^+,(73 5 ^
+ . . . + ( - I ) - 1 (22- 1) ^ . C ^ , £, + ( - l ) - ( » +J) = 0. (6)

Added to Demoivre's formula, it gives
•2*",m+1Ct£m- ... + (- l )"- '2%m + 1C2 m-.^ + ( - i r 2m = 0, (7)

as in (4).
On subtracting Demoivre's formula, we find

+ ( - I ) - 1 2 (2 - 1) ^ A ^ - . A + ( - I)" = 0. (8)

These last two formulae are found by trigonometrical series in
Saalschutz, Die Bernoullischen Zahlen. The other, (5)1, is only
apparently more general, for after subtraction of ( - I)"1 of (1), the
factor 2° may be removed, when it reduces to (6).

§10. The Stirling Polynomial.

It has been seen that
Cn' = n(n-\)...(n-r)4>r_1(n)

where (£,_! (n) is an integral function of n of degree r - 1 ; and
at the same time Yr

n admits of expression in the form
IY = ( - 1)*« ( n - l ) n (n+ l)...(n + r - 1) <k_, (1 _») .

If, therefore, a full discussion of the function <f> were possible, a
complete knowledge of the Stirling Numbers would ensue.
Nielsen has therefore proposed to call this function the Stirling
Polynomial, though the analogy with the Bernoullian Numbers
and Polynomials is not perfect.
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From the relation

follows that
(rl) (1)

This functional equation may be used to deduce a number of
properties of the Stirling Polynomial.

In fact, if we assume <j>0 (n) = 1/2 and restrict the solutions of (1)
to be integral functions, it is easy to shew that only one series of
integral functions is found : <f>0 (n), fa (n), $2 (w), etc. ; and they are
therefore the Stirling Polynomials.

Some particular values of <£ for special values of n and r may
be noted.

Since Cn
2m+1 contains the factor n a (n - l ) 2 ,

• •• * * ( 0 ) - 0 ; <^m(l) = 0 (2)
Also Sp + ( - 1)" p Cn" is divisible by n2 (n - I)2, and

S,m = «2m+1 / (2m + 1) + . . . + ( - I)™-1 Bm n,
••• <#>»»-! (0) = (-l) '»JBm/27»x(2w)! (3)

Moreover, from (1)
< M l ) = - ( r + 1)^(0) ,

so that
^ m + 1 ( l ) = ( - l ) ° > ^ + . / ( 2 m + 2)! (4)

Since (n - 1) ! - C , - 1 - n I <̂ .n_2 (n),
(5)

Also (n - 1) ! ( l + * + ... + ^ ) = Cn»-! = n I <f>,_5 (n),

Similarly

Since r,,'- = ( - I)'"1 (n - l)n. . .(n + r - 1) <£,_, (1 -n) (7)

Similarly* <j>r{ - 2) = ( - I) ' (2'+s- 1)/ (r + 3) ! (8)

§ 11. Nature of the coefficients of the Stirling Polynomial <f>r (x).
The determination of the coefficients of <j>r (x) is not simple, but

recurrence formulae for their calculation are easily furnished.
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I note only two of these :
(x+l)<f>r(x+l)-x<l>r(x) + (r+l) <f>r (as) = x &._! (x), (1)

and from (5), § 2,

a - r + 2 , , . a:- 1 , , . 1 ...
* ( ) + + * ( > + • (2)

Assume <f>r (x) = 5r° af + A',1 a;'-1 + . . . + £ / .
Substitution in (1) leads to the equations

r + A 5-,.° + rC, S J + (r + 1) -Sf,1 - ^

r+1Ct Sr° + JCM Sr>+... + ,_WC', Sr" + (r +

etc., etc.

Substitution in (2) leads to
(r+l)Sr° = ££,! , ,

(r + 1) Sr> - i ^ - y 5r°, + $ Sr% ,

(r+1) S* = J ^ - y -S.L, + J^rL2 - * — SJL, + ^ r ^ ,

etc., etc.
Hence Sr°= l/2'-+1(r+ 1)! (3)
Combine the second equations of the two systems to eliminate

5r!_!, and there results
Sr*= - l / 1 2 . 2 ' ( r - l ) ! (4)

The elimination of SJL.1 from the third equations furnishes
£ r

8 =l /144.2 r ( r -3) ! (5)
Similarly

S? = - ( r 5 - 7 r + 24/5) /3 4 .2 6 .2 ' ( r -3) ! (6)

From the two equations for Sr
4 the elimination of STi_i leaves

S* with a numerical coefficient independent of r, and it should
have in the denominator (r - 3) !, with a numerator of degree
higher by two than that of #,*. The nature of this equation
shews that the denominator should reduce to (r - 4) !. But since
SI — 0, the simplified numerator also contains the factor r — 4, so
that the final form of S* is / 2 (r)/2

r+1 (r - 5)! . By continuing this
reasoning we obtain the result
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-rr 3-'

7 2 ( r - 3 ) !

etc- W
in which ft (r), etc., are integral functions of r.

We easily find the following particular results :

(8)

! (9)

= 0, ••• 2*i=0 (10)
*—0

Similarly ^ « + 1 = k + . (1) = ( - l)m *«+. /(2m + 2)! (11)
t—0

and ^ ° - ^ + Sr
8- . . . = l/(r + 2)! (12)

§12. Generalisation of Stirling Numbers and Bernoullian
Polynomials.

The relation Cj+1 = Cn
r + n C,/-1

leads to the functional equation
FSr(x+l)^F^(x)+xFtr^(x), (1)

which furnishes a unique series of integral functions F.,(x), i\{x),
etc., when we assume Fo (x) = 1 ; F« (0) = Ft (0) = etc. = 0.

The presence of the factorial (a; - l)(.r - 2) ... (x - r) in
J'1.,,. (x) is easily established.

For -ff,r(0)=0, by hypothesis.

— 0, provided r > 1,
^ r (3) = ^P(2) + 2^r_2(2)

= 0, provided r > 2,
etc., etc.

Cor. /.—Equivalent initial conditions for the functions F(x)
are

I. F0(x)-l; ^ ( 0 ) = 0.
II. * • , (* ) -1 ; ^ ( l ) = 0.

III. ^ 0 ( * ) - ! ; Fs(l) = Ft(2)=...=F,r(r) = 0.
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Cor. 2.—The integral functions furnished by

with the same initial conditions are those already found multiplied
by the constant C

Cor S.—Similar reasoning applies to the system of integral
functions furnished by the functional equation

with the initial conditions

The first function obtained is simply the Bernoullian Poly-
nomial

<£„ (x) = I1-1 + 2—1 + ... + (a; - I)—1.
The other functions are the sums of such Bernoullians of

different degrees.
The function <f>nr(x) contains the factor x(x- l)...(x - r).
Also, if <pnr (x) contains the factor xa, it contains the factor

(x - 1 ) a as well, provided a. J» n.

For 4v ( l ) = 4>«r(0)

.(3)

j,<*-v (1) = >̂̂ '-»> (0) + (n - 1)! <£„,_„(0)

so that when the right sides of these equations vanish, so do the
left sides.

Note.—It will be proved presently that when re- 1 is odd, the alternate
{unctions are all divisible by x2 (x - I)9.

With respeot to Bernoullian Polynomials, we may note that 2 (2 x2") is
divisible by x(x- I)2.

X2n+1 x-ln

For 2x-"= - + odd powers of x + ( - I)"-1 BHx.
2n + 1 2

a;2"
On summing again we need only examine for - — +( - I)"-1 BHx, since

2a;2»+i always contains ar'Oc-l)2.

- — ) + ( - l)"-1^,. — possesses a term in x,

viz., ( - 1)n Bn x, and is therefore not divisible by x2.

d r x2n~\
It is known that — 2 - — reduces to - ( - l)n~lBn/2 when x = l .

ax |_ 2 J
Hence ^'(l) = 0. But^( l ) = 0. .-. f(x) contains the factor (x- If.
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I f <Ma;)= 2 akx"—'ll(nr-k)\, we find f rom (3 ) 
o 

aj(nr) ! f + a n r _ , = 0 

a 0 / ( n r - l ) ! + . . . + a „ r _ i ! = 0 

a 0 / ( n r - « + l ) ! + . . . + a „ , _ „ = ( n - l ) ! <#>„(,_,) (0 ) 

F o r example , for 

we ob ta in the equat ions 

^ + - ' = 0 
2 ! 1! 

+ a„_i = 0 

. ( 5 ) 

w!" 1 " ( n - 1 ) ! 

which may be used to de t e rmine the Bernoul l ian numbers . 

Cor.—The funct ional equa t ion ( 2 ) s imply corresponds t o a 

recurrence formula fo r the success ive ca lcula t ion o f the coefficients 

o f 
n - l 

(6 ) x (x + (x + 2 ' " - 1 ) . . . (x + n - 1—>) = 2 * ; x" 

and of 
CO 

\/x(x+\"'-i)...(x + ^ l m - l ) = 2 ( - l ) ' o - , : (7 ) 

in wh ich and o-,;' may b e cal led the Generalised Stirling 

Numbers. 

(8 ) Thus « : . + ! = « , : + « ' * - ' 
co r respond ing to <j>inr (x + 1) = <£,„, (x) + x'"-' <£,„,,._„ (x). 

F o r the funct ions er we find 

(9) <+i < H = < 

cor responding , say, t o 
£»r ( * ) = tfw (1 + * ) - ai—' ^ m r _ (l+x) (10) 

There are t w o cases to dis t inguish, acco rd ing as tn is even or odd . 
I f »t=2/u. , wr i te - £ for x in ( 10 ) . 

• •• AT ( " 5) = (1 - ^ ) + < ^ . - » . (1 - 0 
P u t (1 - £) = <£„,. (£) for all values of r and £ , and therefore 
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Hence <£mr(l+£) =
If m = 2/i+l,

Write ^ ( l -S ) - ( - i r ' * - r t f )
••• ^( i+f l - fc- t tH*- 4 *«—(£) (12)

Hence, if m is even and s* = <f>mr(n), then &"n = <£mr (1 - n);
but if m is odd, < = ( - I)1-1 <f>mr (1 - n).

A variety of identities may then be established connecting the
generalised numbers, admitting, in particular, of the expression of
the one system of numbers in terms of the other. In particular,
(1) §5, with Corollary, holds unchanged.

The numbers s,f are expressible as homogeneous integral
functions of CM° , C,I ..., C,?"1 of degree m-\.

Let Q?-1 (x) =x(x- I"-1) ... (a; - n - I1—1)
Q,,(x) = x(x-l) (x-n + l),

and <o a primitive (m - I)"1 root of unity.
Then Q?~l (f"-1)= ±£„(«£) x #„ (w3£)...<?„(to'"-1 £), ...(13)

from which the statement at once follows.
Also when m-\ is an odd number and r is odd, the generalised

Stirling numbers «̂  and o-£ are divisible by n2 (n — 1 )2.
For example, when m — 1 = 3, s* consists of ternary products

such as C,J C ° (7,f and terms involving at least two numbers distinct
from C°, each of which is divisible by n (n - 1), while C,,3 contains
the factor n 2 (n - l ) 2 . Similarly, s,? involves terms in C,? C,J C"
and terms involving at least two numbers distinct from C,,°.
.-. etc.

The proof for < follows from (1) §5, or from (11) and (12).
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