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1. Introduction

Let D = {X = (X ′, xn) : X ′ ∈ R
n−1 and xn > 0}, where n � 2, and let u be a harmonic

function on D. For fixed β > 0 and t > 0 we define the cone

Γ (Z ′; β, t) = {(X ′, xn) ∈ R
n−1 × (0, t) : |X ′ − Z ′| < βxn} (Z ′ ∈ R

n−1),

where | · | denotes the Euclidean norm. Also, let λn denote the Lebesgue measure on R
n.

A well-known result of Stein [9] asserts that if the ‘area integral’

(∫
Γ (Z′;β,t)

x2−n
n |∇u(X)|2 dλn(X)

)1/2

(1.1)

is finite for every Z ′ in a Borel set E′ ⊂ R
n−1, then u has a finite non-tangential limit

unt(Z ′) at (Z ′, 0) for λn−1-almost every point Z ′ ∈ E′. More recently, Brossard [3]
used a variant of the integral in (1.1) in connection with zero boundary limits of positive
harmonic functions. More precisely, he showed that if u > 0 (and so unt(Z ′) exists almost
everywhere), then the equivalence

∫
Γ (Z′;β,t)

x2−n
n |∇u(X)|2(u(X))−2 dλn(X) = +∞ ⇐⇒ unt(Z ′) = 0 (1.2)

holds for almost all Z ′ ∈ R
n−1. (We say that two assertions are equivalent almost every-

where if, outside some set of measure zero, they are simultaneously either true or false.)
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The purpose of this paper is to introduce a family of area-type integrals which can be
used to extend the results of Stein and Brossard and to yield some additional theorems
concerning the boundary behaviour of harmonic functions.

Given a decreasing function f : (0, +∞) → [0, +∞) and a positive harmonic function
h on D we define

A(u, h, f)(Z ′) =
∫

Γ (Z′;β,t)
x2−n

n h(X)
∣∣∣∣∇

(
u

h

)
(X)

∣∣∣∣
2

f

(
|u(X)|
h(X)

)
dλn(X) (Z ′ ∈ R

n−1),

where f(0) is interpreted as lims→0+ f(s). The expression in (1.1) is (A(u, 1, 1))1/2 and
the integral in (1.2) is A(u, 1, t �→ t−2).

Theorem 1.1. Let u be a positive harmonic function on D and suppose that f :
(0, +∞) → [0, +∞) is a decreasing function such that f(s) → +∞ as s → 0+ and∫ 1
0 sf(s) ds = +∞. Then

A(u, 1, f)(Z ′) = +∞ ⇐⇒ unt(Z ′) = 0

for λn−1-almost every Z ′ ∈ R
n−1.

In addition to the case f(s) = s−2 (Brossard’s result), possible choices of f in The-
orem 1.1 include s−2[1 + log+(s−1)]−a when 0 < a � 1. The sharpness of the integral
condition on f is easily seen by considering the harmonic function u(X) = xn. We will
prove Theorem 1.1 by analytic arguments, in contrast to the probabilistic approach in [3].

Theorem 1.2. Let u and h be harmonic functions on D, with h > 0, and let
f be the characteristic function valued 1 on [0, 1) and 0 on [1, +∞). Then u has
a finite non-tangential limit at (Z ′, 0) for λn−1-almost every Z ′ ∈ R

n−1 such that
A(u, h, f)(Z ′) < +∞.

We note that, in the particular case where h = 1, Theorem 1.2 relaxes the area integral
hypothesis in the result of Stein mentioned earlier. This particular case can also be
deduced from a result of Brossard on the density of the area integral (Theorem 2 of [4]).

Since our next result holds in a very general context, we need to introduce some nota-
tion concerning the Martin representation. (We refer to Chapter 8 of [1] for an introduc-
tion to this notion, which generalizes the well-known Poisson integral representation for
a ball.) Let Ω be a connected open set with Green function G(·, ·), and let X0 ∈ Ω be
our reference point. The Martin boundary (respectively, minimal Martin boundary) will
be denoted by ∆ (respectively, ∆1), and the Martin kernel by M(X, Y ). Thus

M(X, Y ) =

⎧⎪⎪⎨
⎪⎪⎩

G(X, Y )
G(X0, Y )

(X ∈ Ω, Y ∈ Ω \ {X0}),

lim
Z→Y

G(X, Z)
G(X0, Z)

(X ∈ Ω, Y ∈ ∆),

and, for each positive harmonic function h on Ω, there is a unique measure µh on ∆ such
that µh(∆ \ ∆1) = 0 and

h(X) =
∫

∆

M(X, Y ) dµh(Y ) (X ∈ Ω).
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Theorem 1.3. Let u and h be harmonic functions on Ω, where h > 0, and let X1 ∈ Ω.
The following are equivalent:

(a) there is a decreasing function ψ : [0, +∞) → (0, +∞) such that
∫ +∞
0 ψ(t) dt = +∞

and ∫
Ω

G(X1, X)h(X)
∣∣∣∣∇

(
u

h

)
(X)

∣∣∣∣
2

ψ

(
|u(X)|
h(X)

)
dλn(X) < +∞; (1.3)

(b) there is a function g ∈ L1(µh) such that u(X) =
∫

M(X, Y )g(Y ) dµh(Y ).

Corollary 1.4. Let u be a harmonic function on Ω \F , where F is a relatively closed
polar subset of Ω. If there is a decreasing function ψ : [0, +∞) → (0, +∞) such that∫ +∞
0 ψ(t) dt = +∞ and ∫

Ω

|∇u|2ψ(|u|) dλn < +∞, (1.4)

then u has a (unique) harmonic extension to Ω.

This corollary relaxes the well-known result that polar sets are removable for harmonic
functions with finite Dirichlet integral (condition (1.4) with ψ = 1). Other suitable choices
for ψ(t) are (1 + t)−1 and [(1 + t) log(2 + t)]−1. The sharpness of the result is seen if we
consider the case where Ω is the unit ball, F = {0}, and u(X) = log |X| when n = 2 or
u(X) = |X|2−n when n � 3.

In our next application of Theorem 1.3, the open set Ω is a Lipschitz domain. In this
case the Martin compactification of Ω is homeomorphic to its Euclidean closure and all
points of the Martin boundary are minimal (see [7], or Theorem 8.8.4 of [1]), so we can
identify ∆ (and ∆1) with the Euclidean boundary ∂Ω.

Corollary 1.5. Let u and h be harmonic functions on a Lipschitz domain Ω, where
h > 0, and let E be a subset of ∂Ω such that µh(E) = 0. If X1 ∈ Ω and there is a
decreasing function ψ : [0, +∞) → (0, +∞) with

∫ ∞
0 ψ(t) dt = +∞ such that

∫
Ω

G(X1, X)h(X)
∣∣∣∣∇

(
u

h

)
(X)

∣∣∣∣
2

ψ

(
|u(X)|
h(X)

)
dλn(X) < +∞, (1.5)

then u has non-tangential limit 0 at σ-almost every point of E, where σ denotes the
surface area measure on ∂Ω.

Our final corollary bears a superficial resemblance to Theorem 1.1. However, unlike
that result, it applies to harmonic functions u of variable sign.

Corollary 1.6. Let u be a harmonic function on D and let ψ : [0, +∞) → (0, +∞) be
a decreasing function such that

∫ +∞
0 ψ(t) dt = +∞. Then unt(Z ′) = 0 for λn−1-almost

every Z ′ ∈ R
n−1 such that A(u, xn, ψ)(Z ′) < +∞.

We will prove Theorems 1.1 and 1.2 in § 3, and Theorem 1.3 and its corollaries in § 4,
following some preparatory observations in the next section.
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2. Preparatory material

Theorem 2.1. Let E′ be a measurable subset of R
n−1 and let u be a harmonic

function on D. The following are equivalent:

(a) u has a finite non-tangential limit at (Z ′, 0) for λn−1-almost every Z ′ ∈ E′;

(b) u is bounded in a cone of vertex Z ′ for λn−1-almost every Z ′ ∈ E′;

(c) A(u, 1, 1)(Z ′) < +∞ for λn−1-almost every Z ′ ∈ E′.

The equivalence of (a) and (b) in Theorem 2.1 was shown by Calderón [5]. We have
already mentioned that Stein proved that (c) implies (a). In the same paper [9] he showed
that (b) implies (c), and also proved the following lemma.

Lemma 2.2. Let Φ : D → [0, +∞) be a measurable function, let E′ be a bounded
Borel subset of R

n−1 such that∫
Γ (Z′;β,t)

x2−n
n Φ(X) dλn(X) < +∞ (Z ′ ∈ E′),

and let ε > 0, α < β and r < t. Then there is a compact subset F ′ of E′ satisfying
λn−1(F ′) > λn−1(E′) − ε and such that

∫
U

xnΦ(X) dλn(X) < +∞,

where U =
⋃

Z′∈F ′ Γ (Z ′; α, r).

The proof of the following elementary lemma is left to the reader.

Lemma 2.3. Let
∑

am be a convergent series of positive real numbers. Then
there is an unbounded, strictly increasing sequence (km) of positive numbers such that∑

mkmam < +∞, and km+2 − km+1 � km+1 − km for all m.

3. Proofs of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1

Suppose that f : (0, +∞) → [0, +∞) is a decreasing function such that f(s) → +∞ as
s → 0+ and

∫ 1
0 sf(s) ds = +∞.

First we make the easy observation that unt = 0 almost everywhere (λn−1) on the set of
points Z ′, where A(u, 1, f)(Z ′) = +∞. To see this, we note that, since u > 0, the function
unt exists and is finite at λn−1-almost every point Z ′ ∈ R

n−1. Hence, by Theorem 2.1,

A(u, 1, 1)(Z ′) < +∞ for λn−1-almost every Z ′ ∈ R
n−1.

The conclusion follows since, if unt(Z ′) > 0, then f(u) is bounded (by cZ′ , say) on the
cone Γ (Z ′; β, t), and so A(u, 1, f)(Z ′) � cZ′A(u, 1, 1)(Z ′).
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Conversely, we will show that unt(Z ′) > 0 for λn−1-almost every Z ′ ∈ E′
k, where

E′
k = {Z ′ : A(u, 1, f)(Z ′) < +∞ and |Z ′| � k}.

Let ε > 0, let α < β and r < t. We apply Lemma 2.2 with Φ = |∇u|2f ◦ u to see that
there is a compact subset F ′ of E′

k satisfying λn−1(F ′) > λn−1(E′
k) − ε and such that

∫
U

xn|∇u(X)|2f(u(X)) dλn(X) < +∞, (3.1)

where U =
⋃

Z′∈F ′ Γ (Z ′; α, r).
The function f is not necessarily continuous so we define f1 : (0, +∞) → [0, +∞) to

be that function whose graph consists of the line segments joining the points

{(2−k, f(21−k)) : k ∈ N} ∪ {(s, 0) : s � 1}.

Then f1 is a decreasing continuous function, f1 � f and
∫ 1
0 sf1(s) = +∞. We define

Ψ : (0, +∞) → R by Ψ(x) =
∫ x

1

∫ y

1 f1(s) ds dy. Then Ψ is a positive C2 convex function
that satisfies Ψ(s) → +∞ as s → 0+.

Let χU denote the characteristic function of U and let an = σn max{1, n − 2}, where
σn is the surface area of the unit sphere in R

n. Using standard estimates of the Green
function for D, it is clear from (3.1) that we can form the potential v on D of the measure

1
an

χU (X)|∇u(X)|2f1(u(X)) dλn(X).

It follows that

∆v = −|∇u|2f1(u) = −|∇u|2Ψ ′′(u) = −�Ψ(u) on U.

Hence v + Ψ ◦ u is a positive harmonic function on U and so, by Théorème 10 of [2],
has a finite non-tangential limit at (Z ′, 0) for λn−1-almost every point Z ′ ∈ F ′. It follows
that Ψ ◦u is non-tangentially bounded at such points. However, Ψ(u) → +∞ as u → 0+.
Hence unt(Z ′) > 0 for λn−1-almost every Z ′ ∈ F ′. Since ε and k are arbitrary, it follows
that unt(Z ′) > 0 for λn−1-almost every Z ′ ∈ R

n−1, where A(u, 1, f)(Z ′) < +∞.

3.2. Proof of Theorem 1.2

Let u, h and f be as in the statement of the theorem, let

E′
k = {Z ′ : A(u, h, f)(Z ′) < +∞ and |Z ′| � k},

and let α < β, r < t and ε > 0. If we define V = {X ∈ D : |u(X)| < h(X)}, then we can
apply Lemma 2.2 with Φ = h|∇(u/h)|2f(|u|/h) to see that there is a compact subset F ′

of E′
k satisfying λn−1(F ′) > λn−1(E′

k) − ε and such that
∫

U∩V

xnh(X)
∣∣∣∣∇

(
u

h

)
(X)

∣∣∣∣
2

dλn(X) < +∞, (3.2)

where U =
⋃

Z′∈F ′ Γ (Z ′; α, r).
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Suppose that Ψ : R → (0, +∞) is a C2 convex function such that Ψ(t) = |t| on
R \ (−1, 1). Then Ψ ′′(u/h) = 0 on D \ V . Hence, in view of (3.2), we can form the
potential v on D of the measure

1
an

χU (X)h(X)
∣∣∣∣∇

(
u

h

)
(X)

∣∣∣∣
2

Ψ ′′
(

u(X)
h(X)

)
dλn(X),

and

∆v = −h

∣∣∣∣∇
(

u

h

)∣∣∣∣
2

Ψ ′′
(

u

h

)
= −∆

(
hΨ

(
u

h

))
on U.

The function H = v + hΨ(u/h) is positive and harmonic on U . Since

|u| = h

∣∣∣∣uh
∣∣∣∣ � hΨ

(
u

h

)
� v + hΨ

(
u

h

)
= H on U,

we can apply Théorème 10 of [2] to the positive harmonic functions H and H − u to see
that each, and thus u, has a finite non-tangential limit at (Z ′, 0) for λn−1-almost every
point Z ′ of F ′. Since ε and k are arbitrary, the result follows.

4. Proof of Theorem 1.3 and corollaries

4.1. Proof of Theorem 1.3

The proof of Theorem 1.3 relies, in part, on ideas from Parreau [8] (see also Theo-
rem 9.4.8 of [1]).

Suppose that condition (a) of the theorem holds. Then we can form the potential v on
Ω of the measure

1
an

h

∣∣∣∣∇
(

u

h

)∣∣∣∣
2

ψ

(
|u|
h

)
d(λn|Ω).

Define φ : [0, +∞) → [0, +∞) by φ(x) =
∫ x

0

∫ y

0 ψ(t) dt dy. Then φ is a convex increasing
function, x−1φ(x) → +∞ as x → +∞ and φ′′ = ψ, and we have

∆v = −h

∣∣∣∣∇
(

u

h

)∣∣∣∣
2

ψ

(
|u|
h

)
= −∆

(
hφ

(
|u|
h

))
on Ω.

Let w = v + hφ(|u|/h). Then w is a positive harmonic function on Ω which majorizes
hφ(|u|/h) and thus |u| � hφ−1(w/h). But hφ−1(w/h) is a superharmonic function on Ω

(see Theorem 3.4.3 of [1]), so it follows that the subharmonic function |u| has a harmonic
majorant H such that H � hφ−1(w/h). Whence hφ(H/h) � w. Let m ∈ N and define
bm = sup{t/φ(t) : t � m}. Then

t � bmφ(t) + m (t > 0, m ∈ N),

and

H � bmhφ

(
H

h

)
+ mh � bmw + mh. (4.1)
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Let νH denote the singular part of µH with respect to µh. We can choose sets A and B

such that νH(B) = 0 = µh(A) and A ∪ B = ∆1, and then observe that

νH(∆1) = νH(A) = µH(A) � bmµw(A) for all m.

Since bm → 0 as m → +∞, we have νH(∆1) = 0. Similarly, νH−u(∆1) = 0, since, from
(4.1),

0 � H − u � 2H � 2bmw + 2mh.

If we define µu = µH − µ(H−u), then µu is absolutely continuous with respect to µh and
so, by the Radon–Nikodým Theorem, condition (b) holds.

Conversely, suppose that (b) holds. Our first step is to show that there is an increasing
convex C2 function φ : [0, +∞) → [0, +∞) such that φ′′ is decreasing, t−1φ(t) → +∞ as
t → +∞ and φ(|g|) is µh-integrable. (If g is bounded, then φ(t) = t2 will suffice.) Let

Am = {Y ∈ ∆ : m − 1 � |g(Y )| < m}, m ∈ N.

Then
∑

m mµh(Am) < +∞ and it follows from Lemma 2.3 that there is an unbounded
strictly increasing sequence (km) of positive numbers such that

km+2 − km+1 � km+1 − km � k1 for all m,

and
∑

m mkmµh(Am) < +∞. We define ψ : [0, +∞) → (0, +∞) to be that function
whose graph comprises the line segments joining the points {(0, k1)}∪{(m, km+1 − km) :
m ∈ N}. Then ψ is a decreasing function and

∫ s

0
ψ(t) dt � k[s] − k1 → +∞ as s → +∞.

Now we define φ : [0, +∞) → [0, +∞) by φ(t) =
∫ t

0

∫ y

0 ψ(s) ds dy and observe that

0 � φ(t) �
m∑

i=1

ki (t � m, m � 1).

Clearly, φ is an increasing convex function such that φ′′ = ψ, and t−1φ(t) → +∞ as
t → +∞. Further, φ(|g|) is µh-integrable since

∫
A

φ(|g|) dµh �
∑
m

φ(m)µh(Am) �
∑
m

mkmµh(Am) < +∞.

Given X ∈ Ω, we apply Jensen’s inequality with the unit measure (M(X, ·)/h(X)) dµh

to obtain

φ

(
|u(X)|
h(X)

)
� φ

(∫
M(X, Y )|g(Y )| dµh(Y )

h(X)

)

�
∫

M(X, Y )
h(X)

φ(|g(Y )|) dµh(Y ).
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Hence, the subharmonic function hφ(|u|/h) has a harmonic majorant H1 given by

H1 =
∫

M(·, Y )φ(|g(Y )|) dµh(Y ).

The non-negative superharmonic function H1−hφ(|u|/h) has Riesz decomposition v+H2,
where v is a potential on Ω and H2 is harmonic there. Hence

∆v = −∆

(
hφ

(
|u|
h

))
= −h

∣∣∣∣∇
(

u

h

)∣∣∣∣
2

φ′′
(

|u|
h

)
= −h

∣∣∣∣∇
(

u

h

)∣∣∣∣
2

ψ

(
|u|
h

)

and (a) follows. This completes the proof of Theorem 1.3.

4.2. Proof of Corollary 1.4

Let u be a harmonic function on Ω \ F , where F is a relatively closed polar subset
of Ω. We choose the reference point X0 for the Martin compactification of Ω to belong
to Ω \ F . Then, for each Y ∈ ∆1 ∪ F , the Martin kernel of Ω \ F is equal to the Martin
kernel M(X, Y ) of Ω restricted to Ω \ F , and the minimal Martin boundary of Ω \ F is
∆1∪F (see Theorem 9.5.1 (i) of [1]). Now, suppose that there is a function ψ as described
in Corollary 1.4. It follows that condition (a) of Theorem 1.3, with h = 1, holds. So, by
condition (b) of Theorem 1.3, there is a µ1-integrable function g on ∆1 ∪ F such that

u(X) =
∫

∆1∪F

M(X, Y )g(Y ) dµ1(Y ) (X ∈ Ω \ F ).

Since µ1(F ) = 0 the function u has a harmonic extension to Ω which is clearly unique.

4.3. Proof of Corollary 1.5

Now let u, h, E and ψ be as in Corollary 1.5, and suppose that (1.5) holds. Then
condition (a), and hence (b), of Theorem 1.3 holds. Since we can identify both ∆ and ∆1

with the Euclidean boundary ∂Ω, there is a µh-integrable function g on ∂Ω such that

u(X) =
∫

∂Ω

M(X, Y )g(Y ) dµh(Y ) (X ∈ Ω).

It is sufficient to consider the case where u � 0, since u is the difference of the two
non-negative harmonic functions

∫
∂Ω

M(·, Y )g+(Y ) dµh(Y ) and
∫

∂Ω

M(·, Y )g−(Y ) dµh(Y ).

Now µu(E) =
∫

E
g dµh = 0, so u has minimal fine limit 0 at µ1-almost every point of E

(see Corollary 9.4.2 of [1]). Since Ω is Lipschitz, Theorem 5.5 of [7] asserts that u has
non-tangential limit 0 at every point of E where it has a minimal fine limit 0. Further,
by Theorem 3 of [6], the measures µ1 and σ on ∂Ω are mutually absolutely continuous.
The result follows.
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4.4. Proof of Corollary 1.6

It remains to establish Corollary 1.6. Let u and ψ be as in the statement of the result,
let

E′
k = {Z ′ : A(u, xn, ψ)(Z ′) < +∞ and |Z ′| � k}

and let α < β, r < t and ε > 0. We can apply Lemma 2.2 with

Φ(X) = xn

∣∣∣∣∇
(

u(X)
xn

)∣∣∣∣
2

ψ

(
u(X)
xn

)

to see that there is a compact subset F ′ of E′
k satisfying λn−1(F ′) > λn−1(E′

k) − ε and
such that ∫

U

x2
n

∣∣∣∣∇
(

u(X)
xn

)∣∣∣∣
2

ψ

(
u(X)
xn

)
dλn(X) < +∞, (4.2)

where U =
⋃

Z′∈F ′ Γ (Z ′; α, r). The number of components in U is finite since F ′ is com-
pact, so, without loss of generality, we can assume that U is connected. It is not difficult
to check that U is a Lipschitz domain. Taking standard estimates for the Green function
on D (and noting that the Green function for D at (X, Y ) ∈ U × U majorizes the Green
function for U at (X, Y )), it is clear from (4.2) that condition (1.5) of Corollary 1.5 holds
with h(X) = xn and Ω = U . Since

µxn(F ′ × {0}) =
∫

F ′×{0}
xn dµ1(X) = 0,

it follows from Corollary 1.5 that unt(Z ′) = 0 for λn−1-almost every Z ′ ∈ F ′. Since ε and
k are arbitrary, the result follows.
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