
TRANSLATIONAL ARTICLE

Reducing the CO2 footprint at an LNG asset with replicate
trains using operational data-driven analysis. A case study on
end flash vessels

Rakesh Paleja1 , Ekhorutomwen Osemwinyen2, Matthew Jones3, John Ayoola2,
Raghuraman Pitchumani4 and Philip Jonathan1,5

1Shell Research Limited, London, SE1 7LZ, UK.
2NLNG Plant Complex, Bonny Island, Rivers State, Nigeria
3Shell Global Solutions International BV, Amsterdam, 1031 HW, The Netherlands
4Shell International Exploration and Production Inc., Houston, TX 77079, USA
5Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK
Corresponding author: Philip Jonathan; Emails: philip.jonathan@shell.com; p.jonathan@lancaster.ac.uk

Received: 30 November 2023; Revised: 10 May 2024; Accepted: 07 June 2024

Abstract

A liquefied natural gas (LNG) facility often incorporates replicate liquefaction trains. The performance of equivalent
units across trains, designed using common numerical models, might be expected to be similar. In this article, we
discuss statistical analysis of real plant data to validate this assumption. Analysis of operational data for end flash
vessels from a pair of replicate trains at an LNG facility indicates that one train produces 2.8%–6.4% more end flash
gas than the other. We then develop statistical models for train operation, facilitating reduced flaring and hence a
reduction of up to 45% in CO2 equivalent flaring emissions, noting that flaring emissions for a typical LNG facility
account for ~4%–8% of the overall facility emissions. We recommend that operational data-driven models be
considered generally to improve the performance of LNG facilities and reduce their CO2 footprint, particularly when
replica units are present.

Impact Statement

Empirical models based on operational data from a liquefied natural gas production facility are used to identify
and exploit differences between the performance of production units that are nominally equivalent from a design
perspective. Differential operation of nominally replicate units leads to a reduction of up to 45% in CO2

equivalent flaring emissions, noting that flaring emissions for a typical LNG facility account for ~4%–8% of
the overall facility emissions.

1. Introduction

Natural gas (NG) plays a significant role in the global energy transition since switching from coal to NG
reduces greenhouse gas emissions by 50% when producing electricity and 33% when providing heat;
globally, up to 500 MtCO2 were avoided in 2018 compared with 2010 (International Energy Agency,
2019). NG sources in Australia, theMiddle East, Russia, North America, andAfrica are often distant from
consumer demand in Europe, Japan, South Korea, China, and developing Asia (International Energy
Agency, 2022). Transporting NG via pipeline over distances >3000 km is not economically viable
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because of the low energy density of NG on a volumetric basis. Liquefaction of NG to�163 ° C reduces
its volume by a factor of around 600, permitting transportation by sea (Hafner and Luciani, 2022).

A large-scale LNG train typically consumes 14.3 kW/ton/day of LNG, with 40%–60% of the energy
used by compressors (Hasan et al., 2009a). The energy required is normally provided by fuel gas
(FG) generated from different sources at the LNG-producing facility including end flash gas (EFG) from
end flash vessels, and boil-off gas (BOG) from storage tanks and loading vessels (LBOG). Economically
and environmentally, it is advantageous to reduce demand for FG as much as possible consistent with
demand, while avoiding flaring of excess FG. This is achieved by process modeling using software such
asAspenTech’s HYSYS®,UniSim®, andMATLAB®. These software packages use numerical algorithms
as summarized, for example, by Bassioni and Klein (2024) and Austbo et al. (2014).

For example on the demand side, in Alabdulkarem et al. (2011), minimization of the power of the
compressor (which consumes FG) in a C3MR process is performed through simulation in Aspen
HYSYS® and optimization in MATLAB® using a genetic algorithm, leading to a 9% reduction in energy
requirement. Further, Jackson et al. (2017) optimize the energy requirement for a typical LNG train at
different geographical locations using numerical methods and conclude that liquefaction in colder
climates such as that of Norway would require 20%–26% lower energy compared with warmer
Australian or Middle Eastern climates. Thus a given compressor can provide more LNG in colder
countries. In Ali et al. (2018), FG demand for a single mixed refrigerant liquefaction process is optimized
using the meta-heuristic vortex search algorithm; optimal values of mixed refrigerant flow rates and
process operating pressures are determined in the vortex pattern corresponding to the minimum required
energy, which is reduced by 41.5%. In Castillo et al. (2013), options to pre-cool NG are studied for hot and
cold climate conditions using HYSYS® to determine the most energy-efficient technology for either
climate.

On the supply size, in Hasan et al. (2009b), dynamic simulations are conducted to facilitate the
reduction in LBOG using “heel” as a parameter to be optimized; the heel is the amount of LNG that is
retained in the LNG vessel during its return journey tomaintain the vessel as close as possible to�163 °C.
Numerical simulation studies have been developed by Kurle et al. (2017) for LBOG involving variables
such as heat leak, initial temperature of LNG ship tank, compressor capacity, and maximum cooling rate
for ship-tank in the model. The study is expected to help proper handling of BOG problems in terms of
minimizing flaring at LNG exporting terminals, and thus reducing waste, saving energy. Numerical
simulations by Jin et al. (2023) on BOG generation and recovery at LNG export terminals have been
carried out to understand the Specific Energy Consumption (SEC) using a single mixed refrigerant and
compare it with a typical Mark III process. The proposed SMR design has a 50.34% lower SEC than a
Mark III process. Shin et al. (2022)model excessiveBOGgenerated because of the temperature difference
between the LNG and a tank and design a model predictive control (MPC) system to simultaneously
regulate the pressure and temperature of the tank by manipulating the vapor outlet flow rate and the
amount of LNG spray injected during the cool-down process. In Widodo and Muharam (2023),
simulation models for BOG generation during liquefaction and loading processes are discussed for a
typical LNG production plant producing 8 million tons/year LNG, limited by the capacity of BOG
recovery. Numerical optimization shows a potential production increase from BOG recovery and fuel gas
optimization to be around 90,260 tons/year or equivalent to 1.4 cargo of LNG per year. A numerical
simulation of the flow of LNG stored in a small-sized cylindrical tank is presented in Ferrin and Perez-
Perez (2020). The work suggests that the filling level of the tank substantially influences the boiling rate
and the degree of stratification, as well as the flow structures generated by free convection.

We note that alternative numericalmethods exist tomodel BOGgenerated during the shipping of LNG.
For instance, in Wu and Ju (2021), the BOG generation characteristics in a type C independent liquefied
natural gas (LNG) tank under sloshing excitation are studied using computational fluid dynamics (CFD).
Results show that sloshing excitation influences the thermo-physical process and BOG generation of the
LNG tank. Such numerical studies do not consider the fact that BOG generation from the LNG tank, and
LBOG can vary significantly because of climatic conditions, the nature and size of the loading vessels,
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and other factors. Further, we are not aware of literature that considers the varying nature of real-time FG
supply (from multiple suppliers) and demand.

Moreover, the literature addressing the use of real operational plant data for process optimization is
limited. Katebah et al. (2023) note the considerable potential for, yet the dearth of literature on, the
exploitation of real plant data to optimize the performance of LNG processes, over and above that
achieved using numerical simulation.

Typically, multiple trains at a given LNG production facility have the same design. Multiple trains are
preferred over a single large train for reasons such as (a) improved robustness of production to
interruptions on an individual train, and (b) physical limitations on the design of a single large train.
When multiple trains are operated at an actual LNG facility, some trains may be exact replicas of others in
terms of liquefaction technology, size of compressors, and other units such as end flash vessels. Yet the
literature examining the performance of multiple trains, from a numerical or operation plant data
perspective, is again limited.

1.1. Objectives and layout

In this article, we use a two-step data-driven approach to demonstrate the divergence in performance
between two replicate trains at a full-scale LNG facility, focusing on the comparison of end flash vessels at
an LNG facility. We emphasize that this article exploits real operational data from the full-scale LNG
facility. The first analysis step (reported in Section 3.1) involves exploratory analysis of historical data
corresponding to multiple years of operation, to elucidate whether flash vessels from different trains
produce different amounts of EFG under similar process conditions. Then we use statistical hypothesis
testing (Section 3.2) to confirm significant divergence in EFG production between LNG trains. The
second step (Section 3.3) involves the estimation of regressionmodels for EFG production with respect to
driver-manipulable process variables. We demonstrate (Section 3.4) that these can be used to control
excess EFG to minimize excess end flash gas and reduce CO2 footprint. We emphasize that the two-step
approach is not specific to any particular process unit or production technology. All that is required is a
representative period of historical operational data for the near-replica production units.

Preceding the main analysis sections, Section 2 provides an overview of typical large-scale liquefac-
tion. Following the analysis, Section 4 then provides discussion and conclusions. Summary statistics for
flow rate from the two end flash vessels considered and details of statistical hypothesis testing using
Welch’s t-test are relegated to Appendices A and B.

2. Description of LNG process

This section provides a brief overview of the components and operation of a liquefaction train, followed
by a discussion of LNG facilities containing replicate trains and the potential this offers for improved
operation.

2.1. The liquefaction train

A liquefaction train at an LNG facility is comprised of a hot and a cold section. NG from the gas field
enters hot section, operating at above ambient temperature. Here, NG is pre-treated to remove acid gas
(carbon dioxide and hydrogen sulfide), water and mercury. The processed NG then enters the cold
section at temperature T1, pressure P1 and flow rate Q1, respectively, as shown in Figure 1. Temperature
T1 depends on the geographical location and can vary from 25 to 30 °C, pressure P1 usually ranges from
50 to 60 bar whereas mass flow rate Q1 (tons per day, T/d) depends on the availability of NG. There are
different designs for the cold section. In the C3MR design (Lim et al., 2012), the cold section pre-cools NG
in C3 kettles from T1 to temperature T2 and subsequently to T3 in the main cryogenic heat exchanger
(MCHE) using a mixed refrigerant (MR). MR consists of nitrogen (N2), C1, C2, and C3. T2 usually
approaches�30 to�27 °CwhereasT3 ranges from�150 to�145 °Cdepending on a variety of factors such
as NG composition, MR composition and pressure, and flow rates of NG and MR. The C3 kettles and
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MCHE are shell-and-tube heat exchanger units with NG flowing on the tube side, C3 in the kettles, andMR
in the MCHE, both on the shell side. The duty required to circulate propane andMR to cool NG from T1 to
T3 is provided by two compressors. Figure 1 illustrates compressor 1 (C3) and compressor 2 (MR). Cooling
NG fromT1 to T3 results in the vaporization of C3 andMR; vapor heat is ejected to the atmosphere by air or
water cooler before returning back to C3 kettles and MCHE respectively. When upstream pressure P1 is
high, the final cooling toT4=�163 °Coccurs in the flash vessel, whereNG fromMCHE is flash evaporated
at pressure P4 (close to the atmospheric pressure). As a result, the flowQ3 from theMCHE is divided into a
vapor streamwith flow rate Q5, and a liquid streamwith flow rate Q4, the latter to storage tanks maintained
at atmospheric pressure. The vapor stream is EFG to the FG pool, whereas the liquid stream is LNG for
export. The nature of the flash evaporation process is such that Q5 ≪ Q4withQ3 =Q4þQ5 to retainmass
balance; the temperatures and pressures of the EFG and LNG are similar.

2.2. Replicate trains

As noted in Section 1, LNG facilities often contain replicate trains; Figure 2 shows a schematic for two
replicate trains studied in this article. Here, EFG from the end flash vessels of each train is sent to the FG
pool along with other sources of FG such as BOG and LBOG. The FG pool supplies the FG to the LNG
facility.When there is excess FG, the flare valve is opened and the excess FG is flared. To prevent flaring,
the typical practice is to reduce EFG production from both trains equally, since trains are notionally
replicates by design.

In this work, we take advantage of replicate flash vessels at the LNG facility to minimize flare value
opening. The presence of replicate components such as compressors, MCHEs, coolers, and C3 kettles at
LNG facilities generally can be similarly exploited for operational improvements.

3. Exploratory data analysis and hypothesis testing

In this section, we present an analysis of operational data from an LNG facility with two replicate
liquefaction trains. The objective of the analysis is to identify differences in the operating characteristics
of the end flash vessels of the two trains. The differences identified are then exploited in Sections 3.3 and
3.4 to improve the overall performance of liquefaction, in particular with respect to reduced flaring of

Figure 1. Schematic of the cold section of LNG train. The end flash vessel shown in blue produces end
flash gas, used as fuel gas for the facility.
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EFG. Section 3.1 provides an exploratory analysis of operational data, and Section 3.2 uses statistical
hypothesis testing to demonstrate significant differences in operating characteristics for the trains.

We emphasize that the analysis is intended to exploit different operating characteristics of notionally
replicated LNG trains. A necessary preliminary step therefore is to ensure that the trains considered are
indeed replicates.We have confirmed this for a pair of trains, henceforth identified as Tr1 and Tr2, from the
LNG facility.

3.1. Exploratory analysis

Weconsider the operation of flash vessel units U1, U2 of replicate trains Tr1, Tr2, with EFGmass flow rates
Q51, Q52. Figure 1 motivates the assumption that Q5 for individual units is dependent on (a) the
corresponding flow Q3 of NG from the MCHE to the flash vessel, (b) the outlet temperature T3 of NG
from the MCHE to the flash vessel, and (c) flash vessel pressure P4. The “manipulated” (or, in statistical
terminology, “treatment”) variables Q3, T3, and P4 can be changed independently, thereby influencing
Q5.We anticipate that increasing the values of Q3 and T3 will lead to a higher value of Q5. Conversely, a
higher P4 will lead to a lower Q5.

We seek to assess fairly whether Q5 from U1 and U2 is similar. Ideally, we would conduct a series of
experiments on both units, where the values of Q3, T3, and P4 were set at common values across trains,
and differences inQ5were quantified. However, such experiments are impractical economically for trains
in continuous operation. Nevertheless, over the course of the normal operation of the trains in time, the set

Figure 2. Schematic of two replicate trains, Train 1 and Train 2, feeding EFG to FG pool besides BOG
from LNG tank LBOB from tank in the loading vessel (also shown in blue). When the FG pool has excess

FG it is released and flared through the flare valve.

Data-Centric Engineering e1-5

https://doi.org/10.1017/dce.2024.23 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.23


points of Q3, T3, and P4 for the two trains vary, exploring a domain of typical set points for both trains.We
can therefore exploit these historical data to quantify differences in Q5. It is, of course, critical that our
assessment is fair, in particular, because the domains of Q3, T3, and P4 might be different for the two
trains. Since Q5 depends on Q3, T3, and P4, it is essential that the historical data for both trains is filtered
such that the treatment variables Q3, T3, and P4 correspond to similar sets of values across the two units.
Concisely in mathematical notation, we wish to compare Q5∣(Q3,T3,P4) conditionally across trains,
rather than Q5 marginally. The simple filter condition applied takes the form

LL≤Xt
1=X

t
2 ≤UL for all of X =Q3,T3,P4 (1)

where Xt is the value of X and time t, for data sampled every 5 minutes for a period of a contiguous
calendar year. We emphasize that the filter considered is applied to all of X = Q3, T3, and P4. Further, LL
indicates a common lower limit for the ratio of manipulated variables across trains, set at 0.98 in this work.
UL indicates the corresponding common upper limit, set at 1.02. The effect of filtering manipulated
variables is illustrated in Figure 3, for data corresponding to the calendar year 2019. Panels of the figure
are scatter plots of X2 on X1 for X = Q3, T3, P4, and Q5, with green dots indicating data for time points at
which the filter conditions in Equation 1 are satisfied, corresponding to ~10% of the unfiltered sample,
over all years of available data. Data for all other time points is shown in blue. Of course, filtering yields
subsets of operational data for Tr1 and Tr2 of equal size. For reasons of commercial confidentiality, note
also that all flow Q3 and Q5 presented in this work (e.g., in Figures 3, 4, and accompanying tables in
AppendixA) have been normalized using a common factor k (i.e., Normalized Flow= k ×Observed Flow)
such that the maximum Q5 (over all trains and years) in the filtered data is 100 T/d after normalization.
No other variables are normalized.

The quality of NG sourced from upstream wells, distributed to the two trains, varies over time. As the
proportion of low boiling point components (e.g. C2, C3, and butane, C4) in NG increases, Q5 production

Figure 3. Scatter plots of Q3, T3, P4, and Q5 across trains Tr1, Tr2 of operational data sampled at
5-minute intervals for the year 2019. Values for time points satisfying the filter conditions in Equation 1
are shown in green. All other time points are shown in blue. Values of Q3 and Q5 have been normalized

using a common factor so that the global maximum value of Q5 is 100 T/d.
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reduces in both U1 and U2. Moreover, the performance of LNG trains often exhibits seasonal patterns that
can influence Q5; filtering (Equation 1) ensures that the comparison of units is not influenced by season
and other external variations of the common NG input to liquefaction. Filtering, therefore, allows us to
characterize underlying differences in the operational characteristics of the trains, rather than differences
in inputs and operating set points.

Since (replicate) trains are optimized through numerical simulations during design, we expect
differences in Q5 across trains to be small. We might, therefore, expect that a comparatively long period
of historical data might be required to quantify differences in operational characteristics with confidence:
in particular, analysis of filtered data from only 1 year can lead to spurious conclusions. Therefore, here,
we analyze historical operational data for the 5-year period 2015–2019. The panels of Figure 4 show
histograms of filtered Q5 per annum for the years 2015–2019, for train Tr1 (blue) and Tr2 (red). The title of
each plot shows the year and number n of filtered 5-minute observations. Vertical blue and red lines and
annotated text give sample means of filtered Q51 and Q52, respectively. Figure 4 suggests for each of the
5 years, that Q5 through U1 is greater than that through U2. The difference in sample means ranges from
2.5 to 5.5 T/d. Corresponding tables of summary statistics are provided in Appendix A. It is also
interesting that the number of observations retained after filtering is considerably higher in 2018 and
2019 than in 2016 in particular, possibly indicating a more consistent setting of operational conditions
across trains in more recent years.

The figure for unfiltered data corresponding to Figure 4 is shown in Figure 5. It is notably difficult to
see from the figure that there is a material difference between the operating characteristics of trains Tr1
and Tr2. This emphasizes the need to consider the conditional behavior of Q5 given its driver variables
Q3, T3, and P4.

Figure 4. Histograms of filtered Q51 (blue) and Q52 (red) data per annum, for years 2015–2019. Panel
titles indicate the number of observations n retained after filtering. Vertical lines and annotated text give
mean values of filtered data. Values of Q5 have been normalized using a common factor so that the global

maximum value is 100 T/d.
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3.2. Statistical testing

The exploratory analysis above suggests that Q5 from vessel U1 in train Tr1 is higher than that from U2 in
train Tr2.We can quantify this using a statistical hypothesis test to assesswhether the populationmeanQ51
of Q5 in train Tr1 is greater than the corresponding population mean Q52 in train Tr2. To perform this one-
sided hypothesis test, we set the null hypothesis H0 that there is no difference between Q51 and Q52, and
an alternative hypothesis H1 that Q51 > Q52. Thenwe calculate whether there is sufficient evidence in the
data to reject the null hypothesis in favour of the alternative. Various parametric and non-parametric tests
are suggested in the literature (e.g., Marshall and Jonker, 2011) for this purpose. The choice of test
depends on the nature of the data and the specific question at hand. Here we use the independent two-
sample Student’s t-test, calculating test-statistic tmeasuring the difference in population means relative to
the variability within the groups using sample data. This test assumes that the variances of the two samples
are approximately equal. For samples of random variables X1 and X2 with common sample size n, t is
calculated as

t = X1�X2
� �

=sd (2)

whereX1 andX2 are the samplemeans for Q51 andQ52 (from Tables A1 andA2 inAppendix A), and sd is
the standard error of the difference in means given by s2d = s21þ s22

� �
=n, where s21 and s22 are corrected

sample estimates for the variance ofX1 andX2. sd can also be written as s2d = 2s
2
p=n, where sp is an estimate

for the pooled standard deviation of the samples given by s2p = s21þ s22
� �

=2. The test statistic t follows a
t-distribution with ν= 2 n�1ð Þ degrees of freedom (Evans et al., 2000). This probability distribution
generalizes the standard normal distribution: both the t-distribution and standard normal distribution have
mean zero and exhibit a bell-shaped curve, but the t-distribution has heavier tails controlled by shape
parameter ν. Typically, the null hypothesis H0 is rejected at the α = 0:05 level; this occurs when the value

Figure 5. Histograms of full unfiltered data for Q51 (blue) and Q52 (red) per annum, for years
2015–2019. Panel titles indicate the number of observations n retained after filtering. Vertical lines and
annotated text give mean values of filtered data. Values of Q5 have been normalized using a common

factor so that the global maximum value is 100 T/d.
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of the t-statistic calculated exceeds a critical value tcrit,ν 1�αð Þ equal to the 1�αð Þ× 100 = 95%ile of the
t-distribution with ν degrees of freedom.

X1�X2
� �

=sd� tcrit,ν 0:95ð Þ> 0: (3)

Multiplying the left-hand side above by sd gives X1�X2
� �� sd × tcrit,ν 0:95ð Þ, equal to the lower

confidence limit LCL for the difference X1�X2 in population means. Rejecting H0 is therefore also
equivalent to estimating LCL > 0. For the total sample n> 100, tcrit,2 n�1ð Þ 0:95ð Þ≈ 1:645, the 95%ile of
standard normal distribution, to at least two decimal places; for smaller sample sizes, values of
tcrit,2 n�1ð Þ 0:95ð Þ are provided by standard statistical software.

Table 1 shows the results of significance testing for the difference in population mean duty, Q51 - Q52,
between trains Tr1 and Tr2, annually from 2015 to 2019. In percentage terms, Q51 exceeds Q52 by some
2.8% to 6.4%.

When there is evidence that the variance of the two samples is not equal, we can use Welch’s t-test
(Welch, 1947) as an alternative to the test above. For the current data, using the correspondingWelch test
at α= 0:05, the null hypothesis of equality of Q51 and Q52 was also rejected for each of the years 2015 to
2019; see Appendix B for details.

3.3. Regression and adjusted regression plots

For each of units U1 and U2 on trains Tr1 and Tr2, respectively, in turn, we establish linear regression
models for Q5 in terms of Q3, T3, and P4 of the form

Q5= f Q3,T3,P4ð Þþ ϵ (4)

for regression function f , where ϵ is assumed to be a zero-mean Gaussian random variable with unknown
standard deviation. Here, we assume that f takes the linear form

f ðQ3,T3,P4Þ= aþb Q3þ c T3þd P4 (5)

for parameters a, b, c, and d to be estimated. FollowingDuMouchel (1988), we then use adjusted response
or adjusted regression plots to quantify the effects of individual treatment variables (more naturally
referred to as covariates in a regression context) in regressionmodels for Q5 in terms ofQ3, T3, and P4, for
each of trains Tr1 and Tr2. In essence, these are generalizations of partial residual and augmented partial
residual plots (Mallows, 1986), useful for linear regression models with arbitrary power and interaction
terms. The fitted regression function bf from Equation 5 is

bf Q3,T3,P4ð Þ=baþbbQ3þbcT3þbdP4 (6)

where b• represents an estimate. The corresponding residuals from the regression form the set rif gni = 1,
with

Table 1. Independent two-sample t-test for population mean difference Q51 - Q52 per annum. Null
hypothesis rejected for each year since LCL > 0. Note that the critical value tcrit,ν 0:95ð Þ at infinite

sample size is adopted as a good approximation, since n> 1000 throughout

Year 2015 2016 2017 2018 2019

Q51 -Q52 2.45 3.82 5.53 3.95 3.89
sp 2.46 2.49 1.93 2.42 3.73
sd 0.0598 0.125 0.0324 0.0236 0.0364
ν= 2 n�1ð Þ 6752 1584 14,182 42,144 41,944
tcrit,ν 0:95ð Þ 1.65 1.65 1.65 1.65 1.65
LCL 2.33 3.57 5.47 3.90 3.81
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ri =Q5i�bf Q3i,T3i,P4i
� �

for i= 1,2,…,n (7)

where Q3i,T3i,P4i
� �n

i= 1 is the set of values of Q3, T3, and P4 in the data sample of filtered data for
regression model fitting.

Next, adjusted fit functions are calculated for each of Q3, T3, and P4 in turn. For example in the case
of Q3, the adjusted fit function is the average value of bf , expressed as a function of Q3, over all
n observations in the data sample

gQ3 qð Þ= 1
n

Xn
i = 1

bf q,T3i,P4i
� �

: (8)

Similar adjusted fit functions can be derived for each covariate in each train in turn. Finally, the set

~Q5iQ3
n on

i= 1
of adjusted response values for Q5 with respect to Q3 is calculated using

~Q5iQ3 = gQ3 Q3i
� �þ ri for i= 1,2,…,n (9)

where rif gni = 1 are the residuals from the full regression (Equation 4). Similar sets of adjusted response
values can be calculated for response Q5 with respect to each covariate in each train in turn.

Adjusted response values for Q5 with respect to each of Q3, T3, and P4 are shown in Figure 6, for train
Tr1 (blue) and Tr2 (red). The anticipated directions of the trends of Q5 with covariates are seen in each
case. However, despite the trains being nominally replicates, the magnitudes of gradients are larger for
train Tr1 regardless of covariate. Briefly, Q5 is more sensitive to changes in covariates for train Tr1. To
achieve unit reduction in Q5, the reduction in Q3 (and/or T3) needed in Tr1 is smaller than that needed in
Tr2. This is potentially a valuable handle with which to reduce the need for flaring.

Note that the adjusted regression methodology is applicable generally, regardless of the form of the
regression function in Equation 4.

Figure 6.Adjusted response values for Q5with respect to Q3, T3, and P4 for U1 (blue circles) andU2 (red
circles). Corresponding adjusted fit functions g are shown as black lines.
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3.4. Implementation of recommendations

Given the findings above, trials were conducted on the liquefaction trains to evaluate the impact on flaring
of different manipulations of set-points of manipulated variables on Tr1 and Tr2 end flash units U1 and U2.
In the first period (“Period 1”), each time the flare valve was on the verge of opening, a common reduction
of T3 was made for both trains, followed by a common reduction of Q3 if necessary. In the second period
(“Period 2”), preferential treatment was given to Tr1:T31 and was reduced first, followed if necessary by
Q31, T32, and Q32 if flaring persisted. P4 was not used as a handle during the trial. Results are shown in
Figure 7. Panels show the mean flare valve opening in Periods 1 (left) and 2 (right) as a function of the
mean T3 (x-axis) and total Q3 (y-axis). The figure indicates a reduction in High and Medium flare valve
opening in Period 2 compared with Period 1, resulting in a reduction of up to 45% in flaring-related CO2

emissions. Polygons (magenta) in each panel show approximate ranges for mean T3 and total Q3 within
which the risk ofHigh orMedium flaring is low. The area of the polygon for Period 2 is considerablywider
than for Period 1, indicating that the reduction of T3 and Q3 for Tr1 before those of Tr2 is advantageous in
reducing FG flaring.

4. Discussion and conclusions

This article demonstrates that differences in the operating characteristics of nominally replicated units at
an LNG facility can be exploited to improve the overall performance of the facility, in particular by
minimizing flaring.We demonstrate that careful exploratory analysis can be used to identify differences in
operating characteristics and that statistical hypothesis testing lends weight to findings from exploratory
work.We then show that simple regressionmodels can be used to illustrate and quantify differences in unit
performance. Finally, we demonstrate bymodifying operating practices at the “live”LNG facility, that the
recommendations of the statistical analysis provide clear material benefit. We emphasize that this article
exploits real operational data from the full-scale LNG facility.

The statistical analysis conducted here is elementary but sound. Indeed, we hope the current work
demonstrates the real-world benefits available from the careful application of straightforward statistical
thinking and method: complicated models are not always necessary for process improvement in
manufacturing. Nevertheless, there are numerous ways in which the current analysis can be improved.

Figure 7.Flare valve opening, ranging fromHigh, Medium to Low for Period 1 (left) and Period 2 (right)
as a function of a mean of T3 and a sum of Q3 from Tr1 and Tr2. In Period 1, simultaneous and equal
reductions weremade, first for T3 and subsequently if necessary forQ3, for both trains at the point of flare
onset. In Period 2, T31 and then Q31 (if necessary) were reduced first, followed (if necessary) by T32 and
Q32. Polygons show domains of mean T3 and total Q3 corresponding to low risk of High and Medium

flare opening.
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For example, preliminary analysis suggests there may be some benefit from consideration of seasonal
trends in the relative operating characteristics of the flash vessel units.

Specifically, our study of end flash vessels from two trains at an LNG facility has shown that
statistically significant differences in train performance can exist even though trains may be “exact
copies” of each other from a design perspective. In fact, although the end flash vessels in the two trains are
designed to identical specifications, in operation they may not perform equivalently for a number of
reasons. For example, they may be exposed to different localized variations in ambient conditions,
causing variation in end flash gas produced. We actually observe the flow rate of end flash gas (EFG, Q5)
produced from one end flash vessel to be 2.8%–6.4% higher than from the other replicate unit. As a result,
on the onset of EFG flaring, the standard practice of reducing NG input temperature (T3) and flow rate
(Q3) simultaneously and equally to the main cryogenic heat exchangers of the two trains to minimize
flaring is demonstrably not the best practice. An improved procedure based on the current statistical
analysis first reduces T3 and Q3 for the train whose EFG production is more sensitive to operating
conditions. When this strategy was followed at the LNG facility, flaring-related CO2 emissions were
reduced by up to 45% compared with standard practice, noting that flaring emissions for a typical LNG
facility account for ~4%–8% of the overall facility emissions.

Insights from analysis of operational data cannot be obtained from simulation studies of model trains
with identical designs. We hope the current article serves as motivation for the wider use of data-informed
and data-driven approaches for improved efficiency in manufacturing.

5. Lessons learned

• Statistical analysis of recent operational data from production units is a useful source of information
to improve the operation of those units.

• Numerical simulations are useful to design production units, but may not give the full picture
regarding the real-world operation of the units. Production units that are nominally thought to be
equivalent from a design perspective often diverge in performance in reality.

• Empirical models can be used to identify and exploit differences in unit operating characteristics, to
further optimize the overall performance of manufacturing facilities comprised of multiple units.

• We show that differential operation of LNG trains leads to reduced medium and high-intensity
flaring and hence a reduction of CO2 flaring emissions by up to 45% for the LNG facility.

• The methodology presented is demonstrated for LNG facilities, but we believe the approach would
be useful generally.
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Appendix A: Annual summary statistics for Q5 from trains Tr1, Tr2 for years 2015–2019
This appendix gives summary statistics for normalized filtered Q5 from trains Tr1, Tr2 for years 2015–2019, corresponding to
Figure 4. These values are also used in the statistical testing reported in Section 3.

Table A1: Summary statistics of samples of filtered Q5 values for train Tr1 over years 2015 to 2019.
Values have been normalized using a common factor so that the global maximum value (over both

trains and all years) is 100 T/d

Year Mean Median Variance s2 Skewness Kurtosis

2015 89.34 89.80 7.22 �1.17 5.69
2016 90.78 91.15 8.30 �1.95 10.03
2017 90.78 91.15 4.13 �0.38 3.56
2018 92.77 93.13 6.84 �1.08 6.34
2019 91.90 92.99 20.08 �1.54 5.26
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Appendix B: One-tailed, two-sample Welch’s t-test for un-equal variance
In the notation of Section 3.2, the expression for Welch’s t-test statistic (Welch, 1947) to compare the means of populations with
unequal population variances ofX1 andX2, but equal sample size n, is the same as that given in Equation 2. The degrees of freedom ν
of the t-distribution is however different, given by Satterthwaite’s approximation (Satterthwaite, 1946) as

ν =
n�1ð Þ s21þ s22

� �2
s41þ s42

(10)

where s1 and s2 are the corrected sample standard deviations for the two groups; theWelch’s t-test is more conservative in estimating ν.
The corresponding table of results using Welch’s t-test is given in Table (c.f. Table 1) is given in Table B1.

Cite this article: Paleja R, Osemwinyen E, Jones M, Ayoola J, Pitchumani R and Jonathan P (2025). Reducing the CO2 footprint at
an LNG asset with replicate trains using operational data-driven analysis. A case study on end flash vessels. Data-Centric
Engineering, 6, e1. doi:10.1017/dce.2024.23

Table A2: Summary statistics of filtered Q5 values for train Tr2 over years 2015 to 2019. Values have
been normalized using a common factor so that the global maximum value (over both trains and all

years) is 100 T/d

Year Mean Median Variance Skewness Kurtosis

2015 86.89 87.02 4.86 �0.86 8.29
2016 86.96 86.58 4.09 0.15 2.67
2017 85.25 85.54 3.30 �0.91 4.34
2018 88.83 89.11 4.85 �0.87 4.91
2019 88.02 88.19 7.74 �1.28 6.93

Table B1: Welch’s t-test for population mean difference Q51 - Q52 per annum, assuming unequal
population variances. Null hypothesis rejected for each year since LCL > 0. Note that the critical value
tcrit,ν 0:95ð Þ at infinite sample size is adopted as a good approximation, since n> 1000 throughout

Year 2015 2016 2017 2018 2019

Q51 -Q52 2.45 3.82 5.53 3.95 3.89
ν 6505 1420 14,007 40,953 35,055
tcrit,ν 0:95ð Þ 1.96 1.96 1.96 1.96 1.96
LCL 2.33 3.57 5.47 3.90 3.81

e1-14 Rakesh Paleja et al.

https://doi.org/10.1017/dce.2024.23 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.23
https://doi.org/10.1017/dce.2024.23

	Reducing the CO2 footprint at an LNG asset with replicate trains using operational data-driven analysis. A case study on end flash vessels
	Impact Statement
	Introduction
	Objectives and layout

	Description of LNG process
	The liquefaction train
	Replicate trains

	Exploratory data analysis and hypothesis testing
	Exploratory analysis
	Statistical testing
	Regression and adjusted regression plots
	Implementation of recommendations

	Discussion and conclusions
	Lessons learned
	Acknowledgments
	Data availability statement
	Author contribution
	Funding statement
	Competing interest
	Ethical standard
	References
	Appendix A: Annual summary statistics for Q5 from trains Tr1, Tr2 for years 2015-2019
	Appendix B: One-tailed, two-sample Welch’s t-test for un-equal variance


