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The Global Attractor of a Damped, Forced
Hirota Equation in H1

Boling Guo and Zhaohui Huo

Abstract. The existence of the global attractor of a damped forced Hirota equation in the phase space

H1(R) is proved. The main idea is to establish the so-called asymptotic compactness property of the

solution operator by energy equation approach.

1 Introduction

Our aim is to study the global attractor of the Cauchy problem for the following

damped, forced Hirota equation in the phase space H1(R),

(1.1)
i∂t u + α∂2

x u + iβ∂3
x u + iλu∂x(|u|2) + iµ|u|2∂xu + η|u|2u + iγu = f ,

u(x, 0) = u0(x) ∈ H1(R), (x, t) ∈ R × R.

where α, β, λ, µ, η, γ are real constants, β ·α 6= 0, γ > 0, and f is time-independent

and belongs to H1(R). The parameter γ > 0 can be looked on as a damping coeffi-

cient.

The Hirota equation (1.1) is a typical model of mathematical physics. It en-

compasses the well-known nonlinear Schrödinger equation and the modified KdV

equation, and in particular contains the nonlinear derivative Schrödinger equation.

Hasegawa and Kodama [10,11,17] proposed (1.1) as a model for propagation of pulse

in optical fibers.

If γ = 0 and f = 0, for global well-posedness of the Cauchy problem (1.1), Laurey

[19] obtained global well-posedness in H1(R) and Hs(R)(s ≥ 2). Huo and Guo [12]

obtained local well-posedness in Hs(R)(s ≥ 1
4
) and a global result in Hs(R)(s ≥ 1).

From the mathematical point of view, the extra term with the factor γ accounts for

a weak dissipation with no regularization, or smoothing property. Hence the well-

posedness of (1.1) comes essentially from the dispersive regularization property of

the equation (1.1). The proof of well-posedness is similar to that in [12]. We use

the so-called the Fourier restriction norm (Bourgain function spaces) to consider the

problem. This is one facet of the paper. The Fourier restriction norm method was

first introduced by J. Bourgain [2, 3] to study the KdV and nonlinear Schrödinger

equations in the periodic case. It was simplified by Kenig, Ponce, and Vega [15, 16].
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Another facet of this paper is to consider the long time behavior of the solutions,

which is described by the global attractor. The existence of a global attractor for hy-

perbolic equations is usually obtained by the asymptotic compactness or the asymp-

totic smoothing properties of the solution operator, together with the existence of a

bounded absorbing set. Those properties are usually proved by the energy equation

method. For equations on unbounded domains, the use of energy equation is partic-

ularly suitable, since it does not depend on compact imbedding of function spaces.

It does require, however, the weak continuity of the solution operator in the sense

that if the initial datum u0n converges to u0 weakly, then the corresponding solution

un(t) converges weakly to u(t), for all time t . This weak continuity is usually ob-

tained by passing to the limit in the weak formulation of the equation and by using

the uniqueness of the solution.

There are many papers on the existence of global attractors of equations such as

the KdV equation or the Schrödinger equation [4–8,14,20–22]. However, there seem

to be none considering the existence of global attractors of Hirota equations. There-

fore, our result seems to be new.

To study well-posedness of the solution to problems (1.1), we use its equivalent

integral formulation

u(t) = W (t)u0 + i

∫ t

0

W (t − t ′)(iλu∂x(|u|2) + iµ|u|2∂xu + η|u|2u + iγu − f )(t ′)dt ′,

where W (t) = F
−1
x e−it(αξ2−βξ3)Fx is the unitary operator associated with the cor-

responding linear equation. For simplicity, denote the phase function as φ(ξ) =

αξ2 − βξ3.

It is important to point out that the above phase function φ(ξ) has non-zero sin-

gular points, which is different from the phase function related to the linear KdV

equation and also makes the problem much more difficult. Therefore, we need to use

Fourier restriction operators

PN f =

∫

|ξ|≥N

eixξ f̂ (ξ)dξ, PN f =

∫

|ξ|≤N

eixξ f̂ (ξ)dξ, ∀N > 0

to eliminate the singularity.

The paper is constructed as follows. In Section 2, we introduce some notations,

define the Bourgain space related to equation (1.1) and obtain some preliminary

estimates. Then in Section 3, we investigate the local solution of the problem in

Hs for s ≥ 1
4
. In Section 4, we discuss further the global well-posedness in H1 and

the absorbing sets. Finally we give the asymptotic compactness and the existence of

the global attractor in Section 5.

2 Function Spaces and Preliminary Estimates.

For convenience, we introduce some notations:

• FFρ(ξ, τ ) =
f (ξ, τ )

(1 + |τ + φ(ξ)|)ρ
, φ(ξ) = αξ2 − βξ3 or αξ2 + βξ3.
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• σ = τ − βξ3 + αξ2, σ j = τ j − βξ3
j + αξ2

j ( j = 1, 2), σ̄3 = τ3 − βξ3
3 − αξ2

3 .

•

∫

⋆
· dδ :=

∫

ξ=ξ1+ξ2+ξ3;τ=τ1+τ2+τ3
· dτ1dτ2dτ3dξ1dξ2dξ3.

• Ds
x = F−1

x |ξ|sFx for fraction s,
• Dm

x = F−1
x (iξ)mFx for integral m.

• Js
x = F−1

x 〈ξ〉sFx, a = max
(

1,
∣

∣

2α
3β

∣

∣

)

.

• ‖ f ‖L
p
x L

q
t
= (

∫ ∞

−∞
(
∫ ∞

−∞
| f (x, t)|qd t)

p
q dx)1/p, ‖ f ‖L∞

t Hs
x
=

∥

∥‖ f ‖Hs
x

∥

∥

L∞

t
.

•

∫

( J2u)v̄dx = ( J2u, v)L2 = (u, v)H1 .

For s, b ∈ R, Xs,b denotes the completion of the Schwartz function space on R
2

with respect to the norm

‖u‖Xs,b
= ‖〈ξ〉

s
〈τ − βξ3 + αξ2〉

b
Fu‖L2

ξL2
τ
,

‖ū‖X̄s,b
= ‖〈ξ〉

s
〈τ − βξ3 − αξ2〉

b
Fū‖L2

ξL2
τ
,

where 〈 · 〉 = (1 + | · |). One can easily prove that ‖u‖Xs,b
= ‖ū‖X̄s,b

, which will be used

later.

Let ψ ∈ C∞
0 (R) with ψ = 1 on [− 1

2
, 1

2
] and supp ψ ⊂ [−1, 1]. Denote ψδ( · ) =

ψ(δ−1( · )) for some δ ∈ R.

For T > 0, we consider the localized Bourgain space XT
s,b, which is endowed with

the norm

‖u‖XT
s,b

= ‖u‖
X

[−T,T]
s,b

= ‖ψTu‖Xs,b
.

In our arguments, we shall use the trivial embedding relation ‖u‖Xs1 ,b1
≤ ‖u‖Xs2 ,b2

whenever s1 ≤ s2, b1 ≤ b2. Denote û(τ , ξ) = Fu by the Fourier transform in t and x

of u and F( · )u by the Fourier transform in the (·) variable. Define the space

H1
0 (−r, r) := { f ∈ H1(R), supp f ⊂ (−r, r), r > 0}.

Note that for all r > 0, the continuous injections hold

(2.1) H1
0 (−r, r) ⊆ H1(R) ⊆ L2(R) ⊆ H−1(R) ⊆ H−1

0 (−r, r),

and the compact injections also hold

(2.2) H1
0 (−r, r) ⊂c L2(R) ⊂c H−1

0 (−r, r).

We will often use Agmon’s inequality, which reads

‖u‖L∞(R) ≤ ‖u‖
1/2

L2(R)
‖ux‖

1/2

L2(R)
.

Lemma 2.1 [23] The group {W (t)}+∞
−∞ satisfies

‖W (t)u0‖L8
xL8

t
≤ C‖u0‖L2 .
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Lemma 2.2 [12] The group {W (t)}+∞
−∞ satisfies

‖DxW (t)P2au0‖L∞

x L2
t
≤ C‖u0‖L2 , ‖W (t)Pau0‖L4

xL∞

t
≤ C‖u0‖H1/4 ,

‖D1/6
x W (t)P2au0‖L6

xL6
t
≤ C‖u0‖L2 ,

where the constant C depends on β and α.

Lemma 2.3 [15] If ρ > 1
2

for any fixed N with 0 < N < +∞, it holds that

‖PN Fρ‖L2
xL∞

t
≤ C‖ f ‖L2

ξL2
τ
,

where the constant C depends on N.

Lemma 2.4 [12] If ρ > 1
2

4(q−2)
3q

, for 2 ≤ q ≤ 8, then ‖Fρ‖L
q
xL

q
t
≤ C‖ f ‖L2

ξL2
τ
, where

the constant C depends on β and α.

Lemma 2.5 [12]

(i) Let ρ > θ
2

with θ ∈ [0, 1]. Then ‖Dθ
xP2aFρ‖

L
2

1−θ
x L2

t

≤ C‖ f ‖L2
ξL2

τ
.

(ii) Let ρ > 1
2
. Then ‖D

− 1
4

x P2aFρ‖L4
xL∞

t
≤ C‖ f ‖L2

ξL2
τ
, where the constant C depends on

β and α.

Lemma 2.6 [12] Assume f , f1, f2, and f3 belong to Schwartz space on R
2. Then

∫

⋆

f̂ (ξ, τ ) f̂1(ξ1, τ1) f̂2(ξ2, τ2) f̂3(ξ3, τ3) dδ =

∫

f̄ f1 f2 f3(x, t) dxdt.

Lemma 2.7 [15, 16] Let s ∈ R, 1
2

< b < b ′ < 1, 0 < δ ≤ 1. Then

‖ψδ(t)W (t)u0‖Xs,b
≤ Cδ

1
2
−b‖u0‖Hs ,

‖ψδ(t)

∫ t

0

S(t − τ )F(τ ) dτ‖Xs,b
≤ Cδ

1
2
−b‖F‖Xs,b−1

,

‖ψδ(t)

∫ t

0

S(t − τ )F(τ ) dτ‖L∞

t Hs
x
≤ Cδ

1
2
−b‖F‖Xs,b−1

,

‖ψδ(t)F‖Xs,b−1
≤ Cδb ′−b‖F‖Xs,b ′−1

.

3 Local Solutions in Hs

In this section, we obtain, by the contraction mapping principle, the local well-

posedness of the problem, which is given by Theorem 3.2. The contraction argument

provides the local solution, once we prove that the following estimates hold for some

b > 1
2
:

‖∂x(|u|2u)‖Xs,b−1
≤ C‖u‖3

Xs,b
,(3.1)

‖|u|2∂xu‖Xs,b−1
≤ C‖u‖3

Xs,b
,(3.2)

‖(|u|2u)‖Xs,b−1
≤ C‖u‖3

Xs,b
.(3.3)

In fact, (3.1), (3.2), and (3.3) can be shown in the following theorem.
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Theorem 3.1 If s ≥ 1
4
, 1

2
< b < 7

9
, b ′ > 1

2
, then

‖∂x(u1u2ū3)‖Xs,b−1
≤ C‖u1‖Xs,b ′

‖u2‖Xs,b ′
‖u3‖Xs,b ′

,(3.4)

‖∂x(u1)u2ū3‖Xs,b−1
≤ C‖u1‖Xs,b ′

‖u2‖Xs,b ′
‖u3‖Xs,b ′

,(3.5)

‖u1u2ū3‖Xs,b−1
≤ C‖u1‖Xs,b ′

‖u2‖Xs,b ′
‖u3‖Xs,b ′

.(3.6)

Remark The proofs of (3.4) and (3.6) can be found in [12]. In fact, (3.6) holds if

s ≥ − 1
4

[13]. The proof of (3.5) is similar to that of (3.4).

Proof Here we only prove (3.5). By duality and the Plancherel identity, it suffices to

show that

Υ =

∫

⋆

〈ξ〉
s
|ξ1|

f̄ (τ , ξ)

〈σ〉
1−b

Fu1(τ1, ξ1)Fu2(τ2, ξ2)Fū3(τ3, ξ3) dδ

=

∫

⋆

〈ξ〉
s
|ξ1|

〈σ〉
1−b ∏2

j=1 〈ξ j〉
s
〈σ j〉

b ′

〈ξ3〉
s
〈σ̄3〉

b ′
f̄ (τ , ξ) f1(τ1, ξ1) f2(τ2, ξ2) f3(τ3, ξ3) dδ

≤ C‖ f ‖L2

3
∏

j=1

‖ f j‖L2
,

for all f̄ ∈ L2, f̄ ≥ 0, where

f j = 〈ξ j〉
s
〈σ j〉

b ′

û j , j = 1, 2; f3 = 〈ξ3〉
s
〈σ̄3〉

b ′

ˆ̄u3;

ξ = ξ1 + ξ2 + ξ3; , τ = τ1 + τ2 + τ3.

We may assume f j ≥ 0, j = 1, 2, 3. Let

FF j
ρ(ξ, τ ) =

f j(ξ, τ )

(1 + |τ − βξ3 + αξ2|)ρ
, j = 1, 2,

FF3
ρ(ξ, τ ) =

f3(ξ, τ )

(1 + |τ − βξ3 − αξ2|)ρ
,

Let

K(ξ, ξ1, ξ2, ξ3) =
〈ξ〉

s
|ξ1|

〈ξ1〉
s
〈ξ2〉

s
〈ξ3〉

s .

In order to obtain the boundedness of integral Υ, we split the integration domain

into several pieces.

Case 1: Assume |ξ| ≤ 6a.

1.1 If |ξ1| ≤ 2a, then K(ξ, ξ1, ξ2, ξ3) ≤ C . Using Lemma 2.4 and Lemma 2.6, the

integral Υ restricted to this domain is bounded by

C‖F1−b‖L2
xL2

t
‖F1

b ′‖L6
xL6

t
‖F2

b ′‖L6
xL6

t
‖F3

b ′‖L6
xL6

t
≤ C‖ f ‖L2

ξL2
τ
‖ f1‖L2

ξL2
τ
‖ f2‖L2

ξL2
τ
‖ f3‖L2

ξL2
τ
.
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1.2 Assume |ξ1| ≥ 2a.

1.2.1 If |ξ2| ≤ 2a or |ξ3| ≤ 2a(without loss of generality, we can assume |ξ2| ≤ 2a),

then K(ξ, ξ1, ξ2, ξ3) ≤ C|ξ1|. The integral Υ restricted to this domain is bounded by

C‖F1−b‖L3
xL3

t
‖DxP2aF1

b ′‖L∞

x L2
t
‖P2aF2

b ′‖L2
xL∞

t
‖F3

b ′‖L6
xL6

t

≤ C‖ f ‖L2
ξL2

τ
‖ f1‖L2

ξL2
τ
‖ f2‖L2

ξL2
τ
‖ f3‖L2

ξL2
τ
,

which follows from Lemmas 2.3–2.6 for b < 7
9
.

1.2.2 If |ξ2| ≥ 2a and |ξ3| ≥ 2a, then we use s ≥ 1
4

to bound K(ξ, ξ1, ξ2, ξ3) by

K(ξ, ξ1, ξ2, ξ3) ≤ C
|ξ1|

〈ξ2〉
1
4 〈ξ3〉

1
4

.

The integral Υ restricted to this domain is bounded by

C‖F1−b‖L2
xL2

t
‖DxP2aF1

b ′‖L∞

x L2
t
‖P2aD

− 1
4

x F2
b ′‖L4

xL∞

t
‖P2aD

− 1
4

x F3
b ′‖L4

xL∞

t

≤ C‖ f ‖L2
ξL2

τ
‖ f1‖L2

ξL2
τ
‖ f2‖L2

ξL2
τ
‖ f3‖L2

ξL2
τ
,

which follows from Lemmas 2.4–2.6.

Case 2: Assume |ξ| ≥ 6a.

2.1 If |ξ1| ≤ 2a, then |ξ| ≤ 3 max{|ξ2|, |ξ3|} (without loss of generality, we can

assume 2a ≤ 1
3
|ξ| ≤ |ξ3|). It follows that K(ξ, ξ1, ξ2, ξ3) ≤ C . Similarly to Case 1.1,

we can obtain the boundedness of the integral Υ.

2.2 Assume |ξ1| ≥ 2a, we distinguish the different situations.

2.2.1 If |ξ2| ≤ 2a or |ξ3| ≤ 2a (without loss of generality, we can assume |ξ3| ≤ 2a),

then |ξ| ≤ 3 max{|ξ1|, |ξ2|}. It follows that K(ξ, ξ1, ξ2, ξ3) ≤ C|ξ1|. The integral Υ

restricted to this domain is bounded by

C‖F1−b‖L3
xL3

t
‖DxP2aF1

b ′‖L∞

x L2
t
‖F2

b ′‖L6
xL6

t
‖P2aF3

b ′‖L2
xL∞

t

≤ C‖ f ‖L2
ξL2

τ
‖ f1‖L2

ξL2
τ
‖ f2‖L2

ξL2
τ
‖ f3‖L2

ξL2
τ
,

which follows from Lemmas 2.3–2.6 for b < 7
9
.

2.2.2 Assume |ξ2| ≥ 2a and |ξ3| ≥ 2a. We discuss three situations separately.

(i) If |ξ| ≤ 3 max{|ξ1|, |ξ2|, |ξ3|} = 3|ξ1|, then we can obtain the boundedness of

the integral Υ similarly to Case 1.2.2.

(ii) If |ξ| ≤ 3 max{|ξ1|, |ξ2|, |ξ3|} = 3|ξ2|, by symmetry, we have the following

three cases.

If s ≥ 1, then K(ξ, ξ1, ξ2, ξ3) ≤ C . Similarly to Case 1.1 we can obtain the

boundedness of the integral Υ.
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If 1
2
≤ s ≤ 1, then

K(ξ, ξ1, ξ2, ξ3) ≤ C
|ξ1|

1/2

〈ξ3〉
1/4

.

By Lemma 2.4–Lemma 2.6 for b < 7
9
, the integral Υ restricted to this domain

is bounded by

C‖F1−b‖L3
xL3

t
‖D

1
2
x P2aF1

b ′‖L4
xL2

t
‖F2

b ′‖L6
xL6

t
‖D

− 1
4

x P2aF3
b ′‖L4

xL∞

t

≤ C‖ f ‖L2
ξL2

τ
‖ f1‖L2

ξL2
τ
‖ f2‖L2

ξL2
τ
‖ f3‖L2

ξL2
τ
.

If 1
4
≤ s ≤ 1

2
, then

K(ξ, ξ1, ξ2, ξ3) ≤ C
〈ξ〉

s
|ξ1|

1−s

〈ξ2〉
1/4

〈ξ3〉
1
4

.

We obtain the boundedness of the integral Υ as follows,

C‖Ds
xP6aF1−b‖

L
2

1−s
x L2

t

‖D1−s
x P2aF1

b ′‖
L

2
s

x L2
t

‖D
− 1

4
x P2aF2

b ′‖L4
xL∞

t
‖D

− 1
4

x P2aF3
b ′‖L4

xL∞

t

≤ C‖ f ‖L2
ξL2

τ
‖ f1‖L2

ξL2
τ
‖ f2‖L2

ξL2
τ
‖ f3‖L2

ξL2
τ
,

which follows from Lemma 2.4–Lemma 2.6 for 1 − b ≥ s
2
.

(iii) If |ξ| ≤ 3 max{|ξ1|, |ξ2|, |ξ3|} = 3|ξ3|, then we can obtain the result similarly

to case 2.2.2(ii).

Therefore, this completes the proof of Theorem 3.1.

Next, we prove the local well-posedness of Cauchy problem (1.1) in Hs(s ≥ 1
4
).

Assume γ ∈ R and f = f (x, t) ∈ XT
s,b−1(s ≥ 1

4
) for some T > 0.

For u0 ∈ Hs(R)(s ≥ 1
4
), we define the operator

Φ(u) = ψT(t)W (t)u0 + iψT(t)

∫ t

0

W (t − t ′)(iλu∂x(|u|2) + iµ|u|2∂xu

+ η|u|2u + iγu − f )(t ′) dt ′,

and the set

B = {u ∈ XT
s,b ∩ H1 : ‖u‖XT

s,b
∩Hs ≤ 4CT

1
2
−b‖u0‖Hs}.

In order to show that Φ is a contraction mapping on B, we first prove Φ(B) ⊂ B.

From Lemma 2.7 and Theorem 3.1 for 1
2

< b < b ′ < 1, it follows that

‖Φ(u)‖XT
s,b
≤ CT

1
2
−b‖u0‖Hs + CTb ′−b(‖u‖3

XT
s,b

+ ‖u‖XT
s,b

+ ‖ f ‖XT
s,b−1

).
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Therefore, if we fix T such that

8CTb ′−bT1−2b‖u0‖
2
Hs ≤ 1

4
, 4CTb ′−bT

1
2
−b ≤ 1

4
,

CTb ′−b‖ f ‖XT
s,b−1

≤ CT
1
2
−b‖u0‖Hs ,

then Φ(B) ⊂ B.

For u, v ∈ B, in an analogous way to above, it follows that

‖Φ(u) − Φ(v)‖XT
s,b
≤ CTb ′−b(max(‖u‖XT

s,b
, ‖v‖XT

s,b
)2 + 1)‖u − v‖XT

s,b

≤ CTb ′−b(8T1−2b‖u0‖
2
Hs + 4T

1
2
−b)‖u − v‖XT

s,b

≤ 1
2
‖u − v‖XT

s,b
.

Therefore, Φ is a contraction mapping on B. There exists a unique solution to

Cauchy problem (1.1) in XT
s,b(s ≥ 1

4
) for T > 0. We state the result as the follow-

ing theorem.

Theorem 3.2 Let s ≥ 1
4
, 1

2
< b < 7

9
. Let u0 ∈ Hs, f ∈ Xs,b−1 and γ ∈ R. Then

there exists a constant T > 0, and Cauchy problem (1.1) admits a unique local solution

u(x, t) ∈ C([0, T]; Hs) ∩ XT
s,b. Moreover, given t ∈ (0, T), the map (γ, f , u0) → u(t)

is continuous from R × XT
s,b−1 × Hs to C([0, T]; Hs).

4 Global Well-Posedness in H1 and Absorbing Sets

In this section, for γ ∈ R, f ∈ H1, and u0 ∈ H1, we will obtain the global well-

posedness of the problem (1.1). This is achieved with the help of H1 energy inequality

as in [9, 19]. Similarly, we establish some energy-type equation for the solutions of

(1.1).

Lemma 4.1 Let u0 ∈ H∞(R), f (x) ∈ H∞(R), and u ∈ C([0, T]; H∞(R)) be the

solution of (1.1). Then

1

2

d

dt
‖u‖2

L2 + γ‖u‖2
L2 = Im

∫

f ū dx,(4.1)

−
1

2

d

dt

∫

uūxdx − λ Im

∫

(uūx)2dx + γ

∫

uūxdx = ℜ

∫

f ūx dx,(4.2)

−
1

2

d

dt
‖ux‖

2
L2 − η Im

∫

(uūx)2dx −
(

λ +
µ

2

)

∫

(∂x|u|)
2|ux|

2dx − γ

∫

|ux|
2 dx = − Im

∫

fxūxdx,

(4.3)

1

4

d

dt
‖u‖4

L4 +
3β

2

∫

(∂x|u|)
2|ux|

2dx + α Im

∫

(uux)2dx + γ‖u‖4
L4

= Im

∫

f |u|2ū dx,

(4.4)
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d

dt
I1(u) + 2γI1(u) = K1( f , u),(4.5)

where

I1(u) = −ηλ‖ux‖
2
L2 − λ(λ +

µ

2
)‖u‖4

L4 + (3βη − α(2λ + µ))

∫

uux dx,

K1( f , u) = 2(3βη − α(2λ + µ))ℜ

∫

f ūxdx − 6ηλ Im

∫

fxūxdx

− 2λ(2λ + µ) Im

∫

f |u|2ū dx.

Proof We obtain (4.1) by multiplying (1.1) by ū and (4.2) by ūx, integrating and

taking the imaginary part and the real part, respectively. Similarly, we obtain (4.3)

by multiplying (1.1) by ūxx and (4.4) by |u|2ū, integrating and taking the imaginary

part. We obtain (4.5) by taking the following linear arrangement of the previous

equations:

2(3βη − α(2λ + µ)) (4.2) + 6ηλ (4.3) − 2λ(2λ + µ) (4.3).

Now choose a smooth function ψ ∈ S(R) such that ψ ≥ 0 and
∫ +∞

−∞
ψ(x) dx = 1.

Define ψε =
1
εψ( x

ε ), for ε > 0. We regularize u0 ∈ H1(R), f (x) ∈ H1(R): u0
ε

=

u0∗ψε, f ε
= f ∗ψε. The smooth functions u0

ε and f ε converge respectively to u0 and

f in H1(R) as ε → 0. We consider the solution of (1.1) uε ∈ C([0, Tε]; H∞) with

data uε(0) = u0
ε and forcing term f ε. By Theorem 3.2 (the continuity with respect

to the data of the local solution), it follows that with initial condition uε(0) = u0
ε

and forcing term f ε the solution uε(t) converges to the solution u(t) with data u0 and

forcing term f in XT
1,b−1 ∩ H1 for some appropriate T > 0.

By Lemma 4.1, for a smooth initial condition u0
ε
= u0 ∗ ψε and a smooth forcing

term f ε
= f ∗ ψε, the local solution uε given by Theorem 3.2 satisfies the following

energy-type equation:

(4.6)
d

dt
I j(uε(t)) + 2γI j(uε(t)) = K j( f ε, uε(t)), j = 0, 1, t ∈ [−T, T],

where I0(uε) = ‖uε‖2
L2 , K0( f ε, uε) =

∫

f εūε dx. So I1 is defined as (4.5). We integrate

(4.6) to obtain

(4.7) I j(uε(t)) + 2γ

∫ t

0

I j(uε(t ′)) dt ′

= I ju
ε(0) +

∫ t

0

K j( f ε, uε(t ′)) dt ′, j = 0, 1, t ∈ [−T, T].

Taking the limit ε → 0 in (4.7) and using the continuity of the solution with respect

to the data and forcing term, in particular using

I j(u(t)) = lim
ε→0

I j(uε(t)) and K j( f , u) = lim
ε→0

K j( f ε, uε(t)) j = 0, 1, t ∈ [−T, T],
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we obtain that

(4.8) I j(u(t)) + 2γ

∫ t

0

I j(u(t ′)) dt ′

= I ju(0) +

∫ t

0

K j( f , u(t ′)) dt ′, j = 0, 1, t ∈ [−T, T].

From the energy-type equation (4.8), one can extend the solution u(t) to obtain a

global one for any T > 0 with u ∈ XT
1,b ∩ C([−T, T]; H1(R)). One can also check

that for each T > 0 and each initial condition u0 ∈ H1(R), there exists a constant

C = C(‖u0‖H1 , T) such that

‖u‖XT
1,b
≤ C(‖u0‖H1 , T).

In fact, energy-type equation (4.8) provides an estimate of the solution in H1(R)

norm at each instant in time. What is more, we can divide each interval [−T, T] into

small enough subintervals as required in the proof of Theorem 3.2. Therefore, this

can be obtained by a straightforward and classical procedure, so we omit the details

here.

We state one of our main results as follows.

Theorem 4.2 Let γ ∈ R, f ∈ H1(R) and u0 ∈ H1(R), b real and close to 1
2
. Then

for all T > 0, problem (1.1) admits a unique global solution u(x, t) ∈ C(R; H1),

which belongs to XT
1,b. Moreover, the map, which associates the datum (γ, f , u0) to

the corresponding unique solution u(t), is continuous from R × H1(R) × H1(R) into

C([−T, T]; H1(R)) × XT
1,b with, in particular,

‖u‖XT
1,b
≤ C(λ, ‖u0‖H1(R), ‖ f ‖H1(R), T).

Furthermore, the solution u(t) satisfies the energy equation

(4.9)
d

dt
I j(u(t)) + 2γI j(u(t)) = K j( f , u(t)), j = 0, 1, for all t ∈ R,

where I j , K j are defined as (4.5) and (4.6).

Thanks to Theorem 4.2, we can define a group associated with equation (1.1) as

follows.

Definition 4.3 For γ ∈ R, f ∈ H1(R) fixed, we denote {S(t)}t∈R by the group in

H1(R) defined S(t)u0 = u(t), where u(t) is the unique solution of equation (1.1) and

belongs to XT
1,b for all T > 0.

From now on, we are interested in the long time behavior of equation (1.1) tak-

ing the dissipation into account. We assume that γ is positive and the forcing term

f belongs to H1(R); we shall obtain the existence of bounded absorbing sets for the
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solution operator {S(t)}t∈R with the help of the energy-type equation. We first ob-

tain an absorbing ball in L2(R); then we prove the absorbing ball in H1(R). We just

outline it here, since this is a standard procedure.

By applying the Cauchy–Schwartz inequality and the Young inequality to the term

on the right-hand side of (4.1), we obtain that

(4.10)
d

dt
‖u(t)‖2

L2 + γ‖u(t)‖2
L2 ≤

1

γ
‖ f ‖2

L2 .

Integrating with respect to time, we have

‖u(t)‖2
L2 ≤ ‖u0‖

2
L2 e−γt +

1

γ2
‖ f ‖2

L2 (1 − e−γt ).

Therefore, we deduce that for u,

(4.11) lim
t→∞

sup ‖u(t)‖L2 ≤ ρ0 =
1

γ
‖ f ‖L2 ,

uniformly bounded in L2(R). For the absorbing ball in H1(R), we first estimate the

following terms by Agmon inequality and Cauchy inequality,

∫

|u|4 dx ≤ ‖u‖2
L2‖u‖2

L∞ ≤ ‖u‖3
L2‖ux‖L2 ≤

1

2ε1

‖u‖6
L2 +

ε1

2
‖ux‖

2
L2 ,

∫

uūx dx ≤ ‖u‖L2‖ux‖L2 ≤
1

2ε2

‖u‖2
L2 +

ε2

2
‖ux‖

2
L2 .

ℜ

∫

f ūx dx ≤ ‖ f ‖L2‖ux‖L2 ≤
1

2ε3

‖ f ‖2
L2 +

ε3

2
‖ux‖

2
L2 ,

Im

∫

fxūx dx ≤ ‖ fx‖L2‖ux‖L2 ≤
1

2ε4

‖ fx‖
2
L2 +

ε4

2
‖ux‖

2
L2 ,

Im

∫

f |u|2ū dx ≤ ‖ f ‖L2‖u‖L2‖u‖2
L∞ ≤ ‖ f ‖L2‖u‖2

L2‖ux‖L2

≤
1

2ε5

‖ f ‖2
L2‖u‖4

L2 +
ε5

2
‖ux‖

2
L2 ,

where

ε1 =
|ηλ|

2|λ(λ + µ
2

)|
, ε2 =

|ηλ|

2|(3βη − α(2λ + µ))|
, ε3 =

|γ| · |ηλ|

6|(3βη − α(2λ + µ))|
,

ε4 =
|γ|

18
, ε5 =

|γ| · |ηλ|

12|λ(λ + µ
2

)|
.

Therefore,

|ηλ| · ‖ux‖
2
L2 − |λ

(

λ +
µ

2

)

| · ‖u‖4
L4 −

∣

∣

∣
(3βη − α(2λ + µ))

∫

uux dx
∣

∣

∣
≤ I1(u).
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Then,

(4.12)
|ηλ|

2
‖ux‖

2
L2 −

|λ(λ + µ
2

)|2

|ηλ|
‖u‖6

L2 −
|(3βη − α(2λ + µ))|2

|ηλ|
‖u‖2

L2

≤ I1(u) ≤
3|ηλ|

2
‖ux‖

2
L2 +

|λ(λ + µ
2

)|2

|ηλ|
‖u‖6

L2 +
|(3βη − α(2λ + µ))|2

|ηλ|
‖u‖2

L2 .

Now similarly to the above, using Agmon’s and Cauchy’s inequalities to estimate

K1( f , u), we obtain

(4.13) K1( f , u) ≤
6|(3βη − α(2λ + µ))|2

|γ| · |ηλ|
‖ f ‖2

L2 + 54
|ηλ|

|γ|
‖ fx‖

2
L2

+
24|λ(λ + µ

2
)|2

|γ| · |ηλ|
‖ f ‖2

L2‖u‖4
L2 +

|γ| · |ηλ|

2
‖ux‖

2
L2 .

By (4.12) and (4.13), we have

K1( f , u) ≤ γI1(u) +
6|(3βη − α(2λ + µ))|2

|γ| · |ηλ|
‖ f ‖2

L2

+ 54
|ηλ|

|γ|
‖ fx‖

2
L2 +

24|λ(λ + µ
2

)|2

|γ| · |ηλ|
‖ f ‖2

L2‖u‖4
L2

+
|λ(λ + µ

2
)|2

|ηλ|
‖u‖6

L2 +
|(3βη − α(2λ + µ))|2

|ηλ|
‖u‖2

L2 .

Therefore, from the energy-type equation (4.9) for j = 1, it follows that

d

dt
I1(u) + γI1(u) ≤

6|(3βη − α(2λ + µ))|2

|γ| · |ηλ|
‖ f ‖2

L2 + 54
|ηλ|

|γ|
‖ fx‖

2
L2

+
24|λ(λ + µ

2
)|2

|γ| · |ηλ|
‖ f ‖2

L2‖u‖4
L2

+
|λ(λ + µ

2
)|2

|ηλ|
‖u‖6

L2 +
|(3βη − α(2λ + µ))|2

|ηλ|
‖u‖2

L2 .

By the Gronwall lemma and (4.10), we obtain

lim
t→∞

sup I1(u) ≤
6|(3βη − α(2λ + µ))|2

γ2 · |ηλ|
‖ f ‖2

L2 + 54
|ηλ|

γ2
‖ fx‖

2
L2

+
24|λ(λ + µ

2
)|2

γ5 · |ηλ|
‖ f ‖2

L2‖ f ‖4
L2

+
|λ(λ + µ

2
)|2

γ7 · |ηλ|
‖ f ‖6

L2 +
|(3βη − α(2λ + µ))|2

γ3 · |ηλ|
‖ f ‖2

L2 .
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Finally, by (4.12) we obtain

(4.14) lim
t→∞

sup ‖ux‖
2
L2(R) ≤ ρ1 =

12|(3βη − α(2λ + µ))|2

γ2 · |ηλ|2
‖ f ‖2

L2

+
48|λ(λ + µ

2
)|2

γ5 · |ηλ|2
‖ f ‖2

L2‖ f ‖4
L2

+
108

γ2
‖ fx‖

2
L2 +

4|λ(λ + µ
2

)|2

γ7 · |ηλ|2
‖ f ‖6

L2 +
4|(3βη − α(2λ + µ))|2

γ3 · |ηλ|2
‖ f ‖2

L2 .

Therefore, we have the following result.

Theorem 4.4 Let γ > 0, f ∈ H1(R). Then the solution operator {S(t)}t∈R associated

with equation (1.1) possesses a bounded absorbing set in H1(R), with the radius of the

absorbing ball given by (4.11) and (4.14).

5 Asymptotic Compactness and the Global Attractor

From Theorem 4.4, it follows that there exists a bounded set in H1(R) which is ab-

sorbing for the solution operator {S(t)}t∈R. Therefore, to obtain the existence of the

global attractor, it suffices to prove the asymptotic compactness property. If {u0n} is

a sequence and bounded in H1(R), and {tn} is a sequence satisfying tn → ∞, then

{S(tn)u0n}n is precompact in H1(R). We shall use it later, so we state it below as a

lemma [1, 18, 24].

Lemma 5.1 Let E be a complete metric space and let {S(t)}t∈R be a group of con-

tinuous(nonlinear) operators in E. If {S(t)}t∈R possesses a bounded absorbing set B

in E and is asymptotically compact in E, then {S(t)}t∈R possesses the global attractor

A =
⋂

s

⋃

t≥s S(t)B.

In this section, we will show that the asymptotic compactness property follows

from the energy-type equation (4.9). The present case fits the abstract framework

given by I. Moise, R. Rosa and X. Wang [21]. The only delicate point is the weak

continuity of the solution operator. We need enough regularity to pass the weak

limit in the equation and we need the uniqueness to obtain the weak convergence to

the right solution.

Lemma 5.2 The solution operator {S(t)}t∈R is weakly continuous in H1(R) in the

sense that if u0n converges weakly to some u0 in H1(R) as n → ∞, then S(t)u0n converges

to S(t)u0 weakly in H1(R) for all t ∈ R.

Proof Let u0n ⇀ u0 weakly in H1(R). We fix T and consider un = S(t)u0n for

t ∈ [−T, T]. Note that {u0n}n is bounded in H1(R), since it has a weak limit in the

phase space. From Theorem 3.2, it follows that u ′
n, the time-derivative of un, satisfies

(5.1) {un}n is bounded in XT
1,b ∩C([−T, T]; H1(R)).
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Then from equation (1.1), we deduce that

(5.2) {u ′
n}n is bounded in C([−T, T]; H−2(R)).

From (5.1), it follows that

(5.3) {un ′}n⇀
∗u weakly star in XT

1,b,

for some u ∈ XT
1,b ∩C([−T, T]; H1(R)) and some subsequence {n ′}.

Moreover, from (5.2) it follows that for any v ∈ H2(R) and t, t + t ′ ∈ [−T, T],

(un(t + t ′) − un(t), v)L2 =

∫ t+t ′

t

(u ′
n(s), v)L2 ds

≤

∫ t+t ′

t

‖u ′
n(s)‖H−2‖v‖H2 ds

≤ Ct ′‖v‖H2 ,

(5.4)

where C is a constant and independent of n. Let v = J−2(un(t + t ′)− un(t)), by (5.4)

we obtain

‖un(t + t ′) − un(t)‖2
H−1 ≤ Ct ′‖un(t + t ′) − un(t)‖L2

≤ Ct ′‖un‖L∞([−T,T];L2 ) ≤ Ct ′,
(5.5)

for a larger constant C .

Let ψr(s) be defined as above. Then ψrun belongs to H1
0 (−r, r). From (5.1) and

(5.5), it follows that {ψrun}n is equibounded and equicontinuous in

C([−T, T]; H1
0 (−r, r))

for any r > 0. Moreover, From the continuous injections (2.1) and the compact

injections(2.2), we obtain that {ψrun}n is equibounded and equicontinuous in

C([−T, T]; H−1
0 (−r, r)),

and is precompact in H−1
0 (−r, r). Therefore, by the Arzela–Ascoli theorem, we de-

duce that the sequence {ψrun}n for each r > 0 is precompact in

C([−T, T]; H−1
0 (−r, r)).

By a diagonalization process, we can chose a subsequence {ψrun ′}n ′ and an element

u ∈ C([−T, T]; H−1
0 (−r, r)) such that

(5.6) {un ′}n→ u strongly in C([−T, T]; H−1
0 (−r, r)), ∀r > 0.

The weak-star convergence (5.3) and the strong convergence (5.6) allow us to pass

the limit in either the weak or the mild formulation of equation (1.1) to deduce that

https://doi.org/10.4153/CMB-2010-021-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-021-3


The Global Attractor of Damped, Forced Hirota Equation in H1 309

the limit function u is the solution of Cauchy problem (1.1). For this passage to the

limit, we do not need the weak-star convergence (5.3) in XT
1,b. Thus the weak-star

convergence (5.3) in XT
1,b is only needed to assume that the limit u belongs to XT

1,b, in

which case u must be the uniqueness of the solution in Theorem 3.2. Hence we have

u(t) = S(t)u0. By contradiction, one can deduce that in fact the whole sequence un

converges to u in the sense of (5.3) and (5.6).

It still remains to show that un(t) converges weakly to u(t) in H1(R) for any t ∈
[−T, T]. We know that the convergence is strong in H−1

0 (−r, r), for each r > 0.

Therefore, taking v ∈ C∞
c (R), we obtain that for large enough r, J2v belongs to

H−1
0 (−r, r), so that

(un, v)H1(R) = (un, J2v) → (u, J2v) = (u, v)H1(R).

Then, from (5.1) and the density of C∞
c (R) in H1(R), it follows that for every v ∈

H1(R), (un, v)H1(R) → (u, v)H1(R). This proves the desired weak continuity in H1(R).

With the previous lemma in mind we can prove that the solution operators

{S(t)}t∈R are asymptotic compact by the framework summarized in [21].

Lemma 5.3 If the sequence {u0n} is bounded in H1(R) and the sequence {tn} satisfies

tn → ∞, then there exist u ∈ H1(R) and a subsequence {n ′} such that S(tn ′)u0n ′ → u

strongly in H1(R).

Proof The proof is standard; we refer to [21, 22].

This gives the asymptotic compactness property of the solution operator and,

hence, the existence of the global attractor. Therefore, we have the following result.

Theorem 5.4 Let γ > 0, f ∈ H1(R). Then the solution operator {S(t)}t∈R associated

with equation (1.1) in H1(R) possesses a connected global attractor in H1(R).
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