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The non-uniform evaporation rate at the liquid—gas interface of binary droplets induces
solutal Marangoni flows. In glycerol-water mixtures (positive Marangoni number, where
the more volatile fluid has higher surface tension), these flows stabilise into steady
patterns. Conversely, in water—ethanol mixtures (negative Marangoni number, where
the less volatile fluid has higher surface tension), Marangoni instabilities emerge,
producing seemingly chaotic flows. This behaviour arises from the opposing signs of
the Marangoni number. Perturbations locally reducing surface tension at the interface
drive Marangoni flows away from the perturbed region. Continuity of the fluid enforces
a return flow, drawing fluid from the bulk towards the interface. In mixtures with
a negative Marangoni number, preferential evaporation of the lower-surface-tension
component leads to a higher concentration of the higher-surface-tension component at
the interface as compared with the bulk. The return flow therefore creates a positive
feedback loop, further reducing surface tension in the perturbed region and enhancing the
instability. This study investigates bistable quasi-stationary solutions in evaporating binary
droplets with negative Marangoni numbers (e.g. water—ethanol) and examines symmetry
breaking across a range of Marangoni numbers and contact angles. Bistable domains
exhibit hysteresis. Remarkably, flat droplets (small contact angles) show instabilities at
much lower critical Marangoni numbers than droplets with larger contact angles. Our
numerical simulations reveal that interactions between droplet height profiles and non-
uniform evaporation rates trigger azimuthal Marangoni instabilities in flat droplets. This
geometrically confined instability can even destabilise mixtures with positive Marangoni
numbers, particularly for concave liquid—gas interfaces, as in wells. Finally, through a
Lyapunov exponent analysis, we confirm the chaotic nature of flows in droplets with a
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negative Marangoni number. We emphasise that the numerical models are intentionally
simplified to isolate and clarify the underlying mechanisms, rather than to quantitatively
predict specific experimental outcomes; in particular, the model becomes increasingly
limited in regimes of rapid evaporation.

Key words: drops, lubrication theory, bifurcation

1. Introduction

The flow dynamics within evaporating sessile droplets is critical in controlling deposition
patterns, which are highly significant for numerous industrial applications such as
biological deposition methods (Dugas et al. 2005), spray cooling (Kim 2007) or inkjet
printing (Lohse 2022). In the simplest case of a single-component droplet evaporating
under ambient conditions, the evaporation rate is typically non-uniform along the liquid—
gas interface, as long as the contact angle (0) differs from exactly 90° (Deegan et al. 1997,
2000; Popov 2005). This position-dependent evaporation rate induces capillary flows. The
best known of such cases is that with a pinned contact line, often referred to as the ‘coffee-
stain effect’ (Deegan et al. 1997, 2000). In that case, the mass loss, in the region of higher
evaporation, namely at the rim (for droplets with contact angle lower than 90°), is com-
pensated by a flow towards the rim, while the shape of the droplet remains a sphericalcap.

In cases where evaporative cooling is significant, surface-tension gradients arise due to
temperature variations at the liquid—gas interface, leading to thermal Marangoni flows that
can even overcome the ‘coffee-stain effect’ (Hu & Larson 2006). These flows are driven by
thermal gradients. In contrast, concentration differences in evaporating multicomponent
droplets trigger solutal Marangoni flows, which are usually considerably stronger. In fact,
Thomson (1855) famously first described this phenomenon in the ‘tears of wine’ effect,
where the faster evaporation of ethanol at the contact line in a wine cup (essentially water—
ethanol) results in concentration gradients, driving the upward movement of fluid along
the glass. As a result, droplets are formed and grow, ultimately falling due to gravity, and
leading to the ‘tears of wine’ (Loewenthal 1931; Hosoi & Bush 2001).

Water—ethanol mixtures, in particular, display a variety of fascinating phenomena
(see review of Lohse & Zhang (2020) for a general understanding of physicochemical
hydrodynamics of multicomponent systems). Among these, there is interfacial instability,
which manifests as seemingly chaotic flows with erratic asymmetric convection rolls,
driven by either (or both) thermal and solutal gradients. Initial observations of interfacial
instabilities by Bénard (1901) were interpreted as natural convection, but Pearson (1958)
analytically demonstrated that surface-tension gradients could also explain some of those
instabilities. Sternling & Scriven (1959) investigated the nature of the solutal Marangoni
effect in detail and demonstrated that the direction of the concentration gradient in the
bulk, as well as the viscosity and diffusivity ratios between both phases, are key factors
for the dynamics.

Interestingly, while these instabilities occur in water—ethanol mixtures, they do not
manifest in glycerol-water systems (Diddens, Li & Lohse 2021). The key difference
between these two systems is the sign of the Marangoni number (Ma) (Gelderblom,
Diddens & Marin 2022). This difference can be understood by considering two two-
dimensional boxes with periodic side boundaries and an evaporating top surface: one
containing a glycerol-water mixture (figure 1a) and the other containing a water—ethanol
mixture (figure 10). In the glycerol-water system, which has a positive Marangoni number,
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(a) Glycerol-Water (b) Water—Ethanol

Time

Marangoni stabilisation Marangoni instability

Figure 1. Schematic representation of the onset of Marangoni stabilisation (a) and instability (b) in a two-
dimensional box with periodic boundaries and with an evaporating top surface, containing a glycerol-water
mixture () and a water—ethanol mixture (b). In (a), due to water being more volatile than glycerol, the surface
tension at the interface is reduced as compared with the bulk. In (b), viceversa, due to the higher volatility
of ethanol, the surface tension at the interface is enhanced as compared with the bulk. A disturbance that
locally diminishes surface tension at the interface generates a Marangoni flow directed away from the disturbed
area. Continuity of the fluid generates a return flow from the bulk to the disturbed region. In the glycerol—
water mixture, this return flow transports liquid with higher surface tension into the disturbed area, thereby
mitigating the Marangoni flow. Conversely, in the water—ethanol mixture, the return flow carries liquid with
lower surface tension into the disturbed area, further reducing the surface tension and amplifying the Marangoni
flow. Consequently, a positive feedback loop of Marangoni and return flows is established, resulting in the
Marangoni instability.

evaporation of the more volatile component (water) increases the concentration of the
fluid with low surface tension (glycerol) at the interface. Conversely, in the water—
ethanol system, which has a negative Marangoni number, evaporation of the more volatile
component (ethanol) increases the concentration of the fluid with high surface tension
(water) at the interface. If a perturbation locally reduces surface tension at the interface, it
generates a Marangoni flow away from the perturbed region (middle frames in figure 1).
Continuity of the fluid enforces a return flow from the bulk to the perturbed region to
compensate for the displaced liquid. In the system with a positive Marangoni number, the
return flow brings liquid with higher surface tension into the perturbed region, damping the
Marangoni flow. In contrast, in the system with a negative Marangoni number, the return
flow brings liquid with lower surface tension into the perturbed region, further decreasing
the surface tension and enhancing the Marangoni flow. As a result, a positive feedback of
Marangoni and return flows is created, leading to the fascinating flow patterns known as
Marangoni instability (lower frame in figure 1b).

We emphasise that return flow from the bulk towards the interface plays a crucial role in
amplifying Marangoni instabilities in this system. While the former explanation generally
applies to geometries where bulk return flow can develop, in e.g. a Hele-Shaw cell (Linde
et al. 1964; Lopez de la Cruz et al. 2021), the influence of alternative geometries on
the onset of instabilities remains an open question. Thin-film geometry constrains the

1018 A11-3


https://doi.org/10.1017/jfm.2025.10519

https://doi.org/10.1017/jfm.2025.10519 Published online by Cambridge University Press

D. Rocha, D. Lohse and C. Diddens

development of bulk return flow and Marangoni instabilities arise due to a complex
interplay between solutal and thermal Marangoni forces (Nazareth et al. 2020). Droplets
have a three-dimensional curved droplet—gas interface, leading to more intricate solutal
(and thermal) Marangoni flows compared with simpler geometries, thereby resulting in
interesting flows as a product of the complex interaction of its multiple components, see
e.g. Rowan et al. (2000), Sefiane, David & Shanahan (2008), He & Qiu (2016), Tan et al.
(2016), Diddens et al. (2017b), Lohse (2022), Wang et al. (2022). Mixtures with negative
Marangoni number exhibit violent flows with larger fluctuations in the early stages, while
the concentration of the most volatile component is high, eventually relaxing to a capillary
flow when this concentration reduces to a minimal value (Christy, Hamamoto & Sefiane
2011; Bennacer & Sefiane 2014). Marangoni instabilities have also been observed in
pure ethanol droplets evaporating in a humid environment, where the instabilities were
associated with the adsorption of water in the droplet during evaporation (Fukatani et al.
2016; Shin et al. 2016; Kita et al. 2018; Yang et al. 2023). To further complicate the
evaporative process, in the later stages of evaporation, the droplet can adopt a pancake-like
shape (Diddens et al. 2017a; Pahlavan et al. 2021; Yang et al. 2023), where the droplet—
gas interface deforms due to Marangoni stresses. Previous studies have also documented
the occurrence of vigorous convective rolls even in small-contact-angle water—ethanol
droplets (e.g. Christy et al. 2011), despite the absence of vertical flows.

In this study, we employ a minimal model to investigate the flow regimes in quasi-
stationary evaporating droplets with negative Marangoni number as a function of the
solutal Marangoni number Ma and the contact angle 6, initially under the assumption
of axisymmetry. We then analyse the azimuthal stability of these solutions for different
azimuthal wavenumbers m, revealing that flat droplets are more susceptible to instabilities
compared with those with larger contact angle 6. We utilise a simplified lubrication
model to provide scaling arguments, based on the droplet height profile, to justify
the emergence of instabilities at low critical Ma particularly for droplets with low 6.
Additionally, we show that, counterintuitively, evaporating glycerol-water mixtures can
exhibit Mainstabilities when put in a shallow well, illustrating a strong geometric influence
on the mechanism of the Marangoni instability. The influence of droplet deformation on
our results is also briefly discussed. We compute Lyapunov exponents to demonstrate
the chaotic nature of these flows using lubrication theory with two lateral dimensions.
Throughout this work, we make several simplifications that limit the applicability of
the model to real systems. In particular, our results are only directly applicable to
slow-evaporating systems. Our primary aim is to isolate the fundamental mechanisms
driving the onset of Marangoni instabilities and provide a quantitative analysis of the flow
stability, which can be refined in future studies to account for more complex and realistic
conditions. The applicability and limitations of our model are discussed later.

The paper is structured as follows. In § 2.1, we introduce the equations used to explore
flow regimes in evaporating droplets with negative Marangoni effects, and we introduce
the control parameters. This is followed by an analysis of quasi-stationary solutions at 6
close to 90° as a function of Ma in § 2.2 and the identification of different flow regimes
across the full Ma—6 phase space in § 2.3. The azimuthal stability of the quasi-stationary
regimes is studied in §3.1 and §3.2. In §4.1, we introduce the simplified lubrication
model, which is then used to explain the onset of azimuthal instabilities in flat droplets
in §4.2. In §4.3, we propose a well geometry for glycerol-water mixtures exhibiting
Marangoni instabilities. The influence of droplet deformation is discussed in §4.4. In § 5,
we compute Lyapunov exponents to illustrate the chaotic behaviour of these flows. In § 6,
we discuss the limitations of our model and the implications for real systems. The paper
ends with the conclusion and outlook (§ 7).
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2. Onset of instability
2.1. Full minimal model and its control parameters

Binary droplet evaporation is a complex multi-physics problem involving interfacial mass
transfer, which has been successfully analysed numerically using transient (Diddens et al.
2017b) and quasi-stationary models (Diddens et al. 2021). We study the stability of
quasi-stationary flow solutions, focusing on solutal Marangoni instabilities when the most
volatile component has lower surface tension.

Typically, rapid evaporation in experiments with water—ethanol droplets induces
significant transient and thermal effects. Our minimal model isolates solutal Marangoni
effects, making it directly applicable only to slow-evaporating systems where thermal
effects are negligible. Limitations and implications for real systems are discussed in § 6.

When modelling the evolution of each component « in the liquid phase, it is sufficient to
track the mass fraction y4 of the more volatile component A, considering that y4 + yp =
1, where yp is the mass fraction of the component B. Typically, the liquid’s velocity u is
much greater than the interface velocity u; (Diddens et al. 2021). For slowly evaporating
droplets, we assume only minimal compositional variations in the liquid phase during
evaporation, making it reasonable to express y4 as ya =ya,0-+ Yy, where y4 o is the
spatially averaged composition and y is a small perturbation. Naturally, the averaged mass
fraction y4 o changes over time; however, under the specified conditions, the process can
be considered quasi-stationary at each instant of the drying time, as shown in § 6.

The composition-dependent liquid properties can then be approximated using a first-
order Taylor expansion around y4 o. We neglect the dependence of the liquid’s properties
on temperature for simplicity, but we acknowledge these can often be relevant (see § 6),
therefore limiting the model to cases where thermal effects are less pronounced. While
variations in the liquid density can influence the flow pattern within binary droplets
(Edwards et al. 2018; Li et al. 2019; Diddens et al. 2021), this effect is neglected in the
present study for simplicity, in order to focus instead on pure Marangoni-induced flows.
The droplet is assumed to perfectly form a spherical-cap shape throughout the calculations
in this section, implying that the capillary (and Bond) number(s) are effectively zero.
The contact angle with the substrate is called 8. All material properties are assumed to
be constant regardless of the composition (and temperature), except for the liquid—gas
surface tension, given by o (ya) =0 (ya,0) + ydy,o. We introduce non-dimensionalised
scales (marked with tildes) for space, time, velocity and pressure:

ViR, _ Do _ _ HoDo
DO ) u_vl/3u’ p_ V2/3 p’

where V is the volume of the droplet and Dy and po are, respectively, the diffusion
coefficient and dynamic viscosity evaluated at the average composition y4 o. Similarly,
one can obtain the non-dimensionalised gas concentration ¢, whose profile around
the droplet determines the evaporation rate of each component, assuming the droplet
evaporates under ambient conditions (Deegan et al. 1997, 2000; Popov 2005). As shown
by Diddens et al. (2021), when the droplet is well mixed, which is achieved when there is
sufficient mixing induced by solutal Marangoni flow, the effect of local liquid composition
fluctuations on the vapour pressure — and hence on the evaporation rate — can be safely
neglected. In this framework, the vapour concentration is assumed to depend solely on
the spatially averaged composition of the droplet, meaning that higher-order terms in the
Taylor expansion of Raoult’s law about this average are omitted. Although incorporating
these first-order corrections could yield a more precise description, doing so would
introduce additional parameters and complicate the model without significantly altering
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the results. This simplification allows us to write the vapour concentration as

C=(ca —cg)/(cg! =), (2.2)
where ¢;° is the ambient vapour concentration far from the droplet and ol = b VaXa-

Here, ¢2""¢ is the saturation concentration of the pure component o (A or B) at its

average composition, y, is the activity coefficient, and x, is the liquid mole fraction.
For simplicity, the saturation concentration cg’ is assumed to be constant. Following this
scaling, ¢ =1 at the liquid—gas interface and ¢ =0 far from the droplet. As originally
validated by Deegan et al. (2000) and Hu & Larson (2002) for pure liquids and by Diddens

(2017) for multicomponent droplets, the solution of the Laplace equation
ViE=0 (2.3)

in the gas phase gives ¢. The solution of (2.2) depends only on the geometry of the droplet.
We disregard Stefan’s flow (Brutin & Starov 2018) and natural convection in the gas phase
based on the results of Diddens et al. (2017b), who have shown that these effects are
irrelevant specifically for evaporating water—ethanol droplets at ambient conditions. The
dimensionless evaporation rate is given by the diffusive mass flux

J=—é, 2.4)

with d, being the gradient in the normal direction n of the interface, which induces
variations in the liquid composition through the flux boundary condition

—Vy-n=Evj. (2.5)

Here, Ev is the evaporation number, which measures the strength of the concentration
gradient created in the liquid due to the preferential evaporation of one of the components,
defined as (Diddens et al. 2021)

U= ya0) DR — ) — yaoDyE (o — )

(2.6)
00Do

Ev

where D" is the vapour diffusivity of the component o and pg is the mass density
evaluated at the average composition y4 o. In the liquid phase, the conservation of mass
and momentum is described by the following Stokes equations, respectively, given by

V.i=0, 2.7
_Vp+Via=0, (2.8)

where gravity is neglected for simplicity. For convenience, we define the modified mass
fraction variations £ = y/Ev, which allows us to reduce the number of control parameters
of the problem. When substituting y = Ev€ in (2.4), the liquid—gas interface boundary
condition becomes

—VE-n=]j. (2.9)

Since the diffusion coefficient in the liquid phase is typically small, we consider the full
convection—diffusion equation for the variations of mass fraction &:

O& 4+ 1 VE=V2¢, (2.10)

Equation (2.8) contains the only relevant transient term that can affect the stability of this
system, since the large Schmidt number (Sc = o /(o Do) ~ 103) indicates that velocity is
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‘enslaved’ to compositional gradients. The interface is subject to Marangoni stresses:
n-(Vi+ (Vi) -t =MaV,& - t, (2.11)

where V, represents the surface gradient operator. The Marangoni number Ma is
defined as
V30,0
Ma=—22"Fy, (2.12)
Dopo
and 1o is the dynamic viscosity evaluated at the average composition y4 0.

We consider a sphericalcap for the droplet shape (i.e. capillary number Ca — 0). We
restrict our analysis to the case where the droplet is in a quasi-stationary state, such
that there is no total mass transfer across the interface. This scenario can be realised
theoretically by controlling the ambient humidities of components A and B so that
evaporative mass loss of A is compensated by the mass gain of B. In this case, the total
mass of the droplet remains constant and thermal gradients are inexistent. We emphasise
that this assumption is generally not fully achievable experimentally. We can therefore
enforce & - n =0 at the droplet-gas interface by a normal traction. At the substrate, a
no-slip boundary condition is imposed, i.e. # = 0, and the Neumann boundary condition
V& - n =0 is applied to prevent normal mass flux through the substrate. To eliminate the
null space of the pressure field, an average pressure constraint is imposed, i.e. [ pdV =0.
This is enforced numerically via a Lagrange multiplier. Similarly, a zero-average constraint
is imposed to remove the constant shift for &.

The system of equations is solved using a finite element method implemented in the
software package pyoomph (Diddens & Rocha 2024), which is based on oomph-1ib (Heil &
Hazel 2006) and GiNaC (Bauer, Frink & Kreckel 2002). All domains are discretised
using an axisymmetric mesh composed of triangular elements. Linear basis functions are
employed for £ and p, while quadratic basis functions are used for the # field. The solution
process begins with the construction of the residual system of equations, followed by the
computation of its Jacobian and mass matrices. Quasi-stationary solutions are obtained
by providing an initial value for the degrees of freedom and setting the mass matrix
contributions to zero. Due to hysteresis, the quasi-stationary solutions can vary depending
on the initial values assigned to the degrees of freedom. Additionally, the stability of a
solution depends on the sign of the real part of the eigenvalues A of the Jacobian matrix.
Stability analysis is conducted using the shift-inverted Arnoldi method to evaluate the
eigenvalues. If a bifurcation is detected — where the real part of an eigenvalue crosses
zero — the bifurcation curve is tracked using the method outlined by Diddens & Rocha
(2024). These bifurcations, classified as either fold or Hopf (in our particular system),
lead to distinct types of instabilities. Fold bifurcations result in a change in solution
stability, whereas Hopf bifurcations give rise to oscillatory behaviour, distinguishable by
the presence of an imaginary component in the eigenvalue. For a more detailed explanation
of the numerical methods used, we refer to Diddens & Rocha (2024).

2.2. Instabilities close to 6 = 90°

In the limit of zero capillary number, there are two control parameters in the problem of
this study: Ma and the contact angle 6. For glycerol-water mixtures, where Ma is positive,
the quasi-stationary solutions for the flow and composition fields within the droplet are
stable, unique, axisymmetric, and not subject to hysteresis for all 8 (Diddens et al. 2021).
Exactly at § =90°, j is uniform along the liquid—gas interface, resulting in a diffusive
profile for & and absence of flow within the droplet. On hydrophilic substrates, i.e. forming
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Figure 2. Phase portrait of solution branches as a function of Ma, for 6 = 89° (a), & =90° (b) and 6 =91° (¢).
The x-axis represents the average tangential velocity U, at the liquid—gas interface, a key measure of the flow
field, indicating the flow direction within the droplet when a single vortex is present. The flow field and & profile
for selected A—R, R— A and 2V solutions are also depicted. Here, the diverging blue to red colours in the
contour plots represent increasing & of the fluid with the lowest surface tension, e.g. ethanol in water—ethanol
mixtures. At 6 =90°, the & profile is purely diffusive for low Ma, becoming unstable at a critical Ma, in an
imperfect pitchfork bifurcation (green). The inset in (b) shows the 6 = 90° phase portrait in a range of Ma from
150 to 190, where the imperfect pitchfork is clearly visible. All other solution branches lose their stability in
either fold (red) or Hopf (blue) bifurcations.

contact angles 6 < 90°, the larger evaporation rate at the contact line reduces the surface
tension locally, inducing a Marangoni flow from the contact line towards the top of the
droplet. On hydrophobic substrates, i.e. forming contact angles 6 > 90°, the Marangoni
flow is in the opposite direction, since the evaporation rate is larger at the top of the droplet.

In contrast, water—ethanol mixtures, where Ma is negative, exhibit much more complex
behaviour. Strong transient effects and asymmetric, seemingly chaotic flows have been
reported both experimentally (Machrafi ef al. 2010; Diddens et al. 2017b) and numerically
(Diddens et al. 2017b). Here, we examine the stationary solutions at negative Marangoni
numbers Ma with an initially small modulus, before the onset of these instabilities, and
gradually decrease Ma to more negative numbers while monitoring the linear stability of
the solutions.

At exactly 6 =90°, we observe a purely diffusive profile for &, but this solution
is only stable at sufficiently low |Ma|. Here, a non-zero Rayleigh number (Ra), i.e.
buoyant forces, would initiate flow, but we emphasise again that our analysis here is for
Ra =0, 1.e. negligible density contrasts. Above the critical |Ma| value, —Ma > —Ma., =
167, multiple solution branches coexist (see phase portrait in figure 2b). Depending
on the initial conditions, the flow can develop either a vortex from the apex to the
rim (A—R), a vortex from the rim to the apex (R—A), or two competing vortices
(2V). We do not rule out the possibility of additional stable solution branches, such
as multiple vortices, but we have not observed them in our axisymmetric numerical
simulations. At Ma,,, the flow field’s symmetry is broken in an imperfect pitchfork
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bifurcation (see e.g. Golubitsky & Schaeffer 1979; Strogatz 2018), corresponding to the
normal form % = rx 4+ hx? — x3, where r is the control parameter and / the imperfection
parameter. If 4 =0, we would retrieve a perfect pitchfork bifurcation. In other words, the
diffusive profile becomes unstable through a transcritical bifurcation, where it exchanges
stability with the R— A solution branch, while the A— R branch loses stability via a fold
bifurcation at a slightly lower Ma (see inset in figure 2b). Our numerical tests suggest that
the no-slip boundary condition at the substrate and the axisymmetric coordinate system
disrupt the physical symmetry that would otherwise be present, leading to the imperfect
pitchfork bifurcation. At higher |[Ma|, the R—A, 2V and A—R solution branches each
lose stability through either a fold or a Hopf bifurcation.

For slightly lower 6, e.g. 8 =89°, the diffusive state no longer exists and the flow
exhibits an A—R solution for low |Ma|. Despite the induced Marangoni flow pushing the
fluid from the top towards the contact line (i.e. in the A—R direction), an R— A solution
can still be found, which shows strong hysteresis. The stability of these solutions is limited
by fold bifurcations at different Ma (see figure 2a). For slightly larger 6, e.g. 6 =91°,
the flow exhibits an R— A solution for low |Ma|. Curiously, this solution branch loses
its stability in a fold bifurcation at a lower |Ma| than its A—R counterpart for the same
set of parameters (see figure 2¢), which can again be attributed to the three-dimensional
geometry and the presence of the no-slip condition. While Marangoni flow pushes the
fluid from the contact line towards the top of the droplet (i.e. in the R— A direction), an
A—R solution presents, counterintuitively, for large enough Ma, better stability than the
R— A one.

This intriguing introduction to the vast array of bistable solutions within the narrow
Ma—6 phase space investigated here sets the stage for the topic to be discussed in the
following subsection, which covers the stability of the quasi-stationary solutions on an
extensive Ma—60 phase diagram.

2.3. Ma vs 6 phase diagram

In this section, we utilise the bifurcation tracking tool outlined by Diddens & Rocha
(2024). Building upon the initial findings from the preceding subsection, we employ
arclength continuation on 6 to trace the bifurcation curves along the Ma—0 phase
diagram. Arclength continuation on 6 requires remeshing the domain whenever the grid
deformation surpasses a certain threshold. We used highly refined meshes near the liquid—
gas interface, with a total of ~40 000 degrees of freedom, to accurately capture the
Marangoni flow. The curves in figure 3 remained unchanged with further grid refinement,
confirming mesh independence.

We find a complex bifurcation diagram where multiple solution branches coexist across
a broad spectrum of Ma and 6 values (figure 3). This diagram is segmented into three
distinct regimes, each representing stable quasi-stationary axisymmetric A—R, 2V or
R— A solutions (blue, plum and yellow colours, respectively). Transitions between these
regimes are characterised by fold or Hopf bifurcations, indicating shifts in the stability
of solution branches. By calculating the oscillation amplitude A of the root-mean-square
velocity of transient oscillatory solutions near selected Hopf bifurcations, we observe that
these ultimately reach a stable limit cycle, A ~+y/Ma — Ma,,. This allows us to classify
these Hopf bifurcations as supercritical. Under the assumptions and flow conditions of this
subsection, we have not observed any subcritical Hopf bifurcations.

It is important to note the absence of stable quasi-stationary solutions beyond the
upper Hopf bifurcation curves. In this region, the flow field is dominated by nonlinear
effects, which can lead to seemingly chaotic behaviour, as previously observed in
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Figure 3. Bifurcation diagram of the quasi-stationary axisymmetric solutions as a function of Ma and 6. The
diagram is divided into three regimes, where the stable solutions are either an A—R solution (blue colour), an
R— A solution (yellow colour) or a 2V solution (plum colour). The transition between these regimes is marked
by fold (red) or Hopf (blue) bifurcations. Above the upper Hopf bifurcation curves, no stable quasi-stationary
solutions are found (grey).

both experimental and numerical studies (Machrafi et al. 2010; Diddens et al. 2017b).
Additionally, the upper Hopf bifurcation curves are not smooth, contrary to the other
bifurcation curves. This irregularity arises from the coexistence of multiple solution
branches that lose stability at different Ma values, resulting in a complex and non-smooth
bifurcation structure. Interestingly, the bifurcation diagram reveals a network of bistable
regions. Within these areas, the flow field can adopt solutions from different regimes based
on initial conditions, demonstrating significant hysteresis.

The calculated set of solutions provides a comprehensive overview of the stability of
the quasi-stationary axisymmetric solutions within binary droplets with negative Ma.
However, the azimuthal stability of these solutions has not yet been addressed in this
section, which is the focus of the following sections.

3. Azimuthal stability

We employ the method detailed in Diddens & Rocha (2024) to explore the phenomenon of
axisymmetric breaking across the R—A, 2V and A— R solution regimes. We determine
the stability of the quasi-stationary axisymmetric base solutions for specific azimuthal
wavenumbers m, i.e. the stability of perturbations o exp(im¢), where ¢ is the azimuthal
coordinate.
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Figure 4. Azimuthal bifurcation diagram for the stability of the quasi-stationary axisymmetric solutions in the
2V (a) and R— A (b) solution regimes. In (a), the bifurcations that limit the stability of the A—R and R—A
solution regimes are shown with lower opacity. Similarly, in (), the bifurcations for the A—R and 2V solutions
are depicted with lower opacity (see all curves in figure 3). In the 2V regime, all base solutions are unstable for
m = 1, leading to a single vortex, as depicted at the bottom right of (a). The 2V regime is therefore interpreted
as an artefact of the imposed axisymmetry in § 2.3, where the upper vortex merges with its counterpart in the
rim region of the droplet, as depicted at the bottom left of (a). In the R— A regime, multiple bifurcations are
observed corresponding to the instability of modes m = 1 to m = 8. The adjacent plots show an isometric view
of an azimuthally stable solution (bottom right), and solutions subject to the linear effects of m =2 (top right)
and m =5 (top left) azimuthally unstable perturbations. Exclusively in the R— A regime, the eigenvalues and
eigenfunction had a non-zero imaginary part, indicating rotational motion, as depicted by the green arrows in
the two upper plots.

3.1. Regimes with vortices from rim to apex or with two vortices

We first focus on the 2V regime (figure 4a). All of these base solutions exhibit an instability
for m = 1. If instabilities are triggered, the flow field will be dominated by a single vortex.
The upper vortex merges with its counterpart in the rim region of the droplet, resulting in
a single vortex (see bottom right of figure 4a). Consequently, the 2V flow field is merely
an artefact of the imposed axisymmetry during the computation of the base solutions.

In contrast, the R— A vortex regime (see figure 4b) presents a variety of bifurcations,
along with a stable axisymmetric regime (e.g. at 6 = 140° and —Ma = 100, as shown in
the bottom right of figure 4b). For lower 6 within this regime, an m = 1 bifurcation at
a relatively low —Ma., ~ 100 breaks the axisymmetry. Interestingly, the axisymmetric
stability can be regained by sufficiently increasing |Ma|. However, if |Ma| continues to
rise, the base solution becomes unstable for m =2, and subsequently for m =3 up to
m = 8. As |Ma| exceeds the critical value for each bifurcation, the axisymmetry can be
disrupted in a corresponding mode m, as depicted in the adjacent plots of figure 4(b).
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Figure 5. Azimuthal bifurcation diagram assessing the stability of the quasi-stationary axisymmetric solutions
in the A—R regime. The bifurcations that limit the stability of the 2V and R— A solution regimes are shown
with lower opacity (see all curves in figure 3). The bifurcation curves depict the range from m =1 to m = 30.
The adjacent plots show a top view of the droplet in a stable axisymmetric regime (bottom right) or subject to
the linear effects of m =1 (top right), 10 (bottom left) and 20 (top left) unstable perturbations on the azimuthal
instability.

These plots are derived by expanding the £ field into a sum of the base solution and a small
amplitude perturbation in the direction of the corresponding eigenvector that triggers the
instability of mode m. While in the long-term limit the resulting & profile will be governed
by nonlinear coupling of additional excited modes, we only represent the linear effects
of each mode to offer a clear visualisation of the azimuthal instability. We highlight the
presence of a non-zero imaginary part in the eigenvalue and eigenfunction of the velocity
field for the R— A regime, indicating rotational motion in the perturbed flow field, as
depicted by the green arrows in the top plots. This result is consistent with the reports of
Babor & Kuhlmann (2023) for thermal Marangoni flow in sessile droplets.

3.2. Regime with vortex from apex to rim

In the regime of the A— R solution, we observe multiple bifurcations for various m values
(see figure 5). For larger 6, greater than 45°, the axisymmetric base solution remains
stable for |Ma| values below a critical m = 1 bifurcation (see adjacent plot at the bottom
right of figure 5), while it becomes unstable for m = 1 above this bifurcation (see adjacent
plot at the top right of figure 5). Additionally, there exists a narrow region where certain
combinations of Ma and 6 lead to an m = 2 unstable solution. This region is observed for
6 values slightly above 90° and Ma ~ —10%.

For lower 6, we observe a multitude of bifurcations, as illustrated in figure 5, ranging
from m =1 to 30 (instabilities with m > 30 are not indicated in figure 5). The bottom
left and top left adjacent plots provide representations for m = 10 and 20, respectively.
Interestingly, the critical Marangoni number |Ma.,| for the onset of all instabilities is
particularly low for smaller 8. This observation contradicts the explanation given for
Marangoni instabilities in a two-dimensional box in § 1. In a two-dimensional box, the
instabilities are driven by a positive feedback loop, where a perturbation locally reduces
surface tension at the interface, inducing a Marangoni flow. This, in turn, generates a return
flow in the bulk, drawing more fluid with low surface tension towards the perturbed region.
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However, in the case of flat droplets (i.e. small 8), the bulk domain becomes so shallow that
vertical diffusion averages out any considerable compositional gradients in height direc-
tion, consistent with the assumptions of lubrication theory. Thus, the vertical return flow
is absent, breaking the positive feedback loop. Contrary to expectations that Marangoni
instabilities would be suppressed for low 6 values, we observe the opposite behaviour.

To deeply understand this intriguing occurrence, we introduce a lubrication model in
the following section. This model reduces the number of parameters to one, namely just
a Marangoni number. In the limit of small 6, the contact angle can be absorbed in the
non-dimensionalisation.

4. Instabilities for low contact angle
4.1. Lubrication model and its control parameter

In the limit of small 6, the vertical gradients are negligible compared with the radial
or azimuthal ones. Rather than solving the full axisymmetric equations, we can then
simplify the problem by applying lubrication theory. This allows us to simply consider
a one-dimensional grid using a polar coordinate system. Alternatively, a two-dimensional
circular mesh could be used, taking a Cartesian coordinate system, albeit with an increased
computational cost. We choose the first option in this section.

In the lubrication approximation of an evaporating droplet (Eggers & Pismen 2010;
Diddens et al. 2017a), the governing equations for the height profile &, pressure p and
vertically averaged mass fraction y4 are given by, assuming a lateral flow profile parabolic
in the height direction:

dh=-V.Q— %, 4.1)
p+V-(0cVh) =0, (4.2)
0 (hya) +V - (Qya) =V - (DhVyas) — %A, (4.3)
h3 h?
0=——Vp+—Vo, 4.4)
3u 2u

where j is the evaporation rate, p the mass density, D the diffusion coeficient and
1 dynamic viscosity. Note that the transient effects are more pronounced for flat droplets
as compared with droplets with higher contact angle. However, we calculate the quasi-
stationary solutions of the lubrication model for simplicity. We assume that the evaporation
of one component is balanced by the condensation of the other in the quasi-stationary limit,
such that the total volume remains constant. Thereby, we consider the evaporation rate j4
to be given by the theoretically calculated limit for a flat pure droplet (Popov 2005):

P 2D (S = e)

TRVT =72
where 7 is the dimensionless radial coordinate. As in § 2.1, we assume that the droplet
maintains its initial shape, i.e. we consider the limit of zero capillary number Ca =0
and 0,2 =0. In the limit of the lubrication theory, the equilibrium shape corresponds
to a parabolic height profile. We emphasise that these approximations may limit the
applicability of the results in real systems, but they capture the essential physics that
explain the onset of the Marangoni instability. By reformulating & = y6/Ev and applying
the mentioned assumptions, while using the non-dimensional scales introduced in § 2.1 —
but now modifying the length scale to the base radius R instead of V!/3 — we can reduce
the system of (4.1)—(4.4) to 1018 A11-13
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Figure 6. (a) Onset of azimuthal instabilities for different m as a function of May in the limit of small 6. The
adjacent plots show a top view of the droplet subject to the linear effects m =5 (top left), m =20 (bottom
left) and m = 60 (bottom right) unstable perturbations on the azimuthal instability. (b) Comparison of the
azimuthal stability of the quasi-stationary axisymmetric solutions between the full model as & — 0 (solid) and
the lubrication model (dashed).

V.0=0, (4.6)

hE+V - (Q€) =V - (hVE) — ], 4.7
. L3 h? .

Q:—?Vﬁ—i-MaR?Vé. (4.8)

Here, 7 =0.5(1 —72) is the dimensionless height profile, j =2/(nt+/1 —72) is the
evaporation rate in the flat droplet limit and Mag is the modified Marangoni number,
defined as

__Rdy,0

Mag
Do

Ev. 4.9)

We impose a homogeneous bulk correction for &, i.e. (§) =0, to allow for quasi-stationary
solutions with a fixed compositional average. While the system of (4.6)—(4.8) can be
solved analytically (see Appendix A), introducing a small amplitude € of an azimuthal
perturbation to the base solution makes the augmented system too complex for analytical
solutions. Therefore, we employ numerical methods to determine the azimuthal stability of
the quasi-stationary axisymmetric solutions and compare these results with those obtained
using the full model described in § 2.1. As 6 — 0, the results from the full model converge
to the lubrication model, validating the latter (see figure 6b). Remarkably, the number of
unstable modes m is found to be consistent in both models. Interestingly, this number is
larger for low 6 values than for large 6 values (see figure 6a), i.e. a cascade of azimuthal
instabilities sets in for decreasing 6 at unexpectedly small negative Marangoni numbers.
By expanding the & field into a sum of the base solution and a small amplitude perturbation
in the direction of the corresponding eigenvector that triggers the instability of mode m,
we can visualise the linear effects of the azimuthal instability for the lubrication model.

4.2. Driving mechanism of the azimuthal instabilities

In the absence of bulk gradients, the driving mechanism of the Marangoni instabilities for
low 6 values is different from that described in the two-dimensional box of § 1, yet it bears
resemblance.
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Figure 7. Side (a) and top (b) views of an evaporating droplet prior to the onset of the Marangoni instability.
In this figure, all variables and operators are dimensionless, but tildes were dropped for brevity. The sign of
the pressure gradients indicate whether the flow is dominated by Marangoni flow (positive pressure gradient)
or pressure-driven flow (negative pressure gradient). Should a disturbance locally reduce the surface tension at
the contact line, it triggers an azimuthal Marangoni flow (yellow arrows) that transports fluid away from the
perturbed region. This initiates pressure-driven return flow (green arrow) that attracts more fluid with lower
surface tension from the centre of the droplet (greater-height region) towards the contact line (lower-height
region). Ultimately, an azimuthal Marangoni instability is triggered (c).

For droplets with small 6 and a negative Marangoni number (Mapg), the larger
evaporation rate at the contact line leads to an enhanced concentration of fluid with greater
surface tension. Should a disturbance locally reduce the surface tension at contact line, it
triggers an azimuthal Marangoni flow that transports fluid away from the perturbed region.
Continuity of the fluid initiates a pressure-driven return flow, which attracts more fluid
with lower surface tension towards the contact line (see figure 7). This creates a positive
feedback loop, which is the driving mechanism of the azimuthal instabilities observed in
droplets with low contact angle 6.

Naturally, the same reasoning still holds for droplets with larger contact angle 6.
However, in this latter case, the presence of bulk gradients becomes more pronounced,
primarily driving the Marangoni instabilities. A simple observation of the scaling of the
different terms in (4.8) reveals that the flow induced by Mag scales with h?, while the
flow driven by pressure scales with #3. As a consequence, in areas where the height
profile is minimal, the Marangoni flow prevails, but in areas with a significant height
profile, pressure-driven flow takes precedence. Thus, in droplets with a low 6, the flow
near the contact line is driven predominantly by Marangoni flow, whereas pressure-driven
circulation dominates the centre (as illustrated by the arrows in figure 7).

Therefore, the geometry plays a fundamental role in the driving mechanism of the
onset of azimuthal instabilities. In the next subsection, we propose a geometry where such
instabilities can be obtained for positive-Mag droplets (e.g. glycerol-water mixtures).
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Figure 8. Side (a) and top (b) views of a droplet placed on a shallow pit. Due to the inverted height profile, Mag
(yellow arrows) is predominant at the centre over the pressure-driven flow (green arrows), resulting in the onset
of azimuthal Marangoni instabilities, depicted in (b). After enough evaporation time (6 s), blobs emerge close
to the contact line in the realistic case of an R = 0.5 mm, 6 = 10°, positive-Mag droplet in an Az = 0.5 pm pit,
with initial ygpyceror =25 % ().

4.3. Instabilities in positive Marangoni mixtures

The insights gained from prior analyses elucidate that, in droplets with small 6, if the
fluid with larger surface tension has the lowest height profile, azimuthal instabilities
can be triggered. For positive-Mar mixtures, the enhanced evaporation at the contact
line leads to higher surface tension in the centre, which is the zone of larger height.
Thereby, positive-Mag mixtures consistently exhibit stable axisymmetric solutions. Any
disturbance reducing the surface tension at the centre is promptly neutralised by a
Marangoni flow in the opposite direction.

Altering the scenario by placing the droplet within a shallow pit with a concave liquid—
gas interface reverses the height profile, making the centre the lowest point (see figure 8a).
This set-up assumes that the depression is shallow enough for lubrication theory to
hold and that the fluid remains pinned to the pit’s sidewalls. Under these conditions, a
perturbation reducing surface tension at the centre instigates a Marangoni flow that shifts
fluid azimuthally away from the disturbed area, thereby initiating an azimuthal Marangoni
instability akin to the mechanism described in § 4.2, albeit in a reversed direction (see
figure 8b). This behaviour is unexpected when following the explanation provided in § 1 for
Marangoni instabilities in a two-dimensional box. In that scenario, positive-Ma mixtures
cannot initiate Marangoni instabilities.

To simulate the evaporation dynamics of a realistic glycerol-water droplet with a radius
of R=0.5mm, 6 = 10°,in a pit of depth hg = 0.5 wm, starting with a yeyceror = 25 %, we
apply (4.1)—(4.4) in a two-dimensional circular domain. As evaporation progresses, blobs
begin to form near the rim of the well due to the azimuthal Marangoni instability (see
figure 8c). We emphasise that the pit must be shallow enough for the onset of instabilities,
otherwise bulk gradients would stabilise the flow. While this finding is remarkable, a
detailed investigation of the azimuthal Marangoni dynamics of droplets in such a well
is beyond the scope of the work.
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Figure 9. Critical Marangoni number (Mag) for the onset of azimuthal instabilities as a function of the
capillary number Ca for wavenumbers m = 1, 2, 3 and 4 and for contact angles of 10° (a) and 20° (b).
The grey area, limited by the black dashed line, indicates where the surface tension is negative, rendering
physically unrealistic solutions, therefore discarded from the analysis. The pink and yellow regions highlight
the areas where the droplet maintains a nearly spherical-cap shape and where it transitions to a pancake shape,
respectively.

4.4. Capillary effects in the Marangoni instability

Until now, we assumed that the droplet retains a perfectly spherical-cap shape (parabolic
shape in the lubrication limit) during evaporation, neglecting capillary effects on the onset
of instabilities. In this subsection, we explore non-zero capillary numbers to examine the
influence of capillary effects, in particular shape deformations induced by surface-tension
gradients and Marangoni flow, on the onset of azimuthal instabilities. Utilising the scaling
introduced in § 4.1 and defining the capillary number as

Do

Ca= R0y’ (4.10)
we can obtain the non-dimensionalised form of (4.1)—(4.4), namely,
¥h+V.Q=0, (4.11)
p+V-(0*(Ca ' + Mag£)Vh) =0, (4.12)
(Eh) +V - (Q&) =V - (hVE) — ]. (4.13)

The definition of @ remains the same as in (4.8). Again, we neglect the ‘coffee-stain
effect’ in equation (4.11), in the sense that we assume that the volume of the droplet does
not change. By solving the system of equations (4.11)— (4.13) for various capillary numbers
and contact angles of 10° (figure 9a) and 20° (figure 9b), we can identify the critical Mag
for the onset of azimuthal instabilities across different wavenumbers m (see figure 9) and
understand how the results of figure 6 are affected by shape deformations. We ensure that
the capillary number Ca is set such that the effective dimensionless surface tension, given
in (4.12) by 0 = 0%(Ca=' + Ma r&), remains positive. Beyond this limit, we discard the
solutions as they are physically unrealistic, as depicted by the grey areas of figures 9(a)
and 9(b), limited by the black dashed lines.
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The results indicate that, within the physical constraints of the capillary number
(Ca), the critical Marangoni number (Mag) for the onset of azimuthal instabilities is
significantly influenced by shape deformations. For sufficiently large Marangoni numbers,
the droplet adopts a pancake shape, as observed in both experimental and numerical
studies (Diddens et al. 2017a; Pahlavan et al. 2021; Yang et al. 2023). In figure 9(a,b), we
highlight the regions in the phase diagram where the droplet maintains a nearly spherical-
cap shape (pink) and where it transitions to a pancake shape (yellow). The critical
transition between these shapes was determined by identifying the set of parameters (Mag,
Ca) at which the vertically averaged pressure at the highest point of the droplet along the
axis of symmetry becomes zero.

An increase in the modulus of the critical Marangoni number is observed across all
azimuthal wavenumbers m, with a more pronounced effect for m =1 and for 6 = 10°,
where | Mag| increases from approximately 200 to 10° as Ca rises from 0 to approximately
1073, Interestingly, the effects of shape deformations are less pronounced for droplets with
larger contact angles, see figure 9(). In evaporating droplets with positive Marangoni
number and with unpinned contact line, the Marangoni flow can drive fluid towards
the apex strongly enough to contract the droplet (‘Marangoni contraction’, Karpitschka,
Liebig & Riegler 2017). Similarly, a pinned droplet with negative Marangoni number can
form a pancake shape (Pahlavan et al. 2021; Yang et al. 2023), where strong Marangoni
flow drives fluid from the apex of the droplet towards the contact line, causing deformation
and an increase in the height profile at the contact line. The microscopic contact angle
also becomes higher for pancake droplets. This agrees with the observations of our model:
instabilities for flat droplets start at the rim and the higher the contact angle, the higher
|[Mag| is required for instabilities.

5. Chaotic behaviour of negative Marangoni evaporating droplet

Until this section, we carefully characterised the observed flow as ‘seemingly’ chaotic.
Here, we utilise the zero-Ca lubrication model from §4.1 within a circular domain
to accurately capture the radial and azimuthal flow features of flat droplets, i.e. the
full nonlinear long-term behaviour beyond the onset of instability. Our objective is
to characterise the complex spatiotemporal dynamics of flat evaporating droplets with
negative Mag, specifically to determine whether the system exhibits chaotic behaviour.

In a chaotic system, small changes in the initial conditions grow exponentially in time.
In dissipative systems, the distance between two phase—space trajectories with slightly
different initial conditions remains bounded within a strange attractor (Strogatz 2018).
To investigate this dynamical system, we monitor the evolution of a small perturbation
U(t) + U (¢) relative to the unperturbed solution U (¢), under the assumption that both
will eventually converge to the same strange attractor. We analyse the linear growth
of §U(t) around U(¢). Despite the system’s nonlinearities, the long-term dynamics is
expected to exhibit exponential growth or decay, represented as U (1) ~ eV, provided
that §U (¢) stays tiny, i.e. nonlinear terms do not take action yet. In an N-dimensional
dynamical system, there are typically N Lyapunov exponents A;, with i=1,..., N
(Strogatz 2018). If at least one of these exponents is positive, it indicates that a random
perturbation will generally grow over time, signifying chaotic behaviour.

To calculate the Lyapunov exponents, we start with one or more initial random
perturbations §U ? =46U;(0), for i < N. Here, N is the number of degrees of freedom of
the discretised composition £, which contains the only time derivative. If i > 1, we perform
Gram-Schmidt orthogonalisation (Wiesel 1993; Christiansen & Rugh 1997) at each step
to ensure that slower-growing perturbations remain orthogonal to the fastest-growing ones.
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Figure 10. Largest Lyaponov exponent for Magr = —500 (red), Mar = —300 (green) and Mag = —250 (blue)
(@), plotted over dimensionless time 7. The black dotted line indicates the transition to chaotic behaviour, i.e.
when the largest Lyapunov exponent becomes positive. The £ profile at 7 = 10, 15 and 20 for Mag = —500 (b),
Mag = —300 (c¢) and Mag = —250 (d).

The Lyapunov exponents are then determined from their definition:

1 SU;(t
A= lim lim —log|—l(0)|. (5.1)
=0 sud»0 1 18U |

In practice, however, we calculate the exponential growth over a finite dimensionless
averaging time 7, since the infinite time limit cannot be realised in numerical calculations.
We use 7=min(z,20) to bypass the initial transient dynamics of the evaporative
process, which would otherwise skew the Lyapunov exponent calculations and necessitate
computationally more expensive simulations.

To avoid a completely transient system, we consider a droplet with a fixed volume V and
a constant average concentration field (§). Although this assumption may not be entirely
realistic during the temporal evolution of an evaporating flat droplet, our goal is to provide
insights into the deterministic nature of the flow field within the droplet at a specific time
when the droplet has a defined volume and average concentration.

For both Mar = —500 and Magr = —300, the largest Lyapunov exponent is positive, as
shown by the red and green curves in figure 10(a). The & profile changes significantly
over time, displaying irregular and aperiodic patterns, as seen in figures 10(b) and 10(c).
Our calculations indicate that higher |Mapg| values result in more pronounced chaotic
behaviour, evidenced by larger Lyapunov exponents. When |Mag]| is reduced to 250, the
largest Lyapunov exponent becomes negative, as shown by the blue curve in figure 10(a).
The solutions appear to stabilise over time, as illustrated in figure 10(d), and a dominant
m = 2-unstable mode is observed in the resulting quasi-stationary & profile.

For a critical |Mapg| between 250 and 300, the largest Lyapunov exponent approaches
zero, indicating a transition to chaotic behaviour. By applying the linear stability analysis
method outlined in § 2.1 to the quasi-stationary solutions of the two-dimensional system in
the lubrication limit, we can pinpoint the critical Mag at which this transition occurs. We
identify a subcritical Hopf bifurcation at Magr = —268.69, signalling the onset of chaotic
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dynamics and limiting the system’s deterministic behaviour. This relatively low critical
Mapg value aligns with experimental observations of violent and random flow fields in
evaporating droplets with negative Mag (Machrafi et al. 2010; Diddens et al. 2017b). For
instance, a water—ethanol droplet with a 1 mm radius, a 10° contact angle and 10 wt %
ethanol, evaporating at ambient conditions and relative humidity of 50 %, can easily reach
an order of magnitude Mag ~ —107. Our findings confirm that these observations are
indicative of chaotic nonlinear behaviour rather than merely the superposition of linearly
unstable modes. The temporal evolution of the water-ethanol droplet and its respective
largest Lyaponov exponent for Magr = —10000 is shown in supplementary movie 4.

6. Limitations and applicability of results

While rich in physical insights, the results presented in this work are based on
minimal models that simplify the intricate dynamics of evaporating binary droplets. In
reality, droplets containing a highly volatile component, such as water—ethanol mixtures,
evaporate rapidly, leading to significant transient effects. The evolving composition alters
the physical properties of the liquid phase, while evaporative cooling induces temperature
gradients that drive additional Marangoni flows. The impact of the latter depends on
factors such as the droplet’s contact angle, the thermal conductivity of the substrate, and
the latent heat of evaporation of the components. Further complexities can arise due to
local changes in liquid composition on the evaporation rate, Stefan’s flow and natural
convection in the gas phase, both of which can substantially influence real systems.

Incorporating all these effects into a mathematical model is challenging due to the
numerous parameters involved. Our approach is to begin with a simplified system, isolating
the onset of instabilities driven by solutal Marangoni effects, with the aim of extrapolating
some conclusions to more complex cases. To achieve this, we focus on regimes with
a low evaporation number, where many of these effects can be neglected. This can be
realised experimentally by placing the droplet in a controlled environment where the far-
field vapour concentrations of both components remain close to equilibrium, minimising
transient effects and ensuring a nearly constant average concentration field, (£).

Even in this simplified system, thermal effects may still be relevant (Karapetsas et al.
2012). The thermal field typically evolves more rapidly than the composition field, as
indicated by the small Lewis number, Le = D /o, where « is the thermal diffusivity.
Consequently, temperature gradients can develop swiftly, inducing thermal Marangoni
flows that may temporarily enslave solutal Marangoni flows. However, solutal gradients are
usually much stronger than thermal ones. This suggests that over time, solutal Marangoni
effects can become dominant. In other words, one can state that the solutal Marangoni
number Ma significantly exceeds the thermal Marangoni number, which we define as

Dvap ch _ COO + DV(lp Ceq _ Coo
Le_lEvm,, Evip = A ( A A) B ( B B),
koo proDo

V1/38Tcr,oocp,0

Mar =
6.1)

where k¢ is the thermal conductivity, ¢, o is the specific heat capacity, and dro is the
temperature derivative of the surface tension evaluated at the average temperature of the
droplet. The total evaporation number, Ev,,;, is consistent with the definition of Diddens
et al. (2021).

Thermal effects could be minimised by selecting an appropriate substrate and
controlling ambient conditions. In principle, these effects can be completely mitigated if
one component evaporates locally at the same rate that the other condenses, i.e. j4 = —jp.
Even if this local balance is not perfect, ensuring that the overall evaporation number E vy,
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is zero will keep the thermal gradients negligible, a condition that can, in theory, be met by
fine-tuning the vapour concentrations in the far field. Under these conditions, temperature
gradients become negligible or may even vanish, the droplet volume remains constant, and
solutal gradients persist, making our model directly applicable. While such cases are rare
in practical applications, we explore a slight relaxation of this condition in § 6.1.

The minimal models presented here constitute a first step towards understanding the
onset of Marangoni instabilities in evaporating droplets. The results should be interpreted
as a qualitative guide to the factors influencing instability development in systems with
negative Marangoni numbers.

6.1. Slowly evaporating axisymmetric water—ethanol droplet

We consider a slowly evaporating axisymmetric water—ethanol droplet. The mass fractions
of water, ethanol and air in the farfield of the gas phase are adjusted at each step to maintain
constant Ev=0.001 and Ev;,; =0.005. These values are chosen to ensure that Ma
remains within the limit in which stable axisymmetric quasi-stationary solutions exist and
that the thermal Marangoni number Mar remains at least one order of magnitude lower
than the solutal Marangoni number Ma, while still allowing for the droplet to evaporate.

The droplet has an initial contact angle of 6§ = 120° and an initial volume of Vo =0.1 pl.
The contact line is pinned. The substrate has a thickness of 0.1 mm, it is made of
borosilicate, and it has air beneath it. Thermal effects are incorporated into the transient
model, as well as the effects of local changes in liquid composition on the evaporation
rate, Stefan’s flow and natural convection in the gas phase. At each time step, the solutal
Marangoni number Ma and the contact angle are calculated. These are then used as
input parameters for the quasi-stationary model of §2.1. As figure 3 shows, the quasi-
stationary solutions exhibit hysteresis. To directly compare the results of the full transient
simulations with the quasi-stationary solutions, we use the results of the transient model as
an initial condition for the quasi-stationary calculations. The results are shown in figure 11.
Supplementary movies 1 and 2 (available at https://doi.org/10.1017/jfm.2025.10519) show
the full transient evolution of the droplet and its comparison with the quasi-stationary
model (movie 1 for composition, movie 2 for velocity magnitude the temporal evolution
of the temperature field is shown in supplementary movie 3).

Despite the absence of transient effects, thermal effects, the effects of local changes
in liquid composition on the evaporation rate, Stefan’s flow and natural convection in
the gas phase, the quasi-stationary solutions are in good agreement with the full transient
simulations. In the transient model, the lower temperature at the apex of the droplet induces
a thermal Marangoni flow that drives fluid from the apex to the rim. It also decreases
the vapour pressure of ethanol at the apex, leading to lower evaporation at the apex —
opposite to what is seen in the quasi-stationary model. Nevertheless, the flow is driven
predominantly by solutal Marangoni effects, as demonstrated by the strong agreement
of flow direction and compositional profile between the two models. In figure 11(a) and
11(b), the flow is in the R— A direction, in figure 11(c), it is in the 2V direction, and in
figure 11(d), it is in the A—R direction, showing the presence of all three quasi-stationary
solution regimes.

7. Conclusions

Evaporating multicomponent droplets with a negative Marangoni number (e.g. water—
ethanol droplets) can exhibit interfacial instabilities (Pearson 1958; Sternling & Scriven
1959). These instabilities arise due to the sign of the solutal Marangoni number, i.e.
whether surface tension increases or decreases with the mass fraction of the most volatile
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(@.i) (a.ii) (b.i) (b.ii)
6= 119.6° Evap. ethanol (g m2s") 9=988°
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Ma=—-4320
Evap. ethanol (g m?s™!) 9=t Evap. ethanol (g m2s) 6=62.9

0.0200 0.0200

Figure 11. Slowly evaporating water—ethanol droplet with an initial contact angle of 6 = 120° and an initial
volume of Vo =0.1 pl. The contact line is pinned to the substrate. The far-field mass fractions of ethanol and
water vapours are adjusted such that the evaporation number Ev =0.001 and the total evaporation number
Ev;; =0.005. Different stages of the droplet’s evolution are shown at r = 100 s (a), t = 7000 s (b), t = 11000 s
(c) and t = 15000 s (d). Each panel shows the mass fraction of ethanol within the droplet and the mass fraction
of ethanol in the vapour phase. Results are presented for both the full transient simulations on the left of each
panel (i) and the corresponding quasi-stationary solutions on the right (if).

component (Gelderblom et al. 2022). In the latter case, as the most volatile component
evaporates, surface tension becomes greater at the liquid—gas interface compared with the
surface tension corresponding to the liquid composition in the bulk. Any perturbation
that locally reduces the surface tension at the interface will trigger a Marangoni flow
that transports fluid away from the disturbed region. In a sufficiently thick bulk domain,
continuity forms a vertical return flow, enhancing the perturbation by drawing more fluid
with low surface tension towards the perturbed region. Remarkably, our calculations reveal
that the onset of instabilities occurs at a much lower critical |Ma,,| for droplets with low
0 than for droplets with a more significant bulk domain.

To investigate this phenomenon, we use intentionally minimal models to isolate
the underlying mechanisms, rather than to quantitatively predict specific experimental
outcomes. The models’ accuracy is significantly reduced under conditions of fast
evaporation, where transient effects dominate. We first identified the quasi-stationary
axisymmetric solution regimes — vortex from rim to apex (R—A), vortex from apex to
rim (A—R), and two vortices (2V) — near # = 90° as a function of Ma, and subsequently
explored the full Ma—6 phase space using a minimal model. We then assessed the
azimuthal stability of each regime individually. In the R— A regime, the axisymmetric
solution remains stable for |Ma| values below a critical m = 1 bifurcation but becomes
unstable for m =1 above this threshold. By further increasing |Ma|, more bifurcation
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curves for different m values are crossed — up to m = 8. All quasi-stationary solutions
in the 2V regime were m = lunstable. The A — R regime revealed a multitude of
bifurcations for droplets with too low contact angle 6, with several unstable modes m,
contradicting the intuitive expectation that Marangoni instabilities would be suppressed —
or at least reduced — in the absence of a thick bulk domain.

We then applied a simplified lubrication model to explore the onset of azimuthal
instabilities in the small 8 limit. Although we derived an analytical axisymmetric solution,
the perturbed fields were too complex to be solved analytically, leading us to employ
numerical methods to uncover the mechanism driving these instabilities. We found that
the higher evaporation rate at the contact line enhances the concentration of fluid with
higher surface tension. A disturbance locally reducing surface tension at the contact line
initiates an azimuthal Marangoni flow, which removes fluid from the perturbed region
and triggers a pressure-driven azimuthal return flow. This flow attracts more low-surface-
tension fluid towards the contact line, creating a positive feedback loop that drives the
instabilities. By analysing the scales of the Marangoni (fzz) and pressure-driven (l~13) flows
in (4.8), we demonstrated that the droplet’s height profile plays a crucial role in the onset of
these instabilities. If the region of lowest height coincides with the highest surface tension,
azimuthal instabilities can occur. Thereby, placing a glycerol-water droplet in a shallow
pit, reversing the height profile, can induce such instabilities, as opposed to a glycerol—
water droplet on a flat substrate, which does show azimuthal instabilities. This finding
stresses the importance of the geometry on the interfacial instabilities.

It is important to note that these results were obtained using a minimal model in
which the droplet was assumed to retain a spherical-cap shape during evaporation — an
assumption that may not hold in real systems (Diddens et al. 2017a; Pahlavan et al. 2021;
Yang et al. 2023). We also investigated the influence of non-zero capillary numbers on
the onset of azimuthal instabilities. The results suggest that, depending on the contact
angle, the critical Marangoni number Mag for azimuthal instabilities can be significantly
affected by shape deformations. The droplet can transition from a nearly spherical-cap
shape to a pancake shape, which can delay the onset of instabilities. We explored the
chaotic behaviour of evaporating droplets with negative Mag using a two-dimensional
lubrication model. We determined that the critical Magr = —268.69 marks the onset of
chaotic dynamics, which aligns with experimental observations of violent flow fields in
such droplets.

Lastly, we discuss the limitations and applicability of our results. We acknowledge
that the models presented here are minimal and do not capture the full complexity of
evaporating binary droplets. In real systems, transient effects, thermal effects, the effects
of local changes in liquid composition on the evaporation rate and Stefan’s flow in the gas
phase can significantly influence the dynamics. However, by focusing on regimes with low
evaporation numbers, we can neglect many of these effects and provide a qualitative guide
to the onset of instabilities driven by solutal Marangoni effects. We also present an example
of a slowly evaporating water—ethanol droplet, where we incorporate thermal effects, the
effects of local changes in liquid composition on the evaporation rate and Stefan’s flow
in the gas phase. The quasi-stationary solutions were in agreement with the full transient
simulations.

In conclusion, we have presented a detailed analysis of the onset of azimuthal
instabilities in evaporating droplets with negative Mag number. By isolating the solutal
Marangoni effects, we demonstrated that these instabilities can occur even when thermal
effects are neglected. Our results highlight the fundamental role of the height profile
in driving instabilities for flat droplets. Additionally, we showed that the chaotic flows
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observed in evaporating droplets with negative Mapg are due to inherent chaotic dynamics
rather than the superposition of linearly unstable modes.

This work opens new avenues for further research, such as investigating the evaporation
of droplets with positive Marangoni number in shallow pits, which could extend the work
of D’ Ambrosio et al. (2023). Incorporating more complex effects, such as a comprehensive
evaporation model or ‘coffee-stain flow’, could provide a more realistic representation of
the system and facilitate direct comparisons with experimental results. Also, secondary
bifurcations could be identified and Lyapunov exponents for high-contact-angle droplets
could be extracted from full three-dimensional simulations. This, however, constitutes a
numerically expensive and demanding task.

From a broader perspective, our analysis demonstrates (i) how incredibly rich the flow
regimes of evaporating binary droplets are and (ii) that, nevertheless, it is, at least in part
and with justified approximations, accessible to mathematical analysis.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10519.
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Appendix A. Analytical axisymmetric solution in lubrication limit and zero Ca

The system of (4.6) to (4.8) can be solved analytically for the quasi-stationary
axisymmetric base solution in the limit of small 6 and zero capillary number. The existence
of an axisymmetric flow requires the absence of z-averaged velocity, or equivalently,
0° =0. Here, the tilde was omitted for simplicity and the superscript O denotes the
axisymmetric base solution. In consequence, there will be no net advective transport of
the composition, which simplifies (4.7) to a Poisson equation with a source term (). The
analytical solution can thus be expressed as

0°=0, (A1)
£0_ —6r% + 12 artanh(+/1 — r2) + 12 log(r) — 5 (A2)
N 3n6 ’

o_ 12Mag 1 5
p = 02 (m—log(l—l—\/l—r)), (A3)
where r is the radial coordinate in the axisymmetric coordinate system. Despite the
presence of a logarithm in the £° solution, it remains well-defined at = 0. This is due
to the log-singularity being counterbalanced by the equivalent divergence of artanh.
However, as anticipated, the pressure exhibits a divergence at the contact line when the
Marangoni number is non-zero.

When we introduce a small amplitude e perturbation to expand each field f into
f=f2+efmem+A the simplification of Q = 0 no longer applies. This is because the
divergence of the expanded @ field is no longer zero. As a result, the advective transport
of the composition is non-zero, yielding complex analytical expressions for the perturbed
fields. Given these complexities, it was not possible to derive an analytical solution for the
perturbed fields in the lubrication limit.
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