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Abstract. We are interested in dendrites for which all invariant measures of zero-entropy
mappings have discrete spectrum, and we prove that this holds when the closure of
the endpoint set of the dendrites is countable. This solves an open question which has
been around for awhile, and almost completes the characterization of dendrites with this
property.
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1. Introduction
A dynamical system is a pair (X, f ), where X is a compact metric space and f : X → X

is a continuous map. A continuum is a compact connected metric space. Throughout this
paper, we assume X is a dendrite, that is, a locally connected continuum containing no
simple closed curve.

The main motivation of the paper can be derived from the Möbius disjointness
conjecture proposed by Sarnak in 2009 [23]. By topological arguments, the conjecture was
confirmed on various one-dimensional spaces: the interval [14], the circle [8], topological
graphs [16], some dendrites [11], etc. However, using ergodic theory, it was proved that
if all invariant measures have discrete spectrum, then the conjecture also holds (see e.g.
[13, Theorem 1.2]). This leads to a natural question, what can be said about the spectrum
of measures for zero-entropy maps in the above-mentioned spaces. In [17], the authors
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confirmed that, indeed, maps on topological graphs with zero entropy can have only
invariant measures with discrete spectrum. This motivated the following open question
[17, Question 1.1].

Question 1.1. Which one-dimensional continua X have the property that every
invariant measure of (X, f ) has discrete spectrum, assuming f is a zero-entropy
map?

Similar questions, however, were stated even before, for example in [24] from 1982,
where the author asked whether every ergodic invariant measure in a mean equicontinuous
system has discrete spectrum. The authors of [17] partially answered this question by
showing that the result holds for zero-entropy maps on quasi-graphs X, and it was
completely answered in the affirmative in 2015 in [18]. Let us mention at this point that
continua satisfying the condition in Question 1.1 cannot be too complex. It was shown
in [17] that if a dendrite has an uncountable set of endpoints, then it supports a plethora
of maps with zero topological entropy possessing invariant measures which do not have
discrete spectrum. Then in the realm of dendrites, only those with a countable set of
endpoints can be examples in Question 1.1.

In this paper, we study the dynamics of zero-entropy maps on dendrites for which
the endpoint set has a countable closure. In §3, we build on results from [3, 4] and
show that every recurrent point is in fact minimal (Theorem 3.6), which generalizes a
well-known property of zero-entropy interval maps. In §4, we use this result together
with a characterization of minimal ω-limit sets from [4] to show that every invariant
measure has discrete spectrum (Theorem 4.3) in the case of these dendrites. Our
results almost completely characterize dendrites for which all invariant measures of
zero-entropy mappings have discrete spectrum. We leave unsolved the case of den-
drites for which the endpoint set is countable but has an uncountable closure. We
strongly believe that in the case of these dendrites, the analog of Theorem 3.6 also
holds, because all known examples seem to confirm that. Unfortunately, we were not
able to find a good argument to justify this statement. Structural properties of (other)
one-dimensional continua that may serve as positive examples in Question 1.1 are yet to be
understood.

2. Preliminaries
Let (X, f ) be a dynamical system and x ∈ X. The orbit of x, denoted by Orbf (x), is the set
{f n(x) : n ≥ 0}, and the ω-limit set of x, denoted by ωf (x), is defined as the intersection⋂

n≥0 {f m(x) : m ≥ n}. It is easy to check that ωf (x) is closed and strongly f -invariant,
that is, f (ωf (x)) = ωf (x). The point x is periodic (x ∈ Per(f )) if f p(x) = x for some
p ∈ N, where the smallest such p is called the period of x. Note that throughout this paper,
N denotes the set of positive integers. The point x is recurrent (x ∈ Rec(f )) if x ∈ ωf (x).
The orbit of a set A ⊂ X, denoted Orbf (A), is the set

⋃
n≥0 f n(A), and A is called

invariant if f (A) ⊆ A. A set M is minimal if it is non-empty, closed, invariant, and does
not have a proper subset with these three properties. It can be equivalently characterized
by M = ωf (x) for every x ∈ M . A point is minimal if it belongs to a minimal set.
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Recall that a dendrite is a locally connected continuum X containing no homeomorphic
copy of a circle. A continuous map from a dendrite into itself is called a dendrite map. For
any point x ∈ X, the order of x, denoted by ord(x), is the number of connected components
of X \ {x}. Points of order 1 are called endpoints while points of order at least 3 are called
branch points. By E(X) and B(X) we denote the set of endpoints and branch points,
respectively. In this paper, we especially focus on dendrites in which E(X) has countable
closure. These dendrites are a special case of a tame graph, as introduced in [5]. Note
that when E(X) is countable, so also is B(X) ∪ E(X), because B(X) is countable in any
dendrite and has accumulation points only in E(X).

For any two distinct points x, y ∈ X, there exists a unique arc [x, y] ⊂ X joining those
points. A free arc is an arc containing no branch points. We say that two arcs I , J

form an arc horseshoe for f if f n(I ) ∩ f m(J ) ⊃ I ∪ J for some n, m ∈ N, where I , J

are disjoint except possibly at one endpoint. Denote by htop(f ) the topological entropy
of a dendrite map f (for the definition, see [1, 7, 9]). We will frequently use the fact
that for dendrite maps, positive topological entropy is implied by the existence of an arc
horseshoe [15].

The set of all Borel probability measures over X is denoted by M(X), and Mf (X) ⊂
M(X) denotes the set of all elements of M(X) invariant with respect to the map f. The set
of all ergodic measures in Mf (X) is denoted by Me

f (X). We say that a finite measure μ on
X is concentrated on A ⊂ X if μ(A) = μ(X). It is well known that M(X) endowed with
the weak-* topology is a compact metric space and that Mf (X) is its closed subset. We
say that μ ∈ Mf (X) has discrete spectrum, if the linear span of the eigenfunctions of Uf

in L2
μ(X) is dense in L2

μ(X), where as usual Uf denotes the Koopman operator: Uf (ϕ) =
ϕ ◦ f for every ϕ ∈ L2

μ(X). We refer the reader to [10, 26] for standard monographs on
ergodic theory and entropy.

3. Recurrence and minimality in dendrites with E(X) countable
First we recall the following results by Askri on the structure of minimal ω-limit sets in a
special class of dendrite maps.

PROPOSITION 3.1. [4, Proposition 3.4] Let X be a dendrite such that E(X) is countable
and let f : X → X be a continuous map with zero topological entropy. If M = ωf (x) is
an infinite minimal ω-limit set for some x ∈ X, then for every k ≥ 1 there is an f-periodic
subdendrite Dk of X and an integer nk ≥ 2 with the following properties:
(1) Dk has period αk := n1n2 . . . nk;
(2) for i �= j ∈ {0, . . . , αk − 1}, f i(Dk) and f j (Dk) are either disjoint or intersect at

one common point;
(3)

⋃nj −1
k=0 f kαj−1(Dj ) ⊂ Dj−1;

(4) M ⊂ ⋂
k≥0 Orbf (Dk);

(5) f (Mk
i ) = Mk

i+1 mod αk
, where Mk

i = M ∩ f i(Dk) for all k and all 0 ≤ i ≤ αk − 1.

While equation (5) is not directly stated in [4], it is an obvious consequence of the other
statements.
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Implicit in Proposition 3.1 is the idea that the minimal set M has an odometer as a factor.
Our next lemma shows that when E(X) has countable closure, the factor map is invertible
except on a countable set.

Given an increasing sequence (αk) with αk|αk+1 for all k, we define the group � =
�(αk) of all θ ∈ ∏∞

k=0 Z/αkZ, such that θk+1 is congruent to θk modulo αk for all k,
and we let τ denote the group rotation τ(θ) = θ + (1, 1, 1, . . .). Then (�, τ) is called the
odometer associated to the sequence (αk).

LEMMA 3.2. Let X, f , M , (Dk), (αk) be as in Proposition 3.1 and suppose that E(X) is
countable. Then the following hold.
(1) The sets Jθ = ⋂

k f θk (Dk), θ ∈ �, are closed, connected, and pairwise disjoint.
(2) There is a factor map π : (M , f ) → (�, τ) which takes the value θ on M ∩ Jθ .
(3) Each fiber π−1(θ), θ ∈ �, is countable, and all but countably many of these fibers

are singletons.

Proof. It is clear from Proposition 3.1 that each set Jθ is closed, connected, and has
non-empty intersection with M. It is also clear that f (Jθ ) = Jτ(θ). However, because the
sets f i(Dk) ∩ f j (Dk) are allowed to intersect at a point, it is not clear if the sets Jθ are
pairwise disjoint. We prove this fact now. Suppose there are θ �= θ ′ with Jθ ∩ Jθ ′ �= ∅.
Find k minimal such that θk �= θ ′

k . Then clearly

Jθ ∩ Jθ ′ = f θk (Dk) ∩ f θ ′
k (Dk) = {a}

for some single point a ∈ X. Taking the image by f αk , we have

f αk (a) ∈ f αk (Jθ ) ∩ f αk (Jθ ′) = Jταk (θ) ∩ Jταk (θ ′) = f θk+αk (Dk) ∩ f θ ′
k+αk (Dk) = {a},

because Dk is periodic with period αk . This shows that a is periodic with period αk .
In particular, it does not belong to the infinite minimal set M. Now for n ∈ N, let
Jn = Jτnαk (θ). Then a ∈ Jn and we can choose an additional point mn ∈ M ∩ Jn for all n.
Thus the Jn sets are non-degenerate subdendrites and intersect pairwise only at a. In
particular, the sets (a, mn] are pairwise disjoint connected subsets of X, so their diameters
must converge to zero (see e.g. [19, Lemma 2.3]). However, because M is closed, this
shows that a ∈ M , a contradiction.

Now that the sets Jθ , θ ∈ � have been shown to be pairwise disjoint, we see
immediately that π is well defined. It is also easy to see that π is continuous and
τ ◦ π = π ◦ f .

Again, because the sets Jθ , θ ∈ � are pairwise disjoint connected sets in X, only
countably many of them can have positive diameter. It follows that π−1(θ) is a singleton
except for countably many θ . It remains to show that M ∩ Jθ is countable when Jθ

is non-degenerate. Because M is minimal and Jθ never returns to itself, we must have
M ∩ Jθ ⊂ Bd(Jθ ), where Bd(Jθ ) stands for the boundary of Jθ . However, the boundary
in X of the subdendrite Jθ is a subset of E(Jθ ) ∪ B(X) ∪ E(X), which is countable by the
assumption that E(X) has countable closure. Here we use the well-known facts that B(X)

is countable in any dendrite, and the cardinality of the endpoint set of a dendrite cannot
increase when we pass to a subdendrite, see e.g. [21, 22].
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Remark 3.3. We have in fact shown that for a zero entropy map on a dendrite whose
endpoint set has countable closure, every minimal subsystem is a regular extension of its
maximal equicontinuous factor in the sense defined in [12]. For infinite minimal sets, this
is implied by Lemma 3.2(3) and a finite minimal set is just a periodic orbit.

The next lemma strengthens [4, Lemma 3.5] by relaxing the condition that E(X) be
closed.

LEMMA 3.4. [4, Lemma 3.5] Let X, f , M , (Dk), (αk) be as in Proposition 3.1 and
suppose that E(X) is countable. Then there is N ≥ 1 such that for all k ≥ N , f ik (Dk)

is a free arc for some 0 ≤ ik ≤ αk − 1.

Proof. Using Lemma 3.2, we know that there are uncountably many singleton sets Jθ .
Now a dendrite whose endpoint set has countable closure is always the union of a countable
sequence of free arcs and a countable set, see [5, Theorem 2.2]. It follows that we can
find θ with the singleton Jθ in the interior of a free arc A in X. Because Jθ is the nested
intersection

⋂
N f θN (DN), we can find N large enough that f θN (DN) is contained in A.

Then f θk (Dk) is a free arc for all k ≥ N .

Our next result is a good first step in showing that recurrent points are minimal. It is
a modified version of [3, Theorem 1.1], and the proof closely follows the one from that
paper.

LEMMA 3.5. Let X be a dendrite with E(X) countable, f : X → X a continuous map
with zero topological entropy, and x ∈ X a point which is recurrent but not periodic. Then
ωf (x) contains no periodic points.

Proof. Throughout the proof, we will use freely the following well-known property of
ω-limit sets (e.g. [6]): if for fixed n ≥ 2 we write Wi = ωf n(f i(x)) for 0 ≤ i < n, then
ωf (x) = ⋃n−1

i=0 Wi and f (Wi) = Wi+1 (mod n). In particular, if ωf (x) is uncountable, then
so is each Wi , and if ωf (x) contains a given fixed point, then each Wi contains it as well.
We continue to use the notation [x, y] for the unique arc in X with endpoints x, y ∈ X, and
if z ∈ (x, y) = [x, y] \ {x, y}, we will say for simplicity that z lies between x and y.

Now let L = ωf (x), where x is recurrent but not periodic. Then L is the closure of the
orbit of x, and hence it is a perfect uncountable set.

Step 1: L does not contain a periodic point with a free arc neighborhood in X. Suppose
to the contrary that a ∈ L, f N(a) = a, and some free arc C is a neighborhood of a in X.
Then, by the standard properties mentioned above, a ∈ ωf N (f i(x)) for some 0 ≤ i < N .
Replacing f with its iterate and x with its image, we may safely assume that N = 1 and
i = 0, that is, a is a fixed point in L = ωf (x).

Because periodic points are never isolated in infinite ω-limit sets, we know that L
accumulates on a from at least one side in the free arc C. So, choose an endpoint b
of C such that L ∩ [a, b] accumulates on a. For convenience, we let C carry its natural
order as an arc, oriented in such a way that a < b. Choose five points yi ∈ L ∩ [a, b]
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with a < y1 < y2 < y3 < y4 < y5 < b. Choose three small arc neighborhoods I2, I3, I4

containing y2, y3, y4, respectively, and let them be pairwise disjoint and lie between y1

and y5. Because the orbit of x visits each of these neighborhoods Ii infinitely often, there
must be points in I2 and I4 which visit I3, so by [19, Theorem 2.13], f has a periodic point
c between y1 and y5. Replacing x with a point from its orbit near y1, we may assume that
a < x < c < y5 < b. Let r be the period of c and put g = f r . Because a was already fixed
for f, we have a ∈ ωg(x) as well. Note that because x is recurrent for f, it is also recurrent
for g.

CLAIM. There is an arc I invariant for g with [a, x] ⊆ I ⊆ [a, c].

Proof of Claim. To prove the claim, put I = ⋃∞
n=0 gn([a, x]). Because a is fixed and x is

recurrent, it suffices to show that gn([a, x]) ⊆ [a, c] for all n. If this is not true, then there
is z ∈ [a, x] and n0 ≥ 1 such that a is between gn0(z) and c or c is between gn0(z) and a.
We treat these two cases separately.

Suppose first that a is between gn0(z) and c. Then a ∈ gn0([z, c]), so there is a−1

between z and c with gn0(a−1) = a. Then f n(a−1) = a for all n ≥ n0 · r . Because
L ∩ [a, b] accumulates on a, we can find a point x′ ∈ Orbf (x) between a and a−1. Because
y5 ∈ ωf (x), we can find n ≥ n0 · r such that f n(x′) is close to y5 and a < x′ < a−1 < c <

f n(x′). Put J = [a, x′] and K = [x′, a−1]. Then f n(J ) ∩ f n(K) ⊇ J ∪ K , so f possesses
an arc horseshoe and thus has positive topological entropy, a contradiction.

Suppose instead that c is between gn0(z) and a. Then c ∈ gn0([a, x]), so there must
be c−1 between a and x with gn0(c−1) = c. Because a ∈ ωg(x), we can choose n > n0

with gn(x) close to a so that gn(x) < c−1 < x < c. Put J = [c−1, x] and K = [x, c].
Then again gn(J ) ∩ gn(K) ⊇ J ∪ K , so g has positive topological entropy and so does f,
a contradiction. This completes the proof of the claim. �

Now we may use the claim to finish Step 1. Because x belongs to the closed invariant
set I, we have ωg(x) = ωg|I (x). However, g|I is an interval map, and when an infinite
ω-limit set for an interval map contains a periodic point, the topological entropy must be
positive (see [20]), a contradiction.

Step 2: L does not contain any periodic points. Suppose to the contrary that a ∈ L is
a periodic point. As in Step 1, we may assume that a is fixed. By [5, Theorem 2.2], the
dendrite X is the union of a countable sequence of free arcs together with a countable set.
In particular, we can find a free arc C not containing a with L ∩ C uncountable. Write C =
[u, v] with v between u and a and let < denote the order in C with u < v. Because L ∩ C

is infinite, we may choose four points xi ∈ Orbf (x) with u < x1 < x2 < x3 < x4 < v.
As in Step 1, we can use small arc neighborhoods of x2, x3, x4 to find a periodic point c
with u < x1 < c < v, and because x1 is in the orbit of x, we may redefine x = x1 without
changing ωf (x). Let r denote the period of c and put g = f r. Because x is recurrent also
for g, we have Orbg(x) ∩ [u, c] infinite, so we can find two points x5, x6 ∈ Orbg(x) with
u < x5 < x6 < c and passing forward along the orbit, we can redefine x = x6 without
changing ωg(x). In particular, x5 ∈ ωg(x) = Orbg(x), so we can choose p ≥ 1 with gp(x)

close to x5 so that u < gp(x) < x < c.
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Let l = ωgp(x). We have x ∈ l because x is recurrent and a ∈ l because a is a fixed
point in ωf (x). Moreover, c �∈ l as a result of Step 1. So let X0, X1 denote the connected
components of X \ {c} containing x and a, respectively, and put li = l ∩ Xi . Then l =
l0 ∪ l1 expresses l as the disjoint union of two non-empty open subsets (in the topology
induced from X to l). Recall that every ω-limit set ωf (x) is weakly incompressible, that is,
f (U) �⊂ U for any set U � ωf (x) open in ωf (x) (see, e.g. [25]). Thus we have gp(l0) ∩
l1 �= ∅. Therefore, we may choose y ∈ l0 with gp(y) ∈ l1, and because Orbgp (x) is dense
in l0, we may choose y from the orbit of x. We finish the proof in two cases, depending on
the location of y.

Suppose first that y is between x and c. In the ordering of the arc [gp(x), gp(y)], we have
gp(x) < x < y < c < gp(y). Put I = [x, y] and J = [y, c]. Clearly gp(I ) ⊇ I ∪ J .
Because y ∈ Orbg(x), we have ωg(y) = ωg(x) ⊃ Orbg(x) � gp(x). In particular, we may
choose n > p to make gn(y) as close to gp(x) as we like, so that x, y ∈ [gn(y), c].
However, then gn(J ) ⊇ I ∪ J . We conclude that g possesses an arc horseshoe and thus
g has positive topological entropy, which is a contradiction with htop(f ) = 0.

Suppose instead that x is between y and c. Then c ∈ [gp(x), gp(y)], so there is
c−1 ∈ (x, y) with gp(c−1) = c. In the ordering of the arc [y, gp(y)], we have y <

c−1 < x < c and we also have x ∈ (gp(x), c). Put I = [c−1, x] and J = [x, c]. Because
y ∈ Orbg(x) ⊂ ωg(x), we can find n > p with gn(x) as close to y as we like. In
particular, we can get x, c−1 ∈ [gn(x), c]. However then gn(I ) ∩ gn(J ) ⊇ I ∪ J . Again
we conclude that g has positive topological entropy, which is a contradiction. This ends the
proof.

THEOREM 3.6. If X is a dendrite in which E(X) is countable and if f : X → X has zero
topological entropy, then every recurrent point for f is minimal.

Proof. Let x ∈ Rec(f ). If x is periodic, then it is minimal, so assume x is not periodic.
Let L = ω(x). Let M ⊂ L be a minimal set. By Lemma 3.5, L contains no periodic orbits,
so M is an infinite minimal set. Then Proposition 3.1 applies and we get a sequence of
f -periodic subdendrites (Dk)k≥1 and periods (αk) satisfying properties (1)–(5) of that
proposition. By Lemma 3.4 for all sufficiently large k, we have that f i(Dk) is a free arc for
suitable i. Because M is infinite and Dk is periodic, we have M ∩ int f i(Dk) �= ∅ and as a
consequence, Orbf (x) ∩ Dk �= ∅, for every sufficiently large k. Hence,

⋂
k≥1 Orbf (Dk)

contains L, that is, property (4) still holds with L in the place of M.
We claim that property (5) also holds with L in the place of M. Fix k and denote Li =

f i(Dk) ∩ L for 0 ≤ i < αk − 1. Observe that L does not contain periodic points, and the
set Orb(f i(Dk) ∩ f j (Dk)) is always finite and invariant for any i �= j (can be empty)
and hence Li ∩ f j (Dk) = ∅ for i �= j . This shows that the sets Li ∩ Lj = ∅ for i �= j .
Clearly f (Li) ⊆ Li+1(mod αk), and f (L) = L because ω-limit sets are always mapped onto
themselves. This shows that f (Li) = Li+1(mod αk). In particular, we conclude that Li is
uncountable for each i.

Again using Lemma 3.4, choose k large enough that f i(Dk) is a free arc for some 0 ≤
i < αk − 1 and let A = f i(Dk) denote that free arc. We have just shown that Li = A ∩ L

is uncountable, so because A is a free arc, there are points from ω(x) in its interior. Thus
we can find a point y = f l(x) from the forward orbit of x in A. Then ωf (x) = ωf (y) and
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y is also recurrent for f. Because Rec(f αk ) = Rec(f ), y is also recurrent for f αk . However,
the restriction of f αk to A is an interval map with zero topological entropy. For such a
map, all recurrent points are minimal points, see e.g. [6, Ch. VI. Proposition 7]. Thus, y is
a minimal point for f αk , and hence also for f. This shows that ωf (y) = ωf (x) is a minimal
set, and hence x itself is minimal.

4. Discrete spectrum in dendrites with E(X) countable
By [17, Theorem 1.5], each one-sided subshift with zero entropy can be extended to a
dynamical system on the Gehman dendrite with zero topological entropy. This provides a
plethora of examples of dynamical systems on a dendrite with a closed set of endpoints
having zero topological entropy and invariant measures which do not have discrete spec-
trum. However, in the Gehman dendrite, E(X) is uncountable, because E(X) is a Cantor
set. Alternatively, each dendrite with E(X) uncountable contains a copy of the Gehman
dendrite (see e.g. [2], cf. [17]). So on all these dendrites, there exist dynamical systems
with zero topological entropy and invariant measures not having discrete spectrum.

Our work below shows that the opposite holds in the case of a dendrite X, where E(X)

is countable: all invariant measures of zero-entropy mappings have discrete spectrum. So
in the case of dendrites, the remaining case in Question 1.1 is when E(X) is countable but
E(X) is uncountable. This case is left as a problem for further research.

LEMMA 4.1. Let (X, f ) be a topological dynamical system and suppose that all measures
μ ∈ Mf (X) which are concentrated on Ai have discrete spectrum, for each member Ai of
some finite or countable collection of invariant Borel sets. Then any μ ∈ Mf (X) which is
concentrated on

⋃
i Ai also has discrete spectrum. In particular, if Rec(f ) ⊆ ⋃

i Ai , then
every μ ∈ Mf (X) has discrete spectrum.

Proof. Let μ be any finite invariant measure concentrated on
⋃

i Ai . Because each Ai is
invariant, that is, f (Ai) ⊂ Ai , and f preserves μ, we may assume by throwing away a set
in X of μ-measure zero that f −1(Ai) = Ai for each i.

We may take the index set for the variable i to be {1, . . . , n} in the finite case or N in
the countable case. Then putting Bi = Ai \ ⋃

j<i Aj for each i, we get a collection {Bi} of
pairwise disjoint invariant Borel sets. Now let I = {i : μ(Bi) > 0} and write μi = μ|Bi

for the (unnormalized) restriction of μ to Bi . Then we get a direct sum decomposition of
Hilbert spaces L2

μ(X) = ⊕
i∈I L2

μi
(Bi). (Here in a direct sum

⊕
Hi of Hilbert spaces, we

include all (vi), vi ∈ Hi such that
∑ ||vi ||2 < ∞. We do not require that all but finitely

many vi vanish.) We may extend each function φ ∈ L2
μi

(Bi) to an element of L2
μi

(X) by
letting φ vanish outside of Bi . Because f −1(Bi) = Bi , we see that if φ ◦ f = λφ holds
μi-almost everywhere (a.e) in Bi , then by letting φ vanish outside Bi , it continues to hold
μ-a.e in X. Thus we have the equivalent direct sum decomposition

L2
μ(X) =

⊕
i∈I

L2
μi

(X), (4.1)

and an eigenfunction in a coordinate space is still an eigenfunction in the whole space.
For each i ∈ I , the normalized measure μi/μ(Bi) is an invariant probability measure for
f concentrated on Bi ⊂ Ai , so by hypothesis, the eigenfunctions of the Koopman operator
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on the space L2
μi/μ(Bi)

(X) have dense linear span. Dropping the normalizing constant, the
same holds for L2

μi
(X). Passing through the direct sum decomposition, it follows that the

eigenfunctions of the Koopman operator on the space L2
μ(X) have dense linear span, that

is, μ has discrete spectrum.
The last statement of the lemma follows by the Poincaré recurrence theorem, whereby

if Rec(f ) ⊆ ⋃
Ai , then every measure μ ∈ Mf (X) is concentrated on

⋃
Ai .

LEMMA 4.2. Let X be a dendrite and suppose that f : X → X is a continuous map with
zero topological entropy. If D ⊂ X is a tree and R : X → D is a natural retraction, then
the map F : D → D given by F = R ◦ f has zero topological entropy.

Proof. Suppose that F has positive entropy. Then by [15], there exists an arc horseshoe
I1, I2 with Fn1(I1) ∩ Fn2(I2) ⊃ I1 ∪ I2 for some n1, n2 ∈ N. Then F i(Ij ) is not a single
point for any i = 1, . . . , nj and j = 1, 2. However, if F(J ) is non-degenerate for an arc J,
then f (J ) ⊃ F(J ) which implies that f n1(I1) ∩ f n2(I2) ⊃ I1 ∪ I2 which implies that f
has positive topological entropy. A contradiction.

THEOREM 4.3. Let X be a dendrite such that E(X) is countable and let f : X → X be
a continuous map with zero topological entropy. Then every measure μ ∈ Mf (X) has
discrete spectrum.

Proof. Let Z = {z ∈ E(X) : ωf (z) is an infinite minimal set}. Following arguments in
[21, Theorem 10.27], let (Tn)n∈N ⊂ X be an increasing sequence of topological trees with
endpoints in E(X) defined as follows. We inductively construct the sequence (Tn)n∈N
starting with T1 = {e1} for some e1 ∈ E(X). Then for n ≥ 1, we attach to Tn an arc
[e, en+1] whose one endpoint en+1 belongs to E(X) \ Tn and e ∈ Tn. Because E(X) is
countable, we can put every endpoint into one of the trees, that is, we let the sequence
(en)n∈N be an enumeration of E(X), and then

⋃
n≥1 Tn being a connected set must

coincide with the whole dendrite X.
Let T̂n = ⋂∞

i=0 f −i (Tn) be the maximal invariant set completely contained in Tn. Let
Per(f ) be the set of periodic points of f. We claim that

Rec(f ) ⊂ Per(f ) ∪
( ⋃

z∈Z

ωf (z)

)
∪

( ⋃
n

T̂n

)
. (4.2)

To see this, let x be a non-periodic recurrent point whose orbit is not contained in any
of the trees Tn. This means that there are points f ni (x) which belong to Tmi

\ Tmi−1

for some strictly increasing sequences mi , ni → ∞. Then the arcs [f ni (x), emi
] in X

are pairwise disjoint, so by [19, Lemma 2.3], their diameters tend to zero. This shows
that lim infn→∞ d(f n(x), E(X)) = 0. Therefore, ωf (x) ∩ E(X) �= ∅. By Theorem 3.6,
ωf (x) is a minimal set, so choosing z ∈ ωf (x) ∩ E(X), we have ωf (x) = ωf (z). This
establishes equation (4.2).

Now observe that any finite invariant measure concentrated on Per(f ) has discrete
spectrum, see e.g. [17, Theorem 2.3]. As for the sets T̂n, note that for each n ∈ N, the
map F = R ◦ f , where R : X → Tn is a retraction, satisfies F |

T̂n
= f |

T̂n
by the definition
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and therefore each f -invariant measure concentrated on T̂n (a subset of a tree) has discrete
spectrum, as, by [17], all invariant measures of F have discrete spectrum.

Finally, we claim that any invariant measure concentrated on ωf (z), z ∈ Z, has
discrete spectrum. Let (Dk) be the periodic subdendrites with periods (αk) described in
Proposition 3.1 and let π : (ωf (z), f ) → (�, τ) be the factor map onto the odometer
described in Lemma 3.2. Let μ ∈ Mf (X) be any invariant measure concentrated on
ωf (z). Then the pushforward measure π∗(μ) is invariant for the odometer, so by unique
ergodicity, it is the Haar measure on � and it has discrete spectrum as a consequence
of [26, Theorem 3.5]. Now because ωf (z) contains no periodic points, we know that μ

is non-atomic and therefore countable sets have measure zero. Then in the category of
measure preserving transformations, the factor map π : (ωf (z), μ, f ) → (�, π∗(μ), τ) is
in fact an isomorphism, because by Lemma 3.2, it is invertible except on a set of μ-measure
zero. This implies that μ has discrete spectrum.

We have shown that an invariant measure concentrated on any of the countably many
invariant sets in equation (4.2) has discrete spectrum. By Lemma 4.1, this completes the
proof.
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