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On vector bundles destabilized by Frobenius pull-back
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Abstract

Let X be a smooth projective curve of genus g > 1 over an algebraically closed field of
positive characteristic. This paper is a study of a natural stratification, defined by the
absolute Frobenius morphism of X, on the moduli space of vector bundles. In charac-
teristic two, there is a complete classification of semi-stable bundles of rank 2 which are
destabilized by Frobenius pull-back. We also show that these strata are irreducible and
obtain their respective dimensions. In particular, the dimension of the locus of bundles
of rank two which are destabilized by Frobenius is 3g − 4. These Frobenius destabilized
bundles also exist in characteristics two, three and five with ranks 4, 3 and 5, respectively.
Finally, there is a connection between (pre)-opers and Frobenius destabilized bundles. This
allows an interpretation of some of the above results in terms of pre-opers and provides a
mechanism for constructing Frobenius destabilized bundles in large characteristics.

1. Introduction

Let X be an irreducible smooth projective curve of genus g over an algebraically closed field k of
characteristic p > 0, and let F : X → X be the absolute Frobenius morphism on X. It is known
that pulling back a stable vector bundle on X by F may destroy stability. One may measure the
failure of (semi-)stability by the Harder–Narasimhan polygons of vector bundles.

In more formal language, let n � 2 be an integer, and let M be the coarse moduli space of
stable vector bundles of rank n and a fixed degree on X. Applying a theorem of Shatz to the pull-
back by F of the universal bundle (assuming the existence) on M, we see that M has a canonical
stratification by Harder–Narasimhan polygons [LeP97]. We call this the Frobenius stratification.
This interesting extra structure on M is a feature of characteristic p > 0. However, very little is
known about the strata of the Frobenius stratification. Scattered constructions of points outside of
the largest (semi-stable) stratum can be found in [Gie73, RR84, Ray82]. Complete classification of
such points is only known when p = 2, n = 2, and g = 2 by [JX00, LP02, LP04] (g = 2, p = 3). See
also [Oss04] and [Jos03] for results with other values of g, p, n.

Our main result here settles the problem for the case of p = 2 and n = 2. On any curve X of
genus � 2, we provide a complete classification of rank-2 semi-stable vector bundles V with F ∗V
not semi-stable. This also shows that the bound in [Sun99, Theorem 3.1] is sharp. We also obtain
fairly good information about the locus destabilized by Frobenius in the moduli space, including the
irreducibility and the dimension of each non-empty Frobenius stratum. In particular, we show that
the locus of Frobenius destabilized bundles has dimension 3g− 4 in the moduli space of semi-stable
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bundles of rank 2. An interesting consequence of our classification is that high instability of F ∗V
implies high stability of V .

In addition, we show that the Gunning bundle descends when g is even. If g is odd, then the
Gunning bundle twisted by any odd degree line bundle also descends.

We also construct stable bundles that are destabilized by Frobenius in the following situations:
(i) p = 2 and n = 4; (ii) p = n = 3; and (iii) p = n = 5 and g � 3.

The problem studied here can be cast in the generality of principal G-bundles over X, where G
is a connected reductive group over k. More precisely, consider the pull-back by F of the universal
object on the moduli stack of semi-stable principal G-bundles on X. Atiyah–Bott’s generalization
of the Harder–Narasimhan filtration should then give a canonical stratification of the moduli stack
([AB82], see also [Cha00]).

There is a connection between Frobenius destabilized bundles and (pre)-opers. The investigation
of this connection is largely inspired by [BD00]. When p = 0, all pre-opers are opers. The new
phenomena observed here is that, in characteristic p > 0, pre-opers need not be opers. Section 5.3
contains many such examples. These pre-opers rise from vector bundles destabilized by Frobenius
pull-back.

2. Generalities

2.1 Notation

The following notation are in force throughout this paper unless otherwise specified. Let X be a
smooth, projective curve of genus g � 2 over an algebraically closed field k of characteristic p > 0.
Let Ω1

X be the sheaf of 1-forms on X and let TX be the tangent bundle of X.

For any k-scheme Y , the absolute Frobenius F : Y → Y is defined by the f �→ fp map in OY .
Notice that F is an Fp-morphism only, not a k-morphism. There is a commutative diagram

Y

F

������������������������

Fr

����
��

��
��

�

���
��

��
��

��
��

��
��

��

Y (p)
�Y ��

��

Y

��
Spec k F �� Spec k

in which Fr is the relative Frobenius morphism, and the square is Cartesian. Since k is perfect,
F : Spec k → Speck and �Y : Y (p) → Y are isomorphisms. Most of the results in this article can
be formulated using either F : Y → Y or Fr : Y (p) → Y . Following [JX00] and [Gie75], we choose
to work with the former to avoid working with Y (p) all the time. This also makes results such as
Lemma 2.8 slightly easier to state. We caution the reader that many papers on this subject work
with the relative Frobenius. However, the translation between the different conventions is simple.

For any two k-schemes X and Y , we shorten Y ×Spec k X to Y ×X. Note also that there is an
Fp-morphism

�Y × F : Y (p) ×X → Y ×X.

We shorten �Y to � when there is no confusion.

Let V be a vector bundle on X and denote by F ∗(V ) the pull-back of V by F . If V = L is a
line bundle, then F ∗(L) = L⊗p. We write V ∗ = HomOX

(V,OX) for the dual bundle of V and χ(V )
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for the Euler characteristic of V . By Riemann–Roch,

χ(V ) = deg(V ) + rank(V )(1 − g).

Denote by µ(V ) = deg(V )/ rank(V ) the slope of V .

2.2 Stability
A vector bundle V is stable (respectively semi-stable) if for any non-zero sub-bundle W ⊂ V ,
µ(W ) < µ(V ) (respectively µ(W ) � µ(V )). A non-zero sub-bundle W ⊂ V with µ(W ) � µ(V ) will
be called a destabilizing sub-bundle.

2.3 Harder–Narasimhan filtration
Let V be a vector bundle on X. Then there exists a unique filtration (see [LeP97, § 5.4]), called the
Harder–Narasimhan filtration, by sub-bundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vh−1 ⊂ Vh = V

such that Vi/Vi−1 is semi-stable of slope µi and

µ1 > µ2 > · · · > µh.

The data of (dim(Vi/Vi−1), µi) can be encoded into a polygon, called the Harder–Narasimhan poly-
gon (see [LeP97, 11.1]). The Harder–Narasimhan polygon can be regarded as a measure of instability.

2.4 A measure of stability
Following [LN83], for a rank-2 vector bundle V , we put

s(V ) = deg(V ) − 2max{deg(L) : L ↪→ V },
where the maximum is taken over all rank-1 sub-bundles of V . By definition, s(V ) > 0 (respectively
s(V ) � 0) if and only if V is stable (respectively semi-stable). When s(V ) � 0, the information of
(s(V ),deg(V )) is the same as that of the Harder–Narasimhan polygon of V . Therefore, one may
regard s as a measure of stability extrapolating the Harder–Narasimhan polygons, although it is
only for the rank-2 case (for possible variants for the higher rank case, see [BPL98]; for general
reductive group, see [HN01]).

2.5 For any vector bundle with a connection (V,∇), there exists a p-linear morphism of OX-
modules, called the p-curvature of ∇,

ψ : TX → End(V ),

which measures the obstruction to the Lie algebra homomorphism ∇ : TX → End(V ) being a
homomorphism of p-Lie algebras. A connection is p-flat if ψ is zero. A vector bundle is p-flat if it
admits a p-flat connection.

By a theorem of Cartier [Kat70, Theorem 5.1, p. 190], there exists a vector bundle W on X such
that F ∗(W ) � V if and only if V carries a p-flat connection

∇ : V → Ω1
X ⊗ V

such that the natural map

F ∗(V ∇=0) → V

(where V ∇=0 is the module of flat sections considered as an OX -module) is an isomorphism. If
V = F ∗(W ), then we write ∇Cartier for the canonical connection on W provided by Cartier’s
theorem.
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2.6 Suppose (V,∇) is a vector bundle with a connection and W ⊂ V a sub-bundle. Then there is
a natural map (the second fundamental form)

TX → Hom(W,V/W ),

which is zero if and only if ∇ preserves W . By Cartier’s theorem, if (V,∇) is p-flat and W ↪→ V is
a sub-bundle preserved by ∇, then ∇ restricts to a p-flat connection on W .

2.7 Let B1 be the vector bundle defined by the exact sequence

0 → OX → F∗(OX) → B1 → 0.

The bundle B1 is semi-stable of slope g−1 (and degree (p−1)(g−1)); moreover, for p > 2, F ∗(B1) is
not semi-stable [Ray82]. For p = 2, B1 is a theta characteristic, i.e. B⊗2

1 = Ω1
X [Ray82]. By [Ray78,

Proposition 1.1], B1 is stable when p = 3 and g � 2.

Lemma 2.8. Let L be a line bundle on X. Then

det(F∗L) = det(B1) ⊗ L.

Proof. See [Har77, ch. 4, Exercise 2.6].

2.9 Let V be a vector bundle on X. Then

deg(F∗V ) = deg(V ) + rank(V ) deg(B1).

This follows from Riemann–Roch and the fact that χ(F∗V ) = χ(V ) or by § 2.8. In particular,

µ(F∗V ) =
1
p
µ(V ) +

(
1 − 1

p

)
(g − 1).

2.10 Duality
Let V be a vector bundle on X. Following [Ram87, § 1.16, p. 70], we have

F∗(V )∗ � F∗(V ∗ ⊗ (Ω1
X)⊗(1−p)).

Thus the dual of F∗(V ) is of the form F∗(V ′). We will often make use of this fact together with the
following simple lemma.

Lemma. Let V be a vector bundle of rank n on X, and m an integer such that 0 < m < n. The
following are equivalent:

(i) for all sub-bundles W of V of rank m, we have µ(W ) < µ(V ) (respectively µ(W ) � µ(V ));
(ii) for all sub-bundles W ′ of V ∗ of rank n −m, we have µ(W ′) < µ(V ∗) (respectively µ(W ′) �

µ(V ∗)).

3. A general construction

Proposition 3.1. Let V be a vector bundle on X. Then the adjunction map F ∗(F∗(V )) → V is
surjective and µ(F ∗(F∗(V ))) = µ(V ) + (p− 1)(g − 1) > µ(V ). In particular, F ∗(F∗(V )) is unstable.

Proof. The surjectivity of the adjunction map is easily check by a local calculation. The formula
for the slope follows from § 2.9. Hence µ(F ∗(F∗(V ))) > µ(V ).

Remark. In § 5.3, we prove a stronger assertion: F ∗(F∗(V )) is highly unstable whenever V is semi-
stable.

Proposition 3.2. Let V be a semi-stable bundle on X.
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(i) For any rank-1 sub-bundle L of F∗V , we have

µ(L) � µ(F∗V ) − (p− 1)(g − 1)
p

.

(ii) For any rank-2 sub-bundle E of F∗V , we have

µ(E) � µ(F∗V ) − 1
p

(
pg

2
− p− g + 1

)
.

Proof. If L ↪→ F∗V is a line sub-bundle, then by adjunction there is a non-zero morphism F ∗L→ V .
Therefore, µ(F ∗L) � µ(V ), i.e. p · µ(L) � µ(V ) = p · µ(F∗V ) − (p − 1)(g − 1). Here we have made
use of the formulas in § 2.9. This proves (i).

Let E ↪→ F∗V be a sub-bundle of rank 2. Then by a theorem of Nagata (see [HN01]), there
is a line sub-bundle L ↪→ E such that µ(L) � µ(E) − g/2. Thus we have µ(E) � µ(L) + g/2 �
µ(F∗V ) − (p − 1)(g − 1)/p + g/2. This proves (ii).

Theorem 3.3.

(i) Let p = 2 and let V be a stable bundle of rank 2 and even degree on X. Then F∗(V ) is a
semi-stable bundle of rank 4 and F ∗(F∗(V )) is not semi-stable.

(ii) Suppose p = 3 (respectively g � 3 and p = 5). Let V be a line bundle on X. Then the bundle
F∗(V ) is a stable bundle of rank 3 (respectively 5) and F ∗(F∗(V )) is not semi-stable.

Proof. (i) By § 2.10 and Proposition 3.1, it suffices to show that for any sub-bundle E of F∗V of
rank � 2, we have µ(E) � µ(F∗V ). This is clear when rankE = 1 by Proposition 3.2(i). Suppose
that rankE = 2 and µ(E) > µ(F∗V ). The proof of Proposition 3.2(ii) gives a line bundle L ↪→ E
such that µ(E) � µ(L) + g/2 � µ(F∗V ) + 1/2.

The assumption that degV is even implies that µ(F∗V ) ∈ 1
2Z. Thus we must have µ(E) =

µ(L) + g/2 = µ(F∗V ) + 1/2. This gives µ(L) = 1
2µ(V ) and µ(F ∗L) = µ(V ), contradicting the

stability of V as there is a non-zero morphism F ∗L→ V by adjunction.
(ii) By § 2.10 and Proposition 3.1, it suffices to check that F∗V does not have a destabilizing

sub-bundle of rank � 1 (respectively � 2). This is immediate from Proposition 3.2.

4. A detailed study of the case of rank 2 and characteristic two

Throughout this section, p = 2. We present our main results on the classification of rank-2 vector
bundles destabilized by Frobenius, as well as the geometry of the Frobenius stratification.

4.1 A result on the Gunning bundle
We begin with an interesting observation about Gunning extensions, although this result is not
needed in what follows. Recall that B1 is a theta-characteristic [Ray82, § 4]. The unique non-trivial
extension 0 → B1 → W → B−1

1 → 0 is called the Gunning extension and the bundle W is called
the Gunning bundle.

Proposition. Let ξ be a line bundle and V = F∗(ξ ⊗B−1
1 ). The extension

0 → ξ ⊗B1 → F ∗V → ξ ⊗B−1
1 → 0 (∗)

defines a class in Ext1(ξ ⊗ B−1
1 , ξ ⊗ B1) � H1(X,B2

1) � k. This class is trivial precisely when
deg(ξ ⊗B−1

1 ) is even.

Proof. Suppose that deg(ξ ⊗ B−1
1 ) is even. Then we can write L = ξ ⊗ B−1

1 = M2. By [JX00, § 2],
there is an exact sequence 0 → M → V → M ⊗ B1 → 0. Pulling back by F , we get 0 → L →
F ∗V → L⊗B2

1 → 0. This shows that (∗) splits.
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Suppose that L = ξ ⊗ B−1
1 has odd degree 2n + 1. By a theorem of Nagata (see [LN83], cf.

Remark in § 4.5), there is an exact sequence 0 →M1 → V →M2 → 0, whereM1,M2 are line bundles
with degrees n and n + g, respectively. From the exact sequence 0 → M2

1 → F ∗V → M2
2 → 0, we

deduce that dim Hom(L,F ∗V ) � dim Hom(L,M2
1 )+dim Hom(L,M2

2 ) = 0+g = g by the Riemann–
Roch formula. Since Hom(L, ξ⊗B1) = H0(X,B2

1) has dimension g, any morphism L→ F ∗V factors
through the sub-module ξ ⊗B1 in (∗). Therefore, (∗) does not split.

Corollary. Let W be the Gunning bundle and ξ a line bundle of degree ≡ g (mod 2). Then there
exists a stable bundle V such that F ∗V � W ⊗ ξ. In particular, if g is even, then the Gunning
bundle W is the Frobenius pull-back of a stable bundle.

Remark. The proposition is implicit in [LS77] while, in the case of an ordinary curve with g = 2
and p = 2, the corollary is implicit in [LP02]. In [Gie73], Gieseker proved (by different methods) an
analogous result in any characteristic when X is a Mumford curve.

4.2 The basic construction
Henceforth, fix an integer d. For an injection V ′ ↪→ V ′′ of vector bundles of the same rank, define the
co-length l of V ′ in V ′′ to be the length of the torsion OX -module V ′′/V ′. Clearly, s(V ′) � s(V ′′)− l.

We now give a basic construction of stable vector bundles V of rank 2 with F ∗V not semi-stable.
Let l � g − 2 be a non-negative integer, L a line bundle of degree d − 1 − (g − 2 − l), and V a
sub-module of F∗L of co-length l, then degV = d and s(V ) � (g − 1) − l > 0 by Proposition 3.2.
Therefore, V is stable.

On the other hand, by adjunction, there is a morphism F ∗V → L, and the kernel is a line bundle
of degree � d+ 1 + (g − 2 − l) > d = deg(F ∗V )/2. Therefore, F ∗V is not semi-stable.

4.3 Exhaustion
Suppose that V is semi-stable of rank 2. Let ξ = det(V ) and d = deg ξ = deg V . Let L,L′ be line
bundles with degL being the smallest possible such that F ∗V is an extension 0 → L′ → F ∗V →
L→ 0. By adjunction, this provides a non-zero morphism V → F∗L. Denote the image by M .

Suppose F ∗V is not stable. Then degL′ � d and degL � d. Suppose rankM = 1. Then
degM � d/2 by semi-stability of V . By Proposition 3.2, degM � (d+ g − 1)/2 − (g − 1)/2 = d/2.
Hence degM = d/2. To conclude, either rankM = 2 or degM = d/2.

Suppose F ∗V is not semi-stable. Again by semi-stability of V and Proposition 3.2, rankM = 1
would imply degM � d/2 and degM � (d− 1 + g − 1)/2 − (g − 1)/2 = (d− 1)/2, a contradiction.
Hence rankM = 2. Since deg V = d and deg(F∗L) � d + (g − 2), V is a sub-module of F∗L of co-
length l � g− 2, and degL = d− 1− (g− 2− l). Thus, the basic construction yields all semi-stable
vector bundles V of rank 2, with F ∗V not semi-stable.

Corollary 4.3.1. If V is semi-stable of rank 2 with F ∗V not semi-stable, then V is actually stable.

Corollary 4.3.2. The basic construction with l = g − 2 already yields all semi-stable vector
bundles V of rank 2, with F ∗V not semi-stable.

Proof. In fact, if l < l′ � g − 2 and L′ = L⊗O(D) for some effective divisor D of degree l′ − l on
X, then V ↪→ F∗L ↪→ F∗L′. Hence V is also a sub-module of F∗L′ of co-length l′. Thus, V arises
from the basic construction with (l′, L′) playing the role of (l, L).

4.4 Classification
To ease the notation, set dl = d− 1− (g − 2− l). Let Picdl(X) be the moduli space of line bundles
of degree dl on X, and let L → Picdl(X) ×X be the universal line bundle.
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Recall the convention in § 2.1. Let L be a line bundle and let Q = Ql = Ql,L = Quotl(F∗L/X/k)
be the scheme classifying sub-modules of F∗L of co-length l (see [Gro60/61, § 3.2]). Consider the
F-morphism � × F : Q(p) ×X → Q×X from § 2.1. Let

V ↪→ OQ � F∗L = (� × F )∗(OQ � L)

(sheaves on Q×X) be the universal object on Q. By adjunction, we have a morphism (�×F )∗V →
OQ �L. Let F be the co-kernel. Then pr∗F is a coherent sheaf on Q, where pr : Q×X → Q is the
projection [Har77, II.5.20]. By [Har77, III.12.7.2], the subset

{q ∈ Q : dimκ(q)((p∗F) ⊗ κ(q)) > 0}
is closed. Its complement is an open sub-scheme, denoted by Q∗ = Q∗

l = Q∗
l,L, of Q. Then Q∗

parameterizes those V with surjective F ∗V → L.
Let M be the coarse moduli space of rank-2 S-equivalence classes of semi-stable vector bundles

of degree d on X. Let M be the open sub-scheme parameterizing stable vector bundles and M1(k) ⊂
M(k) the subset of those V such that F ∗V is not semi-stable. By Corollary 4.3.1, M1(k) ⊂ M(k).

Proposition. The basic construction gives a bijection∐
0�l�g−2

degL=d−1−(g−2−l)

Q∗
l,L(k) → M1(k),

where the disjoint union is taken over all l ∈ [0, g − 2] and L ∈ Picdl(X).

Proof. By § 4.3, the map is a surjection. Now suppose that (l, L, V ⊂ F∗L) and (l′, L′, V ′ ⊂ F∗L′)
give the same point in M1(k), i.e. V � V ′. Since the unstable bundle F ∗V has a unique quotient line
bundle of degree < deg(V )/2 (i.e. the second graded piece of the Harder–Narasimhan filtration),
which is isomorphic to L, we must have L = L′. Consider the diagram

F ∗V ��

�
��

L

F ∗V ′ �� L′

where the vertical arrow is induced from an isomorphism V
∼−−→ V ′ and the horizontal arrows are

the unique quotient maps. This diagram is commutative up to a multiplicative scalar in k∗. By
adjunction, V ↪→ F∗L and V ′ ↪→ F∗L have the same image. In other words, V = V ′ as sub-modules
of F∗L. This proves the injectivity of the map.

4.5 Frobenius stratification
By [Gro60/61, 3.2], there is a scheme

Q = Ql = Quotl((� × F )∗L/(Picdl(X) ×X)/Picdl X) π−−→ Picdl X

such that Qx (the fiber at x) is QLx for all x ∈ (Picdl X)(k). By the same argument as before,
there is an open sub-scheme Q∗ ⊂ Q such that Q∗

x = Q∗
Lx

for all x ∈ Picdl(X)(k). The scheme
Q is projective over Picdl(X) (see [Gro60/61, 3.2]), and hence is proper over k. By checking the
condition of formal smoothness (cf. [LeP97, 8.2.1]), it can be shown that Q is smooth over Picdl(X),
and hence is smooth over k.

The Frobenius stratification on the coarse moduli scheme M is defined canonically using Harder–
Narasimhan polygons of Frobenius pull-backs. Concretely, for j � 0, let Pj be the polygon from
(0, 0) to (1, d + j) to (2, 2d). Let M0 = M, and for j � 1, let Mj(k) be the subset of M(k)
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parameterizing those V such that the Harder–Narasimhan polygons [LeP97, 11.1] of F ∗V lie above
or are equal to Pj . Notice that M1(k) agrees with the one defined in § 4.4.

As mentioned in the introduction, the existence of a universal bundle on M would imply that
each Mj(k) is Zariski closed by Shatz’s theorem [LeP97, 11.1, last remark]. In general, one can
show that Mj(k) is closed by examining the geometric invariant theory construction of M. This
fact also follows from our basic construction.

Theorem. The subset Mj(k) is Zariski closed in M(k), and hence underlies a reduced closed
sub-scheme Mj of M. The scheme Mj is proper. The Frobenius stratum Mj \Mj+1 is non-empty
precisely when 0 � j � g − 1. For 1 � j � g − 1, write l = g − 1 − j. Then there is a canonical
morphism

Ql → M,

which has scheme-theoretic image Mj and induces a bijection from Q∗
l (k) to Mj(k) \Mj+1(k).

Proof. Suppose 0 � l � g − 2 and j + l = g − 1. The universal object V → Ql ×X is a family of
stable vector bundles on X. This induces a canonical morphism Ql → M. The image of Ql(k) is
precisely Mj(k) by (the proof of) Corollary 4.3.2. Since Ql is proper, Mj is proper and closed in
M. The rest of the proposition follows from §§ 4.4 and 4.3, and the fact that Q∗

l (k) is non-empty
for 0 � l � g − 2 (see Lemma 4.6.3).

Remark. By a theorem of Nagata (see [LN83, HN01]), s(V ) � g for all V . Therefore, s(V ) � g if
deg V ≡ g (mod 2), and s(V ) � g − 1 if deg V 
≡ g (mod 2). By Proposition 3.2, V = F∗L achieves
the maximum value of s among rank-2 vector bundles of the same degree. By the preceding theorem,
vector bundles of the form V = F∗L are precisely members of the smallest non-empty Frobenius
stratum Mg−1. Therefore, in a sense V is most stable yet F ∗V is most unstable. More generally,
for 1 � j � g − 1, we have (from § 4.2)

s(Mj(k)) �
{
j if d ≡ j (mod 2),
j + 1 if d 
≡ j (mod 2).

Therefore, high instability of F ∗V implies high stability of V .

4.6 Irreducibility
We will make use of the following simple lemma.

Lemma 4.6.1. Let Y be a proper scheme over k, S an irreducible scheme of finite type over k of
dimension s, r an integer � 0, and f : Y → S a surjective morphism. Suppose that all fibers of f
are irreducible of dimension r. Then Y is irreducible of dimension s+ r.

Lemma 4.6.2. The scheme Q = Ql is irreducible of dimension 2l + g.

Proof. There is a morphism [Gro60/61, § 6]

δ : Q → Divl(X) = Syml(X), q �→
∑

P∈X(k)

lengthOP
((F∗Lπ(q))/Vq) · P.

We claim that the morphism Q → Divl(X) × Picdl(X) is a surjection with irreducible fibers of
dimension l. Indeed, the fiber at any (D,L) ∈ Divl(X)(k) × Picdl(X)(k) is the same as the fiber
at D of the analogous morphism Ql,L → Divl(X). If D =

∑
nixi (xi 
= xj for i 
= j,

∑
ni = l),

to give a point on the fiber is to give a length-ni quotient of (F∗L)xi , for each i. By (the proof of)
Lemma 5.2 of [MX02], for fixed i, the space of such quotients is non-empty and irreducible of
dimension ni · (dimF∗L−1) = ni. Therefore, the fiber is irreducible of dimension

∑
ni = l. Now the

result follows from Lemma 4.6.1 since Q is proper.
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Lemma 4.6.3. Q∗ is open and dense in Q.

Proof. By the construction in §§ 4.4 and 4.5, Q∗ is open in Q. Since Q is irreducible of dimension
2l+g, it suffices to show that Q∗ is non-empty. In fact, Q∗ contains an open subset of dimension 2l+g
as shown below.

LetB(X, l) ⊂ Divl(X) be the open sub-scheme parameterizing multiplicity-free divisors of degree
l, also known as the configuration space of unordered l points in X. Let U be the inverse image of
B(X, l)×Picdl(X) under Q → Divl(X)×Picdl(X). According to the proof of the preceding lemma,
each fiber of U → B(X, l)×Picdl(X) is isomorphic to (P1)l (this is the case of ni = 1 for each i; so
we get the product of l copies of P

1, which is the space of length 1 quotients of (F∗L)x � k[[πx]]2).
Let U∗ = U ∩Q∗. Then each fiber of U∗ → B(X, l)×Picdl(X) is isomorphic to W l, where W ⊂ P

1

is the space described below. Let A = B = k[[πx]], let f : A → B be the map a �→ a2, and let AB
denote B as an A-module via f . Then P

1 (respectively W ) is the space of A-submodules V ⊂ AB
such that AB/V � A/πxA (respectively and in addition, V ⊗f B → B is surjective). It is clear that
P

1 \W is a single point corresponding to V = A(πxB). Therefore, W � A
1 and U∗ is an open subset

of Q∗ of dimension 2l + g.

Theorem 4.6.4. For 1 � j � g − 1, Mj is proper, irreducible, and of dimension g + 2(g − 1 − j).
In particular, M1 is irreducible and of dimension 3g − 4.

4.7 Fixing the determinant
Fix a line bundle ξ of degree d. Let M(ξ) ⊂ M be the closed sub-scheme of M parameterizing
those V with det(V ) = ξ. Let Mj(ξ) = M(ξ) ∩Mj for j � 0.

Remark. For 1 � j � g − 1, dimMj(ξ) = 2(g − 1 − j). In particular, dimM1(ξ) = 2(g − 2).

Proof. Since Mj(ξ) is nothing but the fiber of the surjective morphism det : Mj → Picd(X), it
has dimension 2(g − 1 − j) for a dense open set of ξ ∈ Picd(X)(k). However, Mj(ξ1) is isomorphic
to Mj(ξ2) for all ξ1, ξ2 ∈ Picd(X)(k), via V �→ V ⊗ L, where L2 � ξ2 ⊗ ξ−1

1 . Thus the remark is
clear.

A slight variation of the above argument shows that Mj(ξ) is irreducible. Alternatively, assume
1 � j � g− 1. Let l = g− 1− j and let Q(ξ) = Ql(ξ) be the inverse image of ξ under Q → Picd(X),
q �→ det(Vq). Since det(Vq) = B1 ⊗ Lπ(q) ⊗O(−δ(q)), the morphism det : Q → Picd(X) factors as

Q → Divl(X) × Picdl(X)
ψ−−→ Picd(X),

where ψ is (D,L) �→ B1 ⊗ L⊗O(−D). It is clear that ψ−1(ξ) is isomorphic to Divl(X), and hence
is an irreducible variety.

The fibers of Q(ξ) → ψ−1(ξ) are just some fibers of Q → Divl(X) × Picdl(X); hence they are
irreducible of dimension l as in the proof of Lemma 4.6.2. Being a closed sub-scheme of Q, Q(ξ) is
proper, thus and irreducible by Lemma 4.6.1. Now it is easy to deduce the following.

Theorem. There is a canonical (Frobenius) stratification by Harder–Narasimhan polygons

∅ = Mg(ξ) ⊂ Mg−1(ξ) ⊂ · · · ⊂ M0(ξ) = M(ξ),

with Mj(ξ) non-empty, proper, irreducible, and of dimension 2(g − 1 − j) for 1 � j � g − 1.

4.8 A variant
Let M′(k) be the subset of M(k) consisting of the S-equivalence classes of those V such that F ∗V
are not stable. Clearly, M′(k) ⊃ M1(k).
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By Corollary 4.3.1, the closed subset Mns(k) = M(k) \M(k) is contained in M′(k) \M1(k).
By § 4.3, if V ∈ M′(k) \ Mns(k), there is a line bundle L of degree d such that V ↪→ F∗L is a
sub-module of co-length � g − 1. Conversely, the argument of § 4.2 shows that if V is of co-length
� g − 1 in F∗L for some L of degree d, then V ∈ M′(k).

Thus we conclude that M′(k) is the union of Mns(k) and the image M′
0(k) of Qg−1(k) for a

suitable morphism Qg−1 → M, where Qg−1 is defined in § 4.5. It follows that M′
0(k) and M′(k)

are Zariski closed in M(k), and hence are sets of k-points of reduced closed sub-schemes M′
0 and

M′ of M.

Theorem. The scheme M′
0 is irreducible of dimension 3g−2. It contains two disjoint closed subsets:

M′
0 ∩Mns, which is irreducible of dimension 2g − 1 when d is even and empty when d is odd; and

M1, which is irreducible of dimension 3g − 4.

Proof. Since Qg−1 is irreducible, M′
0 is irreducible. We now analyze M′

0 ∩ Mns. Suppose that
V ∈ Qg−1(k) and is a representative of an S-equivalence class in Mns(k). Then d = deg V is even and
there exists L of degree d such that V is a sub-module of F∗L of co-length g−1. By assumption, there
exists an exact sequence 0 → M → V → N → 0 with degM = degN = d/2. Adjunction applied
to the composition M ↪→ V ↪→ F∗L provides a non-zero morphism F ∗M = M2 → L. This implies
that F ∗M � L. It follows that the morphism F ∗V → L is onto and therefore F ∗V �M2 ⊕N2.

By adjunction, there is only one non-zero morphism M → F∗(F ∗M) (modulo k∗). By [JX00,
§ 2], the morphism M → F∗(F ∗M) is part of an exact sequence 0 → M → F∗(F ∗M) → M ⊗
B1 → 0. Starting with a sub-module of M ⊗ B1 of co-length g − 1, we obtain a vector bundle
V ∈ M′

0(k) ∩Mns(k) as the inverse image of that sub-module in F∗(F ∗M). In other words, V fits
into the following commutative diagram in which the square on the right is Cartesian.

0 �� M ��

id

��

V ��
� �

��

M ′ ��
� �

��

0

0 �� M �� F∗(F ∗M) �� M ⊗B1
�� 0

The sub-modules of M ⊗ B1 of co-length g − 1 are of the form M ⊗ B1 ⊗ O(−D) for D ∈
Divg−1(X)(k). Thus there is a morphism π′ : Q′ = Divg−1(X) × Picd/2(X) → M inducing a
surjection Q′(k) → M′

0(k)∩Mns(k). We claim that this morphism is generically finite of separable
degree 2. This claim implies that M′

0 ∩Mns is irreducible of dimension 2g − 1.
Indeed, there is a dense open subset U of Divg−1(X) such that D ∈ U(k) if and only if

h0(O(D)) = 1 [Har77, III.12.8]. If (D,M) ∈ (U×Picd/2(X))(k), then h0(Ω1
X⊗O(−D)) = h0(O(D))

by Riemann–Roch. Hence, Ω1
X ⊗ O(−D) = O(D′) for a unique D′ ∈ U(k). This defines an in-

volution θ on U × Picd/2(X) by θ(D,M) = (D′,M ′) with M ′ = M ⊗ B1 ⊗ O(−D). We now
show that if (D,M) ∈ U(k) and π′(D,M) is the S-equivalence class [V ] of V , then π−1([V ]) =
{(D,M), (D′,M ′) := θ(D,M)}. Indeed, if π(M1,D1) = [V ], then M1 is one of the two Jordan–
Hölder factors of [V ], namely M and M ′. Knowing M1, one can determine D1 uniquely by the
condition 0 → M1 → V → M1 ⊗ B1 ⊗ O(−D1) → 0. The fixed-point set of θ is Uθ = {(D,M) :
O(D) � B1}, which is a proper closed subset. Then π′|(U \U θ) is two-to-one. This proves the claim.

Next, we consider the morphism Qg−1 → M′
0. It induces a surjection Q∗

g−1(k) � M′
0(k)\M1(k).

Again the claim is that the morphism is generically finite of separable degree at most 2 over the
open set M′

0(k)\ (M1(k)∪Mns(k)). This claim implies that M′
0 is irreducible of dimension 3g− 2.

Suppose q ∈ Q∗
g−1(k) and q gives rise to a stable V ∈ M′

0(k). Notice that the S-equivalence
class of V is just {V }. There is an exact sequence 0 → L⊗B2

1 ⊗O(−2δ(q)) → F ∗V → L→ 0, where
L = Lπ(q). By semi-stability, F ∗V has at most two quotient line bundles of degree d, say F ∗V → L1
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and F ∗V → L2. Then q must be one of the two data V ↪→ F∗L1 or V ↪→ F∗L2 provided by
adjunction. This proves the claim.

Remark. (i) Assume that d is even and V ∈ Qg−1(k) represents an S-equivalence class in Mns(k).
The above proof shows that F ∗V always splits as M2 ⊕M ′2. However, V seldom splits into the
direct sum of two line bundles. Indeed, V �M ⊕M ′ implies M2 � L �M ′2.

The locus of those V ∈ Mns(k) such that the two simple factors M and M ′ of V satisfying
M2 � M ′2 is closed of dimension g. Therefore, for most points x in M′

0(k) ∩Mns(k), which is of
dimension 2g−1 > g, when we represent the S-equivalence class x by V ∈ Qg−1(k), V does not split
into the sum of two line bundles. In particular, Qg−1(k) may contain a vector bundle V without
containing the whole S-equivalence class of V .

(ii) The stratum M′ \ M1 is the first in the s-stratification [LN83] which is not a Frobenius
stratum. The other s-strata are more complicated and not pursued here.

4.9 Example
When g = 2, M1(ξ) is a single point, corresponding to the vector bundle F∗(ξ⊗B−1

1 ). When ξ = B1,
this refines a result of [JX00, 1.1], which says that M1(ξ) is a single Pic(X)[2]-orbit.

When ξ = O, again M1(ξ) consists of a single point [LP02]. Our result also extends a theorem
of Mehta (see [JX00, 3.2]), which states that there are only finitely many rank-2 semi-stable vector
bundles V on X with det(V ) = O and F ∗V not semi-stable when p � 3, g = 2. We now have this
result for p = 2, g = 2 with the stronger conclusion of uniqueness.

5. Pre-opers and opers

This section is largely inspired by the work of Beilinson and Drinfel’d [BD00]. We show that pre-opers
with connections of p-curvature zero provide, under additional assumptions, examples of Frobenius
destabilized bundles. In small characteristics we describe the lowest Frobenius stratum in terms of
pre-opers.

5.1 Pre-opers
Let V be a vector bundle onX with a flat connection ∇. Suppose that {Vi}0�i�l ⊂ V is an increasing
filtration by sub-bundles such that:

(i) V0 = 0, Vl = V ;
(ii) ∇(Vi) ⊂ Vi+1 ⊗ Ω1

X for 0 � i � l − 1;

(iii) Vi/Vi−1
∇−−→ (Vi+1/Vi) ⊗ Ω1

X is an isomorphism for 1 � i � l − 1;

Then (V,∇, {Vi}) is said to be a pre-oper. A pre-oper is p-flat if ∇ has p-curvature zero.

Remark. (i) Let (V,∇, {Vi}0�i�l) be a pre-oper. If g � 2 and V1/V0 is semi-stable, then the filtration
{Vi}0�i�l is nothing but the Harder–Narasimhan filtration of V .

(ii) A direct computation shows that µ(V1) = µ(V ) + (l − 1)(g − 1)/r1, where r1 = rank(V1) =
rank(Vi/Vi−1).

5.2 Opers
Let DX = Diff(OX ,OX) be the ring of differential operators on X. An oper (V,∇, {Vi}0�i�l) is a
pre-oper such that the connection ∇ on V extends to a structure of DX-module on V .

Remark. (i) By a Theorem of Katz (see [Gie75, Theorem 1.3, p. 4]), a locally free OX -module V
admits the structure of a DX-module if and only if there exists a sequence of vector bundles

{
V i

}
i�0
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such that V 0 = V and F ∗(V i+1) = V i for i � 0. Moreover, if (V,∇) is a vector bundle such that
∇ extends to a DX -module structure on V , then V 1 = V ∇=0 and the p-curvature of ∇ is zero.
Therefore, an oper is p-flat.

(ii) When l = rankV , what we have called an oper here is the same as an GLl-oper as defined
in [BD00].

(iii) A p-flat oper with underlying bundle of rank 2 is the same as a dormant torally indigenous
bundle in [Moc99].

5.3 A canonical filtration
Let W be a vector bundle on X. We define a canonical increasing filtration on V = F ∗(F∗W ) by
abelian sub-sheaves {Vi}0�i�p as follows:

Vp = V,

Vp−1 = ker(Vp = F ∗(F∗W ) →W ),

Vi = ker(Vi+1
∇Cartier−−−−−→ V ⊗ Ω1

X → (V/Vi+1) ⊗ Ω1
X), 0 � i � p− 2.

It is elementary to check by induction that each Vi is actually an OX -sub-module of V .

Theorem.

(i) Vp/Vp−1 is isomorphic to W .

(ii) (V,∇Cartier, {Vi}0�i�p) is a pre-oper.

(iii) If g � 2 and W is semi-stable, {Vi}0�i�p is simply the Harder–Narasimhan filtration on V .

Proof. By Remark 5.1(i), statements (i) and (ii) of the Theorem imply (iii). Statement (i) of the
Theorem is simply Proposition 3.1. To prove (ii) of the Theorem, we note that the definition of
pre-opers and the formation of the filtration {Vi}0�i�p can be made on any smooth one-dimensional
noetherian scheme over k, and statements (i) and (ii) of the Theorem make sense in this context.
In fact, the statements being local, we are reduced to the case of a free OX -module W . Moreover,
all the relevant formations commute with direct sums, and hence we are reduced to the case of
W = OX .

We can even reduce to the case X = Speck[[t]] and use an explicit calculation to complete
the proof. Alternatively, one can check that the construction of [Ray82, Remarques 4.1.2(2)] gives the
same filtration and proves the theorem.

Proposition. Assume that F∗L is stable for any line bundle L. Let
(
V,∇, {Vi}0�i�p) be a p-flat

pre-oper with rank(V ) = p and V ∇=0 stable. Then V ∇=0 � F∗L for a suitable line bundle L on X.

Proof. As 0 ⊂ V1 ⊂ · · · ⊂ Vp−1 ⊂ Vp = V is a pre-oper of rank p, V/Vp−1 = L is a line bundle. The
morphism F ∗(V ∇=0) = V → V/Vp−1 = L gives by adjunction a non-zero morphism V ∇=0 → F∗L.
Since these bundles are stable and of the same degree, the map V ∇=0 → F∗L is an isomorphism.

Remark. Let L be a line bundle and g � 2.
(i) The assumption that F∗L is stable is no longer needed. After this paper was written, Lange

and Pauly [LP03, § 1] showed that F∗L is always stable. Thus any p-flat pre-oper V of rank p
with V ∇=0 stable is of the form (V = F ∗(F∗(L)),∇Cartier) together with the Harder–Narasimhan
filtration. Suppose this pre-oper is an oper. Then F ∗(V ) is a DX-module with infinite Frobenius
descent by Remark 5.2(i). This implies deg(F∗L) = deg(L) + (p − 1)(g − 1) = 0, otherwise, this
pre-oper is not an oper.

(ii) Theorem 5.3 shows that V = F ∗(F∗(L)) is highly unstable and it is likely that V is in a
minimal Frobenius stratum (this is indeed the case in characteristic two). At least, the bound in
[Sun99, Theorem 3.1, p. 51] is reached by V when the rank is p.
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5.4 The underlying bundle of a pre-oper is typically unstable. In some circumstances, the Frobe-
nius descent of a p-flat pre-oper is (semi)-stable. This provides a way of constructing Frobenius
destabilized bundles in terms of pre-opers.

Proposition. Let (V,∇, {Vi}0�i�l) be a p-flat pre-oper with V1 semi-stable of rank r1.

(i) Suppose p > l(l − 1)(lr1 − 1)(g − 1). Then V ∇=0 is semi-stable.

(ii) Suppose r1 = 1 and p > l(l − 1)2(g − 1). Then V ∇=0 is stable.

Proof. (i) Recall from Remark 5.1(ii) that µ(V1) = µ(V )+ (l− 1)(g− 1)/r1. Since V1 is semi-stable,
{Vi}0�i�l is the Harder–Narasimhan filtration of V . In particular, if W ⊂ V , then µ(W ) � µ(V1).

Let V ′ = V ∇=0. Then F ∗(V ′) = V . Suppose that V ′ is not semi-stable, and W ′ ⊂ V ′ is such
that µ(W ′) > µ(V ′). Then W = F ∗(W ′) satisfies µ(W ) � µ(V1), and

µ(V )
p

= µ(V ′) < µ(W ′) =
µ(W )
p

� µ(V1)
p

=
µ(V )
p

+
(l − 1)(g − 1)

p · r1 .

However, µ(V ′) (respectively µ(W ′)) is a fraction of the form a/b, with a, b ∈ Z, 0 < b � l · r1
(respectively 0 < b < l · r1). Therefore, µ(W ′) − µ(V ′) � 1/(l · r1 · (l · r1 − 1)). This contradicts the
assumption on p.

(ii) Let V ′ = V ∇=0 and 0 = W ′
0 ⊂ · · · ⊂ W ′

s = V ′ be a Jordan–Hölder series for V ′. Then each
W ′
i/W

′
i−1 is stable of slope µ/p, where µ = µ(V ). Let Wi = F ∗(W ′

i/W
′
i−1), µmax(Wi) be the largest

possible slope of sub-bundles of Wi, and µmin(Wi) be the smallest possible slope of quotient bundles
of Wi. By definition, µmin(Wi) � µ � µmax(Wi).

Let i0 be the smallest integer such that F ∗(W ′
i0

) → Vl/Vl−1 is non-zero. Then µmin(Wi0) �
µ(Vl/Vl−1) = µ− (l − 1)(g − 1). Similarly, there exists an index i1 such that µmax(Wi1) � µ(V1) =
µ+ (l − 1)(g − 1).

A theorem of Sun [Sun99, Theorem 3.1] asserts that

µmax(Wi) − µmin(Wi) � (rank(Wi) − 1)(2g − 2).

This implies that rank(Wi0) � (l + 1)/2 and rank(Wi1) � (l + 1)/2. Thus, i0 = i1 and

(l − 1)(2g − 2) � µmax(Wi0) − µmin(Wi0) � (rank(Wi0) − 1)(2g − 2)

by Sun’s theorem again. Therefore, rankWi0 � l and this forces W ′
i0

to be the only Jordan–Hölder
factor of V ′.

Remark. The bound on p can often be improved for particular (l, g, r1,deg(V1)). This is clear from
the proof.
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6 (1973), 95–101.
Gie75 D. Gieseker, Flat vector bundles and the fundamental group in non-zero characteristics, Ann.

Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), 1–31.
Gro60/61 A. Grothendieck, Technique de descente et théorèmes d’existence en géométrie algébrique. IV.
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