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Abstract

Results obtained by transformer-based token classification models are now considered to be a benchmark
for the Automatic Terminology Extraction (ATE) task. However, the unsatisfactory results (they rarely
exceed 0.7 of the F1 value) raise the question of whether this approach is correct and of what text fea-
tures are being remembered or inferred by the model trained on this type of annotation. In the paper, we
describe a number of experiments using the fine-tuned RoBERTa base model on the ACTER data, RD-
TEC, and three Wikipedia articles, which proved that the results of the ATE task obtained by such models
depend considerably on the type of texts being processed and their relationship to the training data. While
the results are relatively good for some texts with highly specialized vocabulary, the poor results seem to
correlate with the high frequency (in general English texts) of tokens that are part of terms in a particular
domain. Another property that affects the results is the degree of overlap between the vocabulary of the
test data and the vocabulary of terms from the training data. Words that have been labeled as terms in the
training data are usually labeled as terms in other, unrelated domains as well. Moreover, we show that the
results obtained by these models are unstable—models trained on more data do not include all the items
identified by models trained on a smaller dataset and can present substantially lower performance.
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1. Introduction

Automatic Terminology Extraction (ATE) is a sub-task of Information Extraction. The task con-
sists of automatically recognizing terminology in text, where terminology is understood as a
collection of terms. To solve it, it is necessary to understand the concept of terms and to know
how to identify them. A term in the Merriam Webster online dictionary® is defined as a word or
expression that has a precise meaning in some uses or is peculiar to a science, art, profession, or sub-
ject, while in ISO 10241-1, it is defined as a verbal designation of a general concept in a specacific
domain or subject. The first part of both definitions is simple and relatively easy to apply in com-
puter technology, as it comes down to the ability to recognize phrases. The second part relates to
the meaning of a phrase in a specific domain and is difficult to automate. The main reason for this
difficulty is that it relates to human knowledge.

According to the above definitions, the terminology extraction task should be solved for a pre-
defined domain, as the same word or phrase might be considered as a term in one domain but
not in another. For example, bubble should be indicated as a term in the sentence: There is a
bubble in the housing market for the economy domain, but not in the following one: There is a
bubble in the tire (even for automotive sector texts). If a domain expert is asked to identify terms

2https://www.merriam-webster.com/dictionary/term
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within a text, they can easily indicate domain-specific terms with highly specialized meanings,
often unknown to non-specialists. A challenge for them is to select from commonly known words
and phrases those that should be classified as domain-specific terms. For example, in the eco-
nomic domain, terms such as money, pay, and house price or its equivalent price of a house may be
considered domain terms, particularly in the context of banking or housing credits. Determining
phrase boundaries is also a difficult issue. Should the last expression be selected entirely as a term?
Buying a house is a serious investment, and therefore, the price of a house is important in banking
texts, so presumably, indicating the phrase as domain-specific is not in doubt, but what happens if
the phrase in question is price of a toy or price of a computer game? As knowledge about any spe-
cific area can vary among both the general public and specialists, the boundaries between general
terms and domain-specific terms are not clear. There may also be differences regarding whether
to label a particular phrase as a domain term or leave it as a general phrase expressing a meaning
common to all/many domains (like average).

Kageura and Umino, in their paper from 1996, identified two concepts crucial to ATE, that
is, unithood refers to the degree of strength or stability of syntagmatic combinations or collocations,
and termhood refers to the degree that a linguistic unit is related to (o1, more straightforwardly,
represents) domain-specific concepts. Researchers have made many attempts to transpose these
two concepts into computer programs. In some approaches, linguistic information was used to
identify candidates for terms, which were then ranked using various heuristics based mainly on
frequency information. In the others, heuristic methods were developed to implement both stages
together. Recently, the dominant approach has been to use neural networks, mainly transformers,
with the expectation that they can be trained to recognize terms from given examples.

Our aim is to find out if/when transformer-based models can solve the ATE task using only
training data annotated with terms as domain knowledge. First, we describe the data on which
the experiments are performed. Then, we describe the training principles of the ATE model. We
report and analyze the results and try to identify the reasons why, in some cases, they are substan-
tially worse than in others and why certain phrases are more likely to be recognized as terms. In
the paper, we show that:

« including named entities (NE) in train and test data may make the interpretation of the
results difficult because the method recognizes NE well, so the results are automatically
better;

o transformer-based models tend to recognize words (or phrases containing them) that are
rare in the general language as terms;

« the analyzed models have troubles in identifying frequent phrases as terms;

o the analyzed models tend to identify expressions which are terms in the domain used in
training as terms;

« expanding training data does not always improve results.

2. Related research

ATE has been a topic of research for decades. The first overview of ATE methods is probably the
one in Kageura and Umino (1996). The beginning of the 21st century was a period of increased
development in this field, with many articles published on new methods of terminology extrac-
tion. During this period, much attention was also paid to the problem of standardization of terms,
including the identification of synonyms (e.g. Nenadi¢ et al. 2004; Nenadi¢ and Ananiadou, 2006),
which is no longer considered in current publications. Even evaluation is now carried out on
strings, and orthographic and grammatical variants of the same phrase are treated as separate
terms. Nowadays, when solving almost all NLP tasks is based on language models (especially
LLMs), topics related to ATR are more or less absent from the main computational linguistics
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conferences, in spite of the fact that the task is far from being solved. In this chapter, we will
briefly mention the most important historical trends in the research in this field, with a slightly
broader description of the latest methods using LLMs.

The early ATR methods involve selecting term candidates according to n-grams (Rose et al.
2010); sequences of part-of-speech (POS) tags allowed within phrases (Hulth, 2003); or phrases
identified by a syntactical parser (Cram and Daille, 2016). The term candidates are then ranked on
the basis of tf/idf (Salton, 1988), the frequency and contexts—the C-value (Frantzi, Ananiadou,
and Mima, 2000) or the frequency and Wikipedia (Romero et al. 2012). An overview of these
methods based on both statistical and linguistic knowledge is given in Pazienza et al. (2005).

In another approach, terms are selected by heuristics in a single step. They are either based
solely on statistical features or they use some linguistic information, mainly POS names, but with-
out assuming any deep syntactic analysis (Hasan and Ng, 2014; Zhang, Gao, and Ciravegna, 2016;
Campos et al. 2020).

With the growing interest in using machine learning techniques to solve NLP tasks, this
approach has also been used for terminology extraction. In Foo (2009), the author proposed
learning rules identifying terms, while Hatty et al. (2018) classified linguistic expressions using
a dense neural network. Later, neural LLMs became more and more widely used to solve the task.
In 2020, the TermEval (Rigouts Terryn et al. 2020a) shared task was carried out as part of the
Workshop on Computational Terminology (CompuTerm). The first competition in term extrac-
tion was performed on the ACTER (Annotated Corpora for Term Extraction Research) (Rigouts
Terryn, Hoste, and Lefever, 2020b), which contains annotated data in three languages (English,
French, and Dutch). This shared task began the era of using learning methods based on annotated
data rather than using a set of features that characterize terms. The best results were obtained by
the BERT-based model (Hazem et al. 2020), and it was the first documented use of a transformer-
based model to solve the ATE task. The model was trained by giving pairs consisting of a sentence
together with a term annotated in it. As negative examples, randomly chosen n-grams were used.
The classification of whole n-grams as terms or non-terms is commonly referred to as the sequence
classification method, as it categorizes sequences of tokens. Another approach is to classify each
token separately and determine whether it is part of a term (token classification). The last method
is used, for example, in Lang et al. (2021),® Tran ef al. (2022a), and Tran et al. (2022b). In our
paper, we examine the results of the token classification. In Table 1, we show the results achieved
in recent years by some of the researchers who solved the ATE task by sequence or the token clas-
sification method using Bert-like LLMs. The results reported in research concerning ACTER are
often difficult to compare as authors use various datasets for training (monolingual, multilingual);
various test sets (with and without NE); and various methods of evaluation, that is, token-level
evaluation (IO or IOB schema) or checking lists of terms. All approaches in Table 1, except the
first one, are obtained for token classification. The first three results are given for models trained
on English ACTER data, while the last two used multilingual ACTER training data. All results are
evaluated on the Gold Standard (GS) list of terms of the ACTER-HTFL dataset. We can see there
that the F1 measure was usually a little above 50%. Using BERT resulted in good recall but low
precision, while precision and recall were at a similar level for RoBERTa.

In the ATE task, transformer-based token classification models, hereinafter referred to as
transformer-based models for short, obtain results that outperform all traditional methods based
on statistics and heuristics. For some data, they achieved an F-measure of more than 0.6 (see
the results for Duch in Lang et al. (2021)), a level which was hard to obtain for the previously
used methods. Such a result attracts the attention of the terminology community, so data, sim-
ilar to ACTER, is now available for the Slovenian language. The RDSO5 (Jemec Tomazin et al.
2021) corpus is used to train a transformer-based tool for the automatic term identification
(Tran et al. 2022c) with a similarly high F-measure. An additional advantage of transformer-based

The authors of the paper were not very precise about what data the models were trained on.
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Table 1. The results of ATE evaluated on the list of terms of the ACTER-HTFL dataset in English. The first three
results are for models trained on English ACTER data, while the last two are for models trained on multilingual

ACTER data
No NE NE
P R F1 P R F1

Hazem et al. (2020) BERT 32.58 72.68 44.99 34.78 70.87 46.66
Tran et al. (2022a) XML-RoBERTa 58.08 48.12 52.63 62.07 52.03 56.61
Tran et al. (2022b) RoBERTa-base 58.10 51.04 54.34 62.28 56.30 59.14
Lang et al. (2021) XLM-RoBERTa - - - 55.30 61.80 58.30
Tran et al. (2022b) XLnet-base-cased 56.50 53.92 55.18 58.34 57.30 57.82

methods is their openness to multilingualism, see, for example, (Tran et al. 2024), where authors
show that cross-lingual and multilingual models outperform results of monolingual models.

Although the results cited above are in line with many others showing that transformer-based
LLMs are the best method for solving many NLP tasks, they are far below those obtained, for
example, for the popular named entity recognition (NER) task, where the F1 can be above 0.9. We
try to find the cause of this discrepancy.

In this paper, we analyze several training-testing scenarios to find features that make the ATE
task easier or harder to solve for given texts. To achieve this goal, we examined the results obtained
by the transformer-based method in detail. Our focus was not on obtaining a score that improved
the current best score but on investigating which types of terms are recognized in which types
of texts. Therefore, we use a simple method that makes it easy to reproduce the results, that is,
a publicly available algorithm which is trained using a small language model due to the need to
conduct many experiments. We have chosen an approach applied in D-terminer (Rigouts Terryn,
Hoste, and Lefever, 2022a). The method classifies subsequent tokens annotated in the IOB stan-
dard in its context and assesses whether it is a part of a term. The method achieves great results
for many tasks and it is the standard approach to the Named Entities Recognition (NER) task
(Goyal, Gupta, and Kumar, 2018). In Lang et al. (2021) and Rigouts Terryn et al. (2022b), the
method is compared with other approaches, which proves that it performs well. In the last paper,
the authors showed that the results obtained by the HAMLET (Rigouts Terryn, Hoste, and Lefever,
2021)—a complex, difficult to reproduce method, which combines traditional statistical features
and a supervised machine learning approach to calculate thresholds—are comparable with the
new transformer-based approach.

3. Data description

Although the ATE task has quite a long history, there are only a few datasets annotated with
terms. The best-known and most commonly used open-domain corpus manually annotated with
terminology phrases is ACTER. It contains data in three languages: English, French, and Dutch,
related to four domains: corruption (CORP), dressage (EQUI), heart failure (HTFL), and wind
energy (WIND). In our research, we conducted numerous experiments. To be able to analyze the
results and come to conclusions, we focused on one language. We chose English, for which there is
also a quite large RD-TEC corpus—The ACL Reference Dataset for Terminology Extraction and
Classification, version 2.0, ACL RD-TEC 2.0, (QasemiZadeh and Schumann, 2016). The current
version was released in 2022.4 To add even more diversity and test the method on short texts, we

“https://github.com/AylaRT/ACTER
dhttps://github.com/languagerecipes/acl-rd-tec-2.0
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Table 2. ACTER data statistics: number of tokens, number of annotated terms, number of different
terms, annotated named entities (NE), and different NE

Tokens Annotated terms Different terms NE Different NE
CORP 50,845 4180 904 1717 221
EQUI 58,203 8662 1204 596 293
HTFL 55,467 9637 2452 246 206
WIND 57,766 5055 1072 991 293

annotated three small Wikipedia entries. Below, we look at all the chosen data. Some information
is repeated from the original papers.

3.1 ACTER

The ACTER term identification schema is organized around two orthogonal dimensions: lexical
(LS) and domain specificity(DS). The annotation is not limited to noun phrases, as is often the
case, but adjectival and verbal terms are also considered. Additionally, all NE, both related and
unrelated to the given domain, are annotated. The terms belong to one of three categories:

o specific term: terms relevant for the given domain, their detailed meaning is only under-
stood by the domain experts (LS 4+ DS+), for example, tachycardia in cardiology,

« common term: terms relevant to the domain but understood by a person with general
knowledge (LS-DS+), for example, heart in cardiology,

« out-of-domain term: terms not specific for the domain, but generally unknown (terms
from the other domain, LS + DS-), for example, p-value in cardiology.

The first two categories are usually assumed to be domain terms, but sometimes the third class
is also taken into account. As this class is much less numerous, this does not alter the results
substantially. In most experiments on ACTER reported in the literature, NE were also treated as
terms.

It has been widely observed that identifying domain-related terms in text is not an easy task,
mainly because of the many borderline cases. When the annotation is carried out on longer texts,
keeping the annotations consistent is the additional problem. For the ACTER data, a quality
check was carried out on part of the corpus. The difficulty of the task was confirmed, as the
Kappa coefficient describing annotators’ consistency counted on a selected subset of data was
relatively low—0.59 (Rigouts Terryn, Hoste, and Lefever, 2020b). Just one person annotated the
entire dataset, so its consistency and completeness could not be very high. It might be a problem
when we use this data as a training set, but for evaluation, when we are mainly interested in a list
of terms, it is less crucial. The basic statistics of this corpus are shown in Table 2.

The ACTER texts are annotated in two different styles. There is an in-line annotation that
indicates the beginning and the end of each term. Both single-word and multi-word sequences are
annotated, and internal terms are also labeled. These annotations were the source for preparing
the list of terms which were identified in every language-domain part (so-called GS lists). The
second type of annotation is a token-based annotation in two IOB and IO variants. No nested
terms are accounted for. We used IOB-annotated files in our work.

3.2 ACL RD-TEC

The RD-TEC corpus was developed to provide a benchmark for the evaluation of term and entity
recognition tasks based on specialized texts from the computational linguistics domain. It consists
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Table 3. Other data statistics

Sentences Tokens Annotated terms Different terms
RD-TEC 817 19,400 2,583 1,873
WIKI-NP 115 2,299 355 171
WIKI-GEN 108 2,046 410 199
WIKI-DATA 70 1,397 295 219

of 300 abstracts from articles published between 1978 and 2006 in which both single- and multi-
word LS units with a specialized meaning are manually annotated by two annotators. Several
classes of terms are identified in this corpus, but we treat them all as one class, together with
domain-related NE annotated within the data using the same labels as other terms. For our exper-
iments, we selected a subset of this corpus containing 171 abstracts whose annotations were agreed
upon by both annotators. Data statistics are given in Table 3.

3.3 Wikipedia articles

To check the results that the method can achieve on relatively short texts, we prepared a small
corpus containing three Wikipedia articles defining specialized terms from different domains.®
The selected texts concerned: noun phrase (WIKI-NP), genotype (WIKI-GENE), and data struc-
tures (WIKI-DATA). The texts were annotated using ACTER annotation instructions by two of
the coauthors of this paper and then underwent a verification phase aimed at obtaining a coher-
ent GS. Both annotators are experts in the areas covered by the articles on noun phrases and data
structures, but they have only general knowledge of genetics. The Kappa coefficient calculated on
the token level for the maximum term span was equal to 0.77 for WIKI-DATA, 0.71 for WIKI-
GENE, and 0.86 for WIKI-NP. The main differences concerned the choice between specific and
common terms and between common terms and non-terms. When the decision was binary (term,
no term), Kappa was equal to 0.86, 0.83, and 0.91, respectively. Data statistics are given in Table 3.

4. Evaluation methods

An important factor when choosing a method of evaluation is the format of the results provided
by ATE. Traditional ATE methods deliver a list of terms. Evaluation is then performed based
on a comparison of the obtained list of phrases with a GS list of terms. Evaluation of a method
involving the assignment of IOB (or IO) labels to tokens (e.g. a transformer-based method) can
be performed at a token level when the correctness of the label assignment is assessed. These two
approaches are not easily comparable, as it is necessary to transform one form of the result into
another.

If a result is given as a list of terms and we want to evaluate them on the token level, then
all occurrences of terms in the text should be labeled with ‘B’ and T. A problem arises when a
result list contains nested terms that never occur in text as stand-alone phrases, as they cannot be
represented in an IOB annotation. Additionally, traditional ATE methods usually give terms in
normalized forms, which would result in assigning all forms of terms in texts.

Reverse issues occur when generating a list of terms from an IOB annotation. The IOB (or
I0) annotation, resulting from transformer-based methods, does not make it possible to code
nested terms. Thus, if a term has not appeared as a maximum phrase, it will not appear in the
list of terms. Secondly, only certain forms of a normalized term are recognized by the method,

®The annotations with the lists of terms are available under an open license at https://zil.ipipan.waw.pl/
TermoPL?action=AttachFile&do=get&target=resources.zip.
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which raises the question of whether one recognized form allows us to assume that all forms are
recognized. For example, some of our models recognized only the plural form shunts in HTFL,
while both forms shunt and shunts are manually annotated. Is it enough to decide that the term
shunt, in its normalized singular form, is recognized?

In this paper, in accordance with the solution adopted in ACTER, we use evaluation based on
the GS list of terms. Since we are extracting the list of terms from the annotated data, we only
include terms that occurred in the text as a tagged maximum phrase. That is, if a phrase always
occurred as a fragment of a broader annotated phrase, it is not included in our GS. The differences
between these lists are negligible.” Usually, more examples are not found in the annotated data
than those not found on the original GS list. It should also be noted that the lists contain all phrase
forms as separate terms, so blood flow, blood-flow and cardiac death, cardiac deaths are different
terms.

5. Preparation of language models

In order to conduct our terminology extraction experiments, we prepared several LLMs. We fine-
tuned the RoBERTa (Liu et al. 2019) base model on English subsets of the ACTER sequentially
annotated texts with IOB labels to perform the token classification task. The selected method is
a variation on the one described in the Huggingface documentation of token classification with
transformers.8 Essentially, it differs only in the choice of input model and the set of labels. We
trained each model for 50 epochs, evaluating the model after each epoch and ultimately allowing
the training module to select the one with the best performance, according to the loss function. A
batch of four examples for training and evaluating was used. We set the learning rate to 2e-5, the
weight decay to 0.01, and the warm-up ratio to 0.2.

First of all, we checked the performance of the generated models on ACTER itself. In generating
the subsequent LLMs, we separated one of the four parts of ACTER (CORP, EQUI, HTFL, or
WIND) as the test dataset, randomly dividing the remaining data into the training dataset and the
validation dataset in a proportion of 90/10, respectively.” We considered two versions of ACTER
annotation—one where specific, common, and out-of-domain terms were annotated, and another
where NE were also annotated. We trained two classes of models, that is, with and without NE.
The other (non-ACTER) datasets were tested using two models (with and without NE) trained on
the entire ACTER data (with the same 90/10 ratio of training to the validation part).

6. Results
6.1 ACTER data

Most of our experiments were performed on the ACTER data, which is most frequently used to
train ATE models. However, we did not limit our focus to the almost always used configurations
where NE were considered as terms. We show that when we exclude NE (which can be relatively
easily identified), the results are much lower. Table 4 contains the results obtained by our models
for the ACTER data, in which every three parts are treated as the training data and the fourth as
the test data, and it shows substantial differences in the results obtained in such scenarios. Both
variants, with NE included and without them, were tested. We adopted the following convention:
the names of datasets in which NE are treated as terms that have ne in subscripts, and the names
of models are derived from the names of the datasets on which they were trained. When three of

[The lists used in our experiments and their comparison to the original GS lists are available at https://zil.ipipan.
waw.pl/TermoPL?action=AttachFile&do=get&target=resources.zip.
8https://huggingface.co/docs/transformers/tasks/token_classification

"We tested other configurations, i.e., with one corpus as the validation data, but the results were not conclusive.
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the four ACTER parts have been used as a training set and the fourth part (X) is used for testing,
the model is called ACTER-X.

We tested our models at the term level' using the list of correct terms obtained from the anno-
tated corpus. We also performed evaluation at the token labels level, considering only tokens
annotated as elements of terms (i.e., the B and I label), and the results were very similar, so we
have not included them here.

The first experiment was carried out according to the rules of the TermEval shared task, when
the HTFL data was used as the test set. The results of F1 = 0.46, 0.58 for identifying terms or
terms and NE by models trained respectively on data with and without NE were similar to the
best results reported at the TermEval Workshop (0.45, 0.47). For a terminology extraction task,
such values are considered high. When we repeated the same experiment, choosing different parts
as the test set, we received similar results for EQUI (0.44, 0.6), and slightly lower ones for WIND
(0.32, 0.46). But for CORP data, the results for the terms without NE deteriorated substantially to
F1 = 0.09. The results do not even include a term that characterizes the entire set, that is, corrup-
tion, which occurred 300 times in the data. Adding NE to the training and test data substantially
improved the results to 0.34. To verify whether the performance improvement is mainly due to
NE recognition or whether the addition of NE annotation helps with term recognition, we tested
models trained on both term annotation and NE on data where only terms were annotated. As can
be seen in Table 4, this approach improves recall while lowering precision. For the three test sets
with relatively good results, the overall change measured by F1 was not uniform: for the HTFL
data, we see a significant improvement (F1 is higher by 0.08); for EQUI, the results are almost
the same; while for WIND, they are worse by 0.05. For the CORP data, the results improved by
0.05, but still remained very low (0.13). Given the similar size of all parts, such a difference indi-
cates that there are certain properties of the data that affect the effectiveness of the method. In the
remainder of this article, we will examine some of these properties and their possible impact on
the results.

6.2 Other data

We used other data, that is, RD-TEC and three Wikipedia entries, to see how the models behave
on texts of different length and structure (RD-TEC contains abstracts, so the frequency of terms in
the text is higher) and annotated by different people. We used models trained on all four ACTER
datasets in the experiments.

In the case of RD-TEC (see Table 4), we obtained F1 = 0.10 for the model trained on the data
without NE. This result improved slightly (F1 = 0.15) when NE were included during model
training.

The results for three Wikipedia entries are also shown in Table 4. The very good (F1 = 0.52)
result is obtained for the genotype (WIKI-GEN). In this case, adding NE to the training set made
the results worse. The results for noun phrase (WIKI-NP) and data structures (WIKI-DATA) are
very poor. Here, adding NE helped, but not very much. For both texts, the problem is the very
low recall at a level of about 0.1 or less. An interesting observation is that for the genotype data,
both precision and recall are higher than for most of the other classes, while for data structures,
the recall is very low—only 7 terms were identified, 6 of them were correct. For the model trained
with the NE, these changed slightly to 23 and 14.

IThis type of evaluation is used in Rigouts Terryn et al. (2020a); Lang et al. (2021); Rigouts Terryn et al. (2021) so it is easy
to compare results.
JWe are not aware of a publication that shows the poor performance of these methods on CORP data without NE.
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Table 4. Results obtained by our models. The upper part of the table shows models that were trained on three
parts of the ACTER corpus (the part which was removed is noted in the rows as a subtracted one, e.g. ACTER-
CORP, and tested on the fourth (listed in the first column). The models were trained in two variants: using only
term annotations or using term and named entities annotations. The lower part contains the results obtained
for the RD-TEC corpus and three Wikipedia entries, by the model trained on the entire ACTER corpus. Notation:
t - number of terms annotated in the corpus, p - number of terms predicted by the models, tp - number of
correct predictions. P - precision, R - recall

Test Model trained on
Dataset ACTER-CORP ACTERNg — CORPNE
CORP t 204 p 83 tp 44t 94 p 406 tp 84
P 0.53 R 0.05 F1 0.09 P 0.21 R 0.09 F1 0.13
CORPNEg - - - t 1125 p 406 tp 259
- - - P 0.64 R 0.23 F1 0.34
ACTER-EQUI ACTERNg — EQUINg
EQUI t 1204 p 754 tp 027t 1204  p 1335  tp 577
P 0.57 R 0.35 F1 0.44 P 0.43 R 0.48 F1 0.45
EQUIyg - - - t 1497 p 1335 tp 843
- - - P 0.63 R 0.56 F1 0.60
ACTER-HTFL ACTERNg — HTFLNE
HTFL t 2452 p 1416 tp 892 t 2452 p 1988 tp 1196
P 0.63 R 0.36 F1 0.46 P 0.6 R 0.49 F1 0.54
HTFLxg - - - t 2658 p 1988 tp 1353
- - - P 0.68 R 0.51 F1 0.58
ACTER-WIND ACTERNg — WINDNg
WIND t 1072 p 830 tp 304t 1072 p 1605  tp 361
P 0.37 R 0.28 F1 0.32 P 0.22 R 0.34 F1 0.27
WINDNEg - - - t 1465 p 1605 tp 707
- - - P 0.44 R 0.48 F1 0.46
ACTER ACTERNE
RD-TEC t 1873  p 206 tp 108t 1873 p 385 tp 170
P 0.52 R 0.06 F1 0.10 P 0.44 0.09 F1 0.15
WIKI-GEN t 199 p 107 tp 80 t 199 p 2 tp 60
P 0.75 R 0.40 F1 0.52 P 0.67 0.30 F1 0.42
WIKI-NP t 171 p 25  tp 1t 171 p 28 tp 17
P 0.44 R 0.06 F1 0.11 P 0.61 R 0.10 F1 0.17
WIKI-DATA  t 219 p 7 tp 6 t 219 p 23 tp 14
P 0.86 R 0.03 F1 0.05 P 0.61 0.06 F1 0.12
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6.3 Checking different language models

In order to test whether the results depend on the specific language model used, we repeated
a large part of the experiments described in the previous section, selecting other variants of
BERT-like models: RoBERTa large, BERT (Devlin et al. 2019) in four variants—basic/large and
cased/uncased, DeBERTa (He et al. 2021) base, and MPNet (Song et al. 2020) base.

Of the three configurations tested previously, we chose two: training and testing on data con-
sistently with and without named entity annotations. The results obtained for the different models
(see Tables 5 and 6) obviously vary, but the differences are not substantial and the performance
levels on the different test sets are similar. For the ACTER data, all models gave the worst results
on the CORP test set, while for the other sets, the results obtained by F1 ranged between 0.32 and
0.57 for data without NE and 0.45 and 0.6 for data with NE. The differences between the results
were usually not greater than 0.1, with a few exceptions, for example, the very low recall for the
HTFL data obtained by the MPNet model for data without NE. For the other four datasets, the best
results were consistently obtained for WIKI-GEN data. For the remaining three sets, the recall was
quite low (between 0.1 and 0.2). Precision for all four sets was much better, ranging from 0.58 to
as high as 0.93 for WIKI-DATA, but with such low recall, these high values are misleading. Since,
in general, the differences between the results obtained using different LLMs were not very large,
and the best results were obtained using different models for different datasets, we decided to run
the rest of the experiments using a relatively small RoBERTa base model to make our experiment
less computationally expensive.

6.4 ACTER: incremental analysis

Section 6.1 gives the final results when the list of extracted terms is evaluated. As only some term
occurrences are recognized by the method, the graphs in Figure 1 show how precision (top blue
graph), recall (bottom green graph), and F1 score (middle red graph) change as successive sen-
tences are analyzed for the ACTER corpora. In each point, the evaluation was made against a list
of terms annotated in the analyzed part of the text, so ideally, both precision and recall should be
equal to 1. The datasets used for training and testing did not include NE.

The results for the HTFL and EQUI corpora show that for the initial sentences, the measures
can change substantially as sentences are added, but after 500 or 750 sentences of the respective
data, the results stabilize. The WIND data is clearly different, so probably the numerous tables in
the text cause variability in the number of new terms introduced and those correctly recognized.
The number of terms detected for the CORP data is too small to analyze.

7. Corpora properties

7.1 Case sensitivity

A simple but important feature of text is the fact that the same words occur in capitalized text and
in lowercase. While capitalization is important for recognizing NE, it is not clear if it has any influ-
ence on the results of terminology extraction. To check this, we trained both cased and uncased
models on the appropriate versions of the ACTER corpora. A comparison of the results obtained
by the cased and uncased models did not provide a clear answer as to which is better suited for
terminology extraction. We compared the performance of cased and uncased models on cased
and uncased datasets of ACTER. Extracted terms (and NE) have been converted to lowercase, as
is customary in ACTER. When comparing the performance of two models, we checked their F1
scores rounded to two decimal places. We considered the model with the higher F1 score to be
better. Models with the same F1 scores can be said to be equally good (or bad). The results of the
comparisons are shown in Table 7. It turned out that cased models performed a little bit better on
CORP and HTFL, while uncased models were slightly better for EQUI and WIND.
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Table 5. Comparison of results for different models tested on the ACTER corpus. The first column contains the
names of the corpus parts on which the models were tested. The second contains the names of the models
being tuned: RoBERTa base (R-B), RoBERTa large (R-L), BERT base/large cased/uncased (B-B-C, B-B-U, B-L-C,
B-L-U), DeBERTa base (D-B), and MPNet base (M-B). All these models were trained on the remaining three parts
of ACTER. The remaining columns contain precision, recall, and F1 for the models trained and tested on data
with and without named entities, respectively. The best result for each data configuration is underlined, the
worst is highlighted with a dashed line

No NE / No NE NE / NE

Model P R F1 P R F1
CORP R-B 053 0.05 0.09 0.64 0.23 0.34
RL 0.45 0.02 0.03 0.64 0.21 0.31

B-B-U 0.41 0.03 0.05 0.63 0.19 0.29

B-L-U 034 0.02 0.04 0.57 0.21 031

B-B-C 0.41 0.04 0.07 0.54 025 0.34

B-L-C 0.44 0.03 0.06 0.58 0.22 0.32

D-B 0.48 0.05 0.08 0.58 0.23 0.33

M-B 0.45 0.07 012 0.55 025 0.34

EQUI R-B 0.57 0.35 0.44 0.63 056 0.60
RL 0.60 0.26 0.36 0.69 0.39 0.50

B-B-U 0.58 0.35 0.44 0.62 0.45 0.53

B-L-U 0:55 0.2 0.32 0.50 044 0:50

B-B-C 0.54 0.47 0.51 0.62 0.50 0.55

B-L-C 0.58 0.27 0.36 0.60 0.49 0.54

D-B 0.58 049 053 0.69 0.51 0.59

M-B 0.54 0.40 0.46 0.64 0.55 0.59

HTEL  RB 063 03 046 068 051 058
RL 0.65 0.44 0.53 0.62 0.46 0.53

B-B-U 0.58 0.33 0.42 0.63 0.42 0.50

B-L-U 0.62 0.34 0.44 0.66 051 0.57

B-B-C 0.58 0.40 0.48 0.62 0.46 0.53

B-L-C 0.63 0.36 0.46 0.66 0.47 0.55

D-B 0.63 051 057 0.67 0.46 0.54

M-B 0.61 0.22 0.32 072 0.41 0.52
L ozg — 032 S
RL 0.41 0.29 0.34 051 0.49 0.50

B-B-U 0.39 0.35 0.37 0.44 0.47 0.45

B-L-U 0.38 0.38 0.38 0.45 0.46 0.45

B-B-C 034 0.39 0.36 0.43 0.50 0.46

B-L-C 0.42 0.37 0.39 0.50 0.41 0.45

D-B 0.44 0.46 045 0.48 0.52 0.50

M-B 0.39 0.43 0.41 0.48 055 051
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Table 6. Comparison of results for different models tested on the RD-TEC corpus and three Wikipedia articles.
The names of the models are explained in Table 5. These models were trained on the entire ACTER corpus
both on data with and without labeled named entities

ACTER ACTERNE
Test data Model P R F1 P R F1
RD-TEC RB 052 006 010 044 009 015
R-L 0.58 0.12 0.20 0.53 0.14 0.23
B-B-U 0.48 0.07 0.13 0.52 0.11 0.18
B-L-U 0.53 0.10 0.17 0.53 0.17 0.25
B-B-C 0.49 0.08 0.14 0.49 0.11 0.19
B-L-C 0.46 0.06 0.10 0.46 0.11 0.17
D-B 0.55 0.08 0.15 0.49 0.13 0.21
M-B 0.53 0.13 0.21 0.47 0.11 0.18
WIKI-GEN R-B 0.75 0.40 0.52 0.67 0.30 0.42
R-L 0.70 0.39 0.50 0.68 0.43 0.52
B-B-U 0.70 0.37 0.49 0.72 0.36 0.48
B-L-U 0.70 0.40 0.51 0.68 0.42 0.52
B-B-C 0.69 0.36 0.47 0.72 0.39 0.50
B-L-C 0.73 0.37 0.49 0.67 0.40 0.50
D-B 0.71 0.33 0.45 0.75 0.40 0.52
M-B 0.76
WIKI-NP R-B
R-L 0.61 0.13 0.21 0.62 0.18 0.27
B-B-U 0.59 0.09 0.16 0.67 0.14 0.23
B-L-U 0.70 0.15 0.25 0.74 0.28 0.41
B-B-C 0.57 0.07 0.12 0.60 0.15 0.24
B-L-C 0.64 0.09 0.16 0.63 0.10 0.17
D-B 0.63 0.10 0.17 0.60 0.15 0.24
M-B 0.72 0.19 0.30 0.61 0.12 0.20
WIKIDATA R 086 003 005 061 006 012
R-L 0.86 0.11 0.19 0.81 0.14 0.23
B-B-U 0.73 0.04 0.07 0.91 0.13 0.23
B-L-U 0.93 0.12 0.22 0.81 0.23 0.36
B-B-C 0.60 0.03 0.05 0.68 0.10 0.17
B-L-C 0.85 0.10 0.18 0.78 0.11 0.20
D-B 0.81 0.10 0.17 0.85 0.19 0.31
M-B 0.82 0.11 0.19 0.93 0.19 0.31

7.2 POS schemata

Table 4 demonstrates a predictable improvement in performance when models are trained and
tested on datasets that include NE, as these are generally easier to identify compared to terms.
However, adding named entity annotations to the training data also improved term recognition
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Figure 1. Incremental analysis for ACTER corpora. On the left are the results for precision (P), recall (R), and F1 score, and on
the right are the numbers of true, predicted, and true predicted terms after examining consecutive sentences.
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Table 7. Comparison of F1 scores, rounded to two decimal places, obtained by cased (C) and uncased
(U) models tested on the same datasets. If these scores differ by at least 0.1 for the same data, they are

highlighted

Cased Uncased
et o ,.No,.N.E.,., R NE I NO NE e NE .
models C u C u C u C u
EQUI + HTFL + WIND CORP
NONE [ 009 005 . 008 004 006 005008 005
NE 0.13 0.08 0.34 0.23 0.05 0.07 0.17 0.28
No NE » 0.44 ‘ 0.47 » 0.38 6.42 043 0.47 O.3§ 6.42
NE 0.45 0.50 0.60 0.57 0.45 0.48 0.53 0.61
CORP,+ EQUI—F\.N'ND - o . SRS . [ - o
NONE e 046 i 046 o 044 . 044 I 042 . 042 o 041 . 041
NE 0.54 0.38 0.58 0.40 0.47 0.39 0.48 0.43
No NE 0.32 0.36 0.28 0.31 0.30 0.35 0.29 0.30
NE 0.27 0.32 0.46 0.41 0.26 0.30 0.41 0.44

when testing on data that did not include NE (reported previously in Rigouts Terryn (2021)).
Only in one case—WIND—did we see a decrease in performance. This suggests that incorporat-
ing annotations for similar, albeit distinct, types of concepts can sometimes increase recall to a
degree that outweighs a potential decline in precision, resulting in better overall outcomes. To
further explore this direction, we decided to look for other possibilities to extend training data. It
was previously observed that terms generally have a very typical syntactic structure, thus, POS
sequences were used to select term candidates or as a feature to improve candidates’ scoring
(Rigouts Terryn et al. 2021). As this information is easily obtainable by using taggers, we decided
to check whether annotating as terms the random sequences with typical POS patterns for terms
would also improve the results.

First, we checked the POS sequences of all annotated terms within the ACTER corpus (Rigouts
Terryn, Hoste, and Lefever, 2020b). As expected, the most common of these are single nouns,
but there are other common patterns, the most frequent of which are adjective-noun and noun-
noun pairs. Single adjectives were also quite often treated as terms. The top five POS schemata
in all datasets are similar, the greatest exception is the two-nouns pattern (not the single-noun
pattern) being the most frequent one in the WIND data. Among predicted terms, the diversity
of patterns is much lower and in all sets, the single-noun pattern is the most common. Very few
results for the CORP data are mainly single-word terms. For the other three sets, the top POS
pattern distribution is similar to the original data.

To test our hypothesis, we chose one more entry from Wikipedia, electron, which has around
10K tokens and represents a domain different from those already existing in the ACTER cor-
pus. We tagged it using Stanza (Qi et al. 2020) and annotated as terms a random 50% of all the
sequences that have tag patterns identical to one of the six most frequent term POS sequences in
ACTER (see Table 8 for the list). This process resulted in 1768 annotations. As in the previous
experiments, the models were trained on the three parts of the ACTER corpus (without NE) plus

https://doi.org/10.1017/nlp.2025.10006 Published online by Cambridge University Press


https://doi.org/10.1017/nlp.2025.10006

Natural Language Processing 15

Table 8. Results for terms with the specific POS sequence using the original training data and data extended
by the electron entry. Abbreviations used: N-noun, A-adjective, pN-proper noun. The number of true predicted
terms and the different syntactic patterns they represent are given in columns 2 and 3

Terms Patterns All N AN NN A ANN PN
nb nb P R F1 F1

Model trained on the remaining three sets

CORP 44 7 0.53 0.05 0.09 0.18 0.01 0.00 0.22 0.00 0.16

EQUI 427 23 0.57 0.35 0.44 0.57 0.27 0.53 0.24 0.14 0.37
HTFL 892 59 0.63 0.36 0.46 0.55 0.39 0.42 0.46 0.51 0.62

WIND 304 36 0.37 0.28 0.32 0.35 0.34 0.38 0.37 0.31 0.38

Model trained on the remaining three sets plus electron

CORP 27 7 0.51 0.03 0.06 0.13 0.01 0.02 0.06 0.00 0.10
EQUI 371 23 0.60 0.31 0.41 0.53 0.24 0.50 0.33 0.28 0.47
HTFL 957 51 0.61 0.39 0.48 0.60 0.43 0.42 0.43 0.53 0.64
WIND 534 40 038 050 043 037 048 0.61 032 0.34 0.35

this additional file, and tested on the fourth part. Table 8 shows the values obtained with and with-
out this additional training set. The variants that are at least 3% better are in bold, and those at
least 10% better are additionally underlined.

Upon analyzing the results, we can see that they are not uniform, indicating that the poor
performance of the models is not caused by the lack of information about typical syntactic patterns
of terms. Interestingly, for three of the datasets, results remained relatively stable (changes ranging
from —3% to + 2%). However, for the WIND dataset, there was a notable improvement, with
an increase of 0.11 in the F1 score, coming from a 0.22 rise in recall, which, surprisingly, was
not accompanied by any loss in precision. About 230 more terms were correctly identified. This
improvement can be attributed to the enhanced identification of two-word terms composed either
of an adjective and a noun or two nouns. These substantially different results may be linked to the
previously mentioned observation that terms consisting of two nouns are the most common in the
WIND dataset. The addition of examples with this POS sequence, less frequent in other datasets,
may have contributed to the increase. It should be noted that the WIND part was the only one
in which adding NE lowered the results. To check the possible source of that improvement, other
than POS annotation, we looked at the overlap between our randomly annotated terms within the
text about an electron and the terms annotated in the WIND data. It turned out that these term
lists have 126 common words, which led to the correct recognition of 49 one-word terms. This
number is much lower than the number of newly correctly recognized terms (230), so in this case,
the additional data led to a real improvement in term recognition.

7.3 Frequency
In many studies on ATE, the statistical distribution of corpus words is used as an important feature
for term selection (see e.g. Yang, 1986; Damerau, 1993; Manning and Schiitze 1999). The ratios of
relative frequency between corpora have been applied for identifying terms (Chung and Nation,
2004) or filtering out phrases that are not domain-specific (Navigli and Velardi, 2004).

Token frequency is an important feature in term recognition that LLMs can use for this task.
Therefore, we examined ACTER corpora and checked how often words from these corpora are
used in a corpus of general English. To count the average frequency of tokens, we used data
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Table 9. Average frequency of tokens different from punctuation marks counted for tokens without stop
words. The first column indicates the number of tokens different from punctuation marks including stop
words, while the second one shows the number of tokens without them

Tokens Tokens without stop words Avg. frequency without stop words
CORP 45,702 26,636 101,328,636
EQUI 52,042 28,209 92,238,073
HTFL 45,953 31,762 63,829,677
WIND 47,630 30,890 85,993,421
RD-TEC 17,592 10,629 98,685,188
WIKI-GEN 1,809 1,002 89,401,475
WIKI-NP 1,955 1,070 101,247,529
WIKI-DATA 1,188 742 130,560,619

from the Trillion Word Corpus (TWC) created by Google from public web pages.X This data
contains the 333,333 most commonly used single words on the English language web and gives
forms which occurred more than 12711 times, while the most frequent English word the occurred
23,135,851,162 times. Stop words constitute a substantial percentage of tokens in the corpora and
have the highest frequency, so we decided not to include them when calculating the average fre-
quency of tokens. For this purpose, we used the list of English stop words provided in the NLTK
package.! The problem that needed to be solved was how to count frequency for terms containing
hyphens. The solution we adopted was to check the frequency of the whole token if it could be
found in the TWC dictionary. If it was not in this dictionary, we checked the frequencies of the
token parts made after dividing the token by hyphens and assuming their average value.

Table 9 shows the number of tokens and their average frequency in the general corpus, counted
according to the procedure described above. The ACTER results show that vocabulary in the
CORP corpus (corruption data) is mostly general, while the HTFL corpus (heart failure) contains
the most specific vocabulary. This conclusion is consistent with the intuition of language users
because texts about corruption are typically press reports, unlike descriptions of HTFL therapies.
The same Table 9 shows the average frequency in the other datasets. The average frequencies for
WIKI-NP and WIKI-DATA are similar or higher than those in the CORP data, and the results of
term extraction are poor for these two datasets. Similarly, poor results are for RD-TEC for which
the average frequency is also relatively high.

A high average frequency of text does not necessarily imply a list of high-frequency terms,
so we analyze the list of manually annotated terminology phrases. For each term, we count its
frequency as the average of token (not including stop words) frequency in TWC. Figure 2 shows
term frequency for the large datasets, that is, the ACTER corpora and RD-TEC. The left graph
shows that for the ACTER corpora, each line contains a shorter or longer segment of relatively rare
terms, while the size of a set of very frequent terms is similar for each corpus. At the same time,
the RD-TEC term frequency increases fairly quickly. The right graph shows that the percentage
of frequent terms is highest in the CORP data. For the RD-TEC corpus, the graph looks different
as it is almost a line. Note that this data is significantly different from the ACTER datasets. The
corpus is almost three times smaller, while the number of different terms is similar. The density of
terms in the text is therefore higher, and the frequency of term repetition is lower.

The average frequency of the list of terms without NE in the corpora counted without stop
words is given in Table 10. Among the ACTER corpora, the CORP corpus has the smallest number

KTWC is published on https://www.kaggle.com/datasets/rtatman/english-word-frequency/data
Uhttps://www.nltk.org/
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Table 10. Average frequency of the list of annotated terms in the corpora
counted without stop words

17

Corpus Avg. terms Corpus Avg. terms
CORP 65,210,844 RD-TEC 63,391,159
EQUI 48,701,561 WIKI-GEN 40,513,245
HTFL 30,547,921 WIKI-NP 43,549,253
WIND 40,167,844 WIKI-DATA 95,619,940
led
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Figure 2. Frequency (according to TWC) of manually annotated different terms of ACTER and RD-TEC data. The left graph
displays the frequency according to the number of terms, while the right graph displays the frequency according to the
percentage of terms in the datasets.

of rare terms, that is, terms in this corpus are relatively more frequent than in the others. The rarest
terms are in the HTFL corpus. For the other datasets, WIKI-GEN has the rarest terms and the best
results. The average frequency of WIKI-NP terms is relatively low, and the F-measure is low, too.
RD-TEC and WIKI-DATA have frequent terms and poor results.

7.4 Common part of vocabulary

In many NLP tasks, learning-based methods often take advantage of the co-occurrence of tokens
in training data and labeled data. It is therefore interesting to see what (if any) relationship exists
between the labeled terms/tokens in the training data and the results predicted for a test corpus.
To do this, we compare how many terms labeled by the language model contain tokens labeled as
part of the term in the training data for each set of the training (and validation) corpora and the
test corpus. For an ACTER corpus, we check overlap with the three other ACTER corpora, while
for the RD-TEC and the WIKI data, we check overlap with all ACTER corpora.

The results are given in Table 11. For each corpus, we show the number of manually annotated
terms; predicted by the model; and those predicted correctly and incorrectly, together with the
percentage of terms containing a token tagged as a fragment of a term in the relevant training
corpora. The terms containing such tokens we henceforth refer to as overlapping. Stop words are
excluded from this counting, so if the only overlapping token for a term is of, it is not taken into
account. We only compare whole words, we do not divide them into smaller parts, on which mod-
els such as BERT operate. In this comparison, we also do not recognize derived forms of words
such as plurals, adjectives, or verbs. For example, the following forms are not joined: construc-
tions, constructed, constructing with the construction form. The table shows that for ACTER and
RD-TEC corpora, the percentage of incorrectly recognized overlapping terms is much greater than
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Table 11. Percentage of terms (columns overlap) containing a token tagged as a fragment of a term from
another domain. The columns headed all no. indicate the number of all terms. Statistics are given for terms
annotated manually, all predicted by the model and those predicted correctly and incorrectly by the model

Manually anot. Predicted Correctly pred. Incorrectly pred.
Allno.  Overlap Allno.  Overlap Allno.  Overlap Allno.  Overlap
CORP 904 20.9% 83 14.5% 44 6.9% 39 23,1%
EQUI 1024 22.7% 754 24.1% 427 16.6% 327 33.9%
HTFL 2452 22.2% 1416 23.9% 892 18.6% 524 32.8%
WIND 1072 44.4% 830 40.6% 304 37.8% 526 42.2%
RD-TEC 1873 48.7% 206 44% 108 39.8% 98 44.9%
WIKI-GEN 199 51.8% 107 51.4% 80 52.5% 27 48.1%
WIKI-NP 171 36.8% 25 44.0% 11 45.4% 14 42.9%
WIKI-DATA 219 50.2% 7 14.3% 6 16.7% 1 0.0%

the percentage of overlapping terms for correctly recognized terms. This may indicate that tokens
included in the terms of the training corpora are a positive premise for the term-recognizing
models. In the case of the analyzed corpora, this leads to an increase in the number of phrases
incorrectly indicated as terms, as the domains of ACTER corpora are not related. The WIKI data
is small, so it’s hard to make statistical conclusions from it.

For each domain except WIKI-DATA, we provide examples of incorrectly identified terms
along with the training domain from which they originate:

CORP: tests (EQUI); follow-up (HTFL); network, technical (WIND)

EQUI: illegal, criminal penalties (CORP); admission, blood, breathing, chest, emergency
room, hospitalisation (HTFL); power, mechanisms, energy (WIND)

HTFL: cost, economic, financial (CORP); leg, pacing, relaxation, training, walk (EQUI);
electric, electrical, flow, mechanical (WIND)

WIND: business, contract, economic, enforcement, public interest (CORP); arms, exercise,
thrust (EQUI); baseline, significantly, health (HTFL)

RD-TEC: judges, laws (CORP); air, train (EQUI); correlation, randomized (HTFL); empirical,
industry, machine, meteorological (WIND)

WIKI-GEN: epigenetic, genetic, hereditary, correlated, proteins (HTFL); technology (WIND)
WIKI-NP: election, government, economic (CORP); energy (WIND)

The examples above show that, except for the WIKI-GEN data, these terms are from outside
the domain of the corpus under consideration. Since WIKI-GEN and HTFL domains are relatively
similar, the terminology in HTFL somewhat supports the recognition of WIKI-GEN terms. 38% of
WIKI-GEN terms overlap with HTFL terms. Of the 22 terms predicted in WIKI-GEN and being
terms in HTFL, 16 are correctly predicted as terms and five are incorrectly predicted. All of them
are included in WIKI-GEN broader phrases annotated as terms. The correctly predicted 16 terms
are the only common terms in both datasets (all are one-word terms).

User intuition and experiments with filtering out general terms using terminology from
another domain (Drouin, 2004) indicate that for unrelated domains, the overlap of entire terms
is a marginal phenomenon. This is different for related domains, such as veterinary medicine and
human medicine, where many terms are common. Therefore, when selecting both training and
validation data, attention should be paid to the relatedness of the vocabulary.
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Table 12. Results obtained by models on the EQUI data. The best results are in bold. Notation: t - number
of terms annotated in the corpus, p - number of terms predicted by the models, tp - number of correct
predictions. P - precision, R - recall

Numbers Measures

Model t p tp P R F1

CORP + HTFL 4+ WIND 1204 754 427 0.57 0.35 0.44
CORP + HTFL 1204 918 497 0.54 0.41 0.47
CORP + WIND 1204 669 404 0.60 0.34 0.43
HTFL + WIND 1204 683 414 0.61 0.34 0.44
CORP 1204 632 336 0.53 0.28 0.37
HTFL 1204 283 159 0.56 0.13 0.21
WIND 1204 647 411 0.64 0.34 0.44

8. Consistency of results
8.1 More data does not mean better results

In this section, we analyze results for models obtained for all configurations or data tested on
EQUI without named entity annotations. The models were also trained on data without these
labels. We have chosen this dataset because it has less specific vocabulary (see Sec. 7.3 ) and the
results are similar to those in HTFL, for which we obtained the best results (see Tab. 4).

The results in measure values and numbers of terms are given in Table 12. The best results
are in bold, so the best F1 measure is for the model trained on the CORP + HTFL data. The F1
measure for three models: CORP + HTFL + WIND, HTFL + WIND, and WIND is the same and
equal to 0.44. Note that the highest precision among these three models is achieved for the model
trained solely on the WIND data. This is therefore an unpredicted outcome, as we expected that
the results obtained by a model trained on smaller data would be noticeably worse.

A deeper analysis of the results shows significant differences in the composition of term lists
recognized by models trained on smaller and larger datasets, see Table 13. It shows that more
than a quarter of the terms (for the CORP + HTFL, even 37%, i.e. 342 out of 918) recognized
by the models trained on two selected ACTER datasets are not recognized by the model trained
on CORP + HTFL + WIND. A comparison of the results of the CORP + HTFL (the best F1
measure) and CORP + HTFL + WIND models shows that results obtained by the much larger
amount of training data do not contain as many as 342 terms (148 of which were correct). Note
that this is almost half of the terms predicted by the model trained on CORP + HTFL + WIND
data, that is, 754 terms, and more than one-third of correctly predicted terms (427).

A comparison of lists of predicted phrases shows that 329 terms are indicated by all four models
discussed above. 239 of them are correctly recognized as terms. Among them are phrases that are
not only very specific to the domain, for example, dressage, horse, horse riding, bridle, equestrian,
equestrianism but also more general phrases, for example, core, front end, gymnastic. 70% of cor-
rectly recognized terms are single words and only two phrases contain three words: driving leg aids
and outside leg aid. 16 terms were recognized by all models trained on the smaller datasets and not
recognized by the CORP + HTFL + WIND model (e.g., breeches, dressage saddle, while 20 terms
were only recognized by the last model (e.g., riding horse, cavalry). The list of terms not recognized
by all four models consists of 559 terms, which is 46% of the total of manually annotated terms.

The fact that the list of recognized terms has changed does not necessarily mean that the addi-
tion of new training data has resulted in the previous terms not being recognized. It is theoretically
possible that the previously recognized term is now part of a longer term. So to give a complete
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Table 13. Comparison of the term lists obtained by models trained on two datasets with the model trained on
all datasets except EQUI. The columns headed all give the number of all terms; the columns headed extra give
the number of extracted terms that are not common to compared lists; the column headed common gives
the number of common terms recognized by both compared models; p - numbers of predicted terms; tp -
numbers of true predicted terms

CORP + HTFL + WIND

All Extra Common All Extra
p tp p tp p tp P tp P tp
CORP + HTFL 918 497 342 148 576 349 754 427 178 78
CORP + WIND 669 404 171 76 489 328 754 427 256 99
HTFL + WIND 683 414 174 83 509 331 754 427 245 96

Table 14. The number of tokens recognized as a term component (labels: ‘B’, ‘I’) by the models trained on
the dataset and not recognized by the model trained on CORP + HTFL + WIND. The column headed all recog-
nized gives the number of tokens recognized as a term component by the model in dataset. The next column
gives the number of tokens recognized by the smaller dataset and not recognized as term components by
the model CORP + HTFL 4 WIND. The last column gives the number of tokens manually annotated as a term
component within those in column 3

All Not recogn. by Manually annotated
Dataset Recognized CORP + HTFL + WIND Among not recogn.
CORP + HTHL 4024 1483 1182
CORP + WIND 2673 613 475
HTFL 4+ WIND 2830 661 560

picture of what happens when the training data is expanded, we check how many tokens recog-
nized as components of terms in a model trained on smaller datasets receive the label ‘O’ (out
of terms) in the CORP + HTFL + WIND model. We also check how many of these tokens are
correctly indicated as term elements in the manually annotated data. The numerical outcomes
are given in Table 14. Around one-third of tokens recognized as term components by the model
trained on smaller data are neglected by the model trained on CORP + HTFL + WIND. The dif-
ference in recognized terms is therefore not due to the recognition of longer terms by the larger
model.

To show that more data does not lead to better results, we performed one more experiment
consisting of:

« dividing each of the CORP, EQUI, and HTFL datasets into ten equal, randomly selected
subsets: CORP;, HTFL;, WIND;, for 0 <i < 10,

« establishing CORPy + HTFL + WINDy as the validation dataset,
« training nine subsequent models on le CORP; + HTFL; + WIND;, for 1 < =i< =9,
« and testing them on the EQUI corpus.

This experiment was repeated with two randomly selected subsets CORP;, HTFL; and WIND;
for English language texts and also for French and multilingual texts. To create the models for
French and multilingual texts, we used the CamemBERT (Martin et al. 2020) base and XLM-
RoBERTa (Conneau et al. 2020) base models, respectively. The results of these experiments are

shown in Figure 3. We can see there that all measures are very unstable. Adding another 10%
of the training data sometimes improved, but sometimes significantly worsened, the results. The
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Figure 3. Precision (P), recall (R), and F1 score obtained by nine models tested on the EQUI dataset and trained on nine sets
successively increased by 10% of the data from each of the other parts of the ACTER corpus for four experiments: with English
(en-1, en-2), French (fr), and multilingual (en+fr+-nl) texts.

most surprising outcome is that, in some cases, the best results are obtained when training on the
smallest number of examples (10% of data). In all four experiments, these results were better than
those obtained using 90% of the data. We can also easily see that in most cases, the precision of the
method was better than its recall. The decrease in recall when increasing the size of the training
set is clear evidence that providing a language model with only annotated sentences as training
data is insufficient to create a good term recognition model.

8.2 ACTER: results with and without NE

For ACTER data, we compare the results obtained by models trained on all annotated terms with
models trained on data excluding NE annotations. The results for particular corpora are given
in Table 15. Models trained with NE indicate NE phrases as terms, but our comparison concerns
terms different from NE. The results show that the models trained with NE select more terms of
other types (domain, general, out-of-domain); this relationship is noted by Rigouts Terryn (2021,
p. 149). But similarly to the experiment described in Section 8.1, the models trained with NE
stopped recognizing from 11% (EQUI, HTFL) to 49% (CORP) of correctly predicted terms by a
corresponding model trained without NE.

As in the previous section, we also checked the results of models without and with NE on the
tokens level. We checked how many tokens recognized as a term component by the model without
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Table 15. Comparison of the lists of correctly predicted terms
excluding named entities (NE) obtained by models tested with
and without NE terms. The columns headed common give the
number of correctly recognized terms by both models, and the
columns headed extra give the number of extracted terms that
are not common to both lists

Model: ACTER—dataset

Without NE With NE
Dataset Extra Common Extra
CORP 21 23 61
EQUI 46 381 196
HTFL 96 796 400
WIND 72 232 129

Table 16. The number of tokens recognized as a term component by the dataset model
without named entities (NE) and not recognized by the model with NE. The columns
headed all recognized give the number of tokens recognized as a term component by
the models without NE. The next column gives the number of tokens recognized by
the model without NE and not recognized as term components by the model with NE.
The last column gives the number of tokens manually annotated as a term component
within those in column 3

All Not recogn. by Manually annotated
Dataset recognized the model with NE among not recogn.
CORP 189 87 56
EQUI 3283 276 218
HTFL 6653 487 392
WIND 4639 663 483

NE are not recognized by the model with NE. The results are given in Table 16. They show that
adding NE to training data interferes with the recognition of other types of terms. If we don’t take
into account the results for CORP data that are poor, from 7% to 14% of tokens recognized as
term components by the model without NE are neglected by the model with NE. Around 80% of
them are indicated as term components in GS.

8.3 Context dependability

BERT-like models give answers depending on the context of the word (sequence) being analyzed.
This is a positive feature, as the same expression can be or cannot be a term in a specific sentence.
But on the other hand, specialized terms are introduced in very different ways, and we cannot
always collect enough data to cover very many of them. The generality of the model is thus highly
desirable. Unfortunately, when analyzing texts annotated with the help of our models, we can
see that even if a specific term is recognized, it is only identified in some of the many contexts
in which it is used. For example, in the CORP data, for the term financial, only one of nearly
130 examples is recognized. This is even more astonishing as, in the annotated files, there are
about 20 types of multi-word terms which contain this word and none of them is recognized. This
observation explains why the results for the short files are usually not good. It is not only the case
that some terms occur only in the latter parts of the texts, but for some, only the latter examples are
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Table 17. Examples of terms from the ACTER corpus along with the number of their recognized
(+) and unrecognized (—) occurrences in sentences

Term nb Example

financial + 1 ESTIMATED << FINANCIAL >> IMPACT OF
THE PROPOSAL/INITIATIVE
— 129 << Financial >> and Fiscal Crime, bringing

together partners in corruption prosecution policy

courts + 3 National << courts >>

court + 4 The << Court >> of Justice also has jurisdiction
over disputes between EU countriesand . ..

— 23 See Special Report of the << Court >>of Auditors on
the Commission’s services

justice + 9 Federal Government Department of << Justice >>

- 26 At their meeting on 19 December 2002, EU Ministers
of << Justice >> and Home Affairs reached . . .

right ventricular + 8 Survival after left ventricular assist device with (.. .)
temporary << right ventricular >> support.

- 11 After 7 weeks rapid << right ventricular >> pacing, gene

expressions of Bax.. . .

identified. The good results obtained for the short genotype data, confirm that there is a difference
in vocabulary or style between this entry and the other Wikipedia articles we selected for testing.
In Table 17, we show some examples of such positive and negative results. Somewhat surprisingly,
the fact that the models sometimes recognize only very few (sometimes only one) occurrences of a
given phrase in the text does not make the overall results worse when we compare the token labels
with term-level evaluation. Correct recognition of some very frequent terms made the results very
similar. We do not cite these results here,™ as we are interested in the final list of terms, non-term
occurrences.

9. Conclusion

A lot of NLP tasks were successfully solved using contextual LLMs trained on data annotated
with task-specific labels. The same solution was proposed for the terminology extraction task, and
results better than previous ones were achieved. Nonetheless, they are not very high, as, for most
experiments, F1 is around 0.6.

Our initial objective was to answer the question as to what types of terms are recognized by
these models. We therefore performed a series of experiments, which unexpectedly showed that
the method does not work well for all types of text. This prompted us to look for those text features
for which the method works well. Our major findings are listed below.

First, using data from the most popular annotated set, ACTER, we found out that the results
of the method vary a lot depending on the data used for training and testing. When the CORP set
was used as the test set and NE were not treated as domain terms, the result was much worse than
for the other sets. The model recognized only 5% of terms, while the results for the other ACTER

™The evaluation of models at the tokens level for all parts of ACTER can be found at https://zil.ipipan.waw.pl/
TermoPL?action=AttachFile&do=get&target=resources.zip.
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corpora without NE are only slightly worse than those that include NE. The inclusion of NE in the
set of terms skews the results, not only making the overall results higher but also changing which
terms are recognized and which are not. We postulate that for new experiments, all NE should
not be treated as terms and that the ATE should be tested on data with only domain-related NE
annotated.”

Our analysis showed that the method recognizes only some (sometimes only very few) occur-
rences of a given term; it is thus natural that for short documents, results are typically worse than
for the medium or long ones. However, the results for Wikipedia articles turned out to be unsat-
isfactory for only two of the three texts. As all these Wikipedia articles are short, it seems that the
poor results for two of them cannot be attributed solely to their shortness.

Our experiments showed that poor results can correlate with the high frequency of tokens from
the analyzed data in English texts. All corpora with poor results have the relatively high frequency
calculated on data from TWC.® Another feature that seems to be important for the results of
the method is the degree of overlap between the vocabulary of terms in the test data and the
vocabulary of the training data. Table 11 shows that for the large analyzed corpora (ACTER and
RD-TEC), incorrectly predicted terms have a higher percentage of overlapping vocabulary than
correctly predicted terms. A high rate of vocabulary overlap may explain the poorer results for
the WIND corpus. However, it seems that this factor may depend on the similarity of the testing
domain and those used in training. The good results for WIKI-GEN might be partly due to the
similar vocabulary of HTFL and WIKI-GEN.

We also show that the results obtained for a model trained on a bigger amount of data stopped
recognizing quite a large percentage of terms (20%-30%) correctly identified by a model trained
on a subset of this data. This property is not visible if we limit ourselves to only comparing the
values of precision, recall, and F-measure. This proves that extending training data does not nec-
essarily help in the case of ATE (the best F-measure for EQUI is obtained for the model trained
on CORP + HTFL and not CORP + HTFL + WIND). Moreover, the experiment with a different
random division of training data and learning on incremental data shows that the learning pro-
cess is unstable. It seems to us that the instability comes from the fact that it’s difficult to find rules
for recognizing a term based on the sentence itself. Each example points to individual unknown
premises and is not generalizable, which means that different sets of learning examples lead to
substantially different results.

The poor consistency of the results places a big question mark over the usefulness of the method
in its current form, as it is not sufficient for the task. Independent of the language model used,
further experiments to identify more text features which indicate that a specific phrase is a term
are needed.

In answer to the question posed in the title, despite the weaknesses discussed in the paper, it
should be stated that the transformer-based token classification ATE methods allow for the extrac-
tion of terms which are rare in general language and do not have to be frequent in an analyzed text.
This is of considerable value for fields with specific vocabularies. Therefore, we should consider
how to supplement the knowledge of models with information used by traditional methods, that
is, frequency in the analyzed text and some knowledge of the domain of the text.

Competing interests
The authors declare none.

"For example, in a text on genetics, it is useful to mark Mendel as a term, but not Brno, where he lived and worked.
°The identification of potential thresholds requires further research.
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