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Abstract

The present paper deals with two inequalities which resemble Copson's integral inequalities.
From our theorems, we obtain two interesting corollaries.
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1. Introduction

Copson [4] has proved integral analogues of his inequalities for series which
he originally proved with a view to generalizing Hardy's inequality for a series
of nonnegative terms [5, Theorem 337]. A typical inequality of Copson is
the following:

THEOREM A [4, Theorem 1]. Let <t>{x), f(x) be non-negative for x > 0 and
be continuous in [0, oo). Let

(1.1) <D(x) = f 4>{t) dt, F(x) = fX f{t)4>{t) dt.
Jo Jo

Let p > 1, c> 1. 7/0 < b < oo and

(1.2) /
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converges at the lower limit of integration, then

(1.3) / FP<!>-c(f>dx < (-^-r) f fp&-c4>dx.
Jo \c ~ l / Jo

The case c = p and <j>{x) = 1 is Hardy's classical inequality [5, Theo-
rem 327] which inspired many mathematicians including Copson. In fact,
Theorem A mentioned above is one of the six inequalities established in [4].
Beesack [1] has proved six similar inequalities, two of which provide alter-
nate proofs of [4, Theorems 5 and 6]; a further two are additional cases
which complete Copson's list, and the remaining two inequalities deal with
the case p < 0. Independent generalizations of Copson's inequalities referred
to above have been established by Love [6, 7], Mohapatra and Russell [8].
Boas [2] has considered generalization of Hardy's inequality and in [3], Boas
and Imoru have obtained interesting results on convolution inequalities.

2. Statement of results

Throughout the paper, K(p) will denote a positive constant, depending
only on p, which may be different at different occurrences. We shall define
p' by l/p + l/p' = 1, for p > 1. Also it is to be understood that x > 0
in all occurrences of x. We also assume that functions / and <f> are real
and continuous on [0, oo). Additional restrictions to be satisfied by <f> will be
mentioned whenever necessary.

We shall prove the following theorems.

THEOREM 1. Let <f>(x)be positive and locally absolutely continuous in [0, oo)
and f{x) > 0 in [0,oo). Let p > I,

(2.1) <D(x)

(2.2) x\<t>'(x)\ < A<f>{x) and

for all x > 0, where A and B are positive constants, and
/•OO ( /-OO ft )P

(2.3) / <t>{x) \<&{x)-1 I rx<t>{t)llp> I <j>(u)l/pf(u)dudt\ dx < oo.
Jo I Jo Jo )

Then

(2.4)

BY j T { i jfV(()1"/«)<*i} dx.

https://doi.org/10.1017/S1446788700035254 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035254


126 R. N. Mohapatra and K. Vajravelu [3]

REMARK. The outer integrals in (2.4) can be replaced by /o
m for 0 < m < oo

by modifying the hypotheses appropriately.
By setting <j>(u) = (u + l)~l in Theorem 1 and using the inequality

ln(x + 1) > x/(x + 1) (x > 0), we get

COROLLARY 1. Let p > 1 and f(x) be non-negative on x > 0. Then

provided the integral in (2.3) converges when <f>{u) = (u + I)"1.

THEOREM 2. Let p > 1, 4>(x) be positive, locally absolutely continuous in
[0,oo), and f{x) be non-negative on [0,oo). Further, let (2.1), (2.2) and the
following hold:

(2.6) 4>{t)xlpf{t)lteL{x,oo), forallx>0.

If the integral

(2.7) j%{x)(j^^.Ju-^u)l"'nu)dudt\ dx

converges, then

where C = 1 + A + B.

By setting 4>{u) = {u + I ) " 1 , we obtain

COROLLARY 2. Let p > 1 and f(x) be a non-negative function on x > 0.
Further, let the integral in (2.7) converge with 4>(u) = (u + I)"1. Then

vr—( r f{t)dt

Love [7] has developed an excellent method for obtaining integral inequal-
ities when the kernel is homogeneous. Unfortunately that method cannot
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be employed here since we want to obtain corollaries in which the kernel
contains a logarithmic function.

3. Statement of lemma

We shall need the following lemma for the proof of our theorems.

LEMMA (see [8, Lemma 1]). (a) Let 1 < p < oo and z ( ) be non-negative
and integrable over [0, x). Then

(3.1) (J"z(t)dtJ =p£ z(t)(£z(u)di?) dt.

(b) Let 1 < p < oo and z ( ) be non-negative and integrable over (x,oo).
Then

aoo \P roo / /-oo \P-1

z(t)dtj =pjo z(t)[Jt z(u)duj dt.

4. Proof of theorems

PROOF OF THEOREM 1. Set

JO

Since <j>(t) and f(t) are continuous on [0, oo), we have

(4.2) g'(x) = <t>{

Using (4.2), we have

On integrating by parts we obtain

(4.4) r <t>{t)i">'g'{t) dt = g{x)<t>{x)in>' - 1 r
Jo , -P ./o
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By (4.3), (4.4) and Minkowski's inequality,

r f°° r i fx v ~\i/p
(4.5) / <f>{x){^-7-^ <j>{t)f{t)dt\ dx\

[Jo

:= /i + /2-

Now, observe that by (2.2) we can conclude that

Thus, it is enough to prove that

(4.7) Ip
2 < A" f°° (^p-X dx.

For the sake of brevity, let us write

and

(4.9) 7/(0= I h{u)du.
Jo

Hence, l{ = {p'Yp /0°° <f>(x){^ /o
x h{t) dt}p dx.

By the lemma,

j j* ^ jJ* h(t) dtj =pj* h{t) ^ h(u) du)j dt

and consequently,

(4.10) / 4>{x){<b{x))-pH{x)p dx
Jo

)-P fXh(t)H(tf-ldtdx
Jo
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As explanation of the last step, we note that O(x) is positive and increasing,
so &(x)l~" is positive and decreasing. Thus O(JC)1~P tends to a limit / > 0
as x -+ oo, and so

(4.11) / <b{x)-p(t>{x)dx = (p- I)"1 \Q>{ty-p-I\ <{p- 1)

Next, writing h(t) = (h(t)<f>(t)-]/p')<f>(t)l/p', and using Holder's inequality,
we get

(4.12)

By (4.8) and (2.2),

cj>(t)-l'"'h(t) = g(t)(<Kt))-l\<t>'(t)\ < Ag{t)/t.

We can obtain from (4.10), (4.11) and (4.12)

(4.13) I°° <j>{x) {O(x)-'H(x)}P dx

UP'

It should be remarked that, by (2.2) and (2.3), the expression in the second
square bracket is not infinite. However, if the expression is zero, H{x) is zero
for almost all x > 0, and hence so is h(x) by (4.9). By (4.5), then I2 = 0;
so (4.7) is satisfied immediately and there is nothing further to be proved.
If the expression referred to is nonzero and finite, we derived both sides of
(4.13) by the expression in the second square bracket to get (4.7).

This completes the proof of Theorem 1.

PROOF OF THEOREM 2. Set

(4.14) v(x)= [ rl<Kt)i/pf(t)dt.
Jx

Hence

^r- = -x-lf(x)(f>(x)l'p

and consequently

(4.15) f(x) = -x<f>(x)
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For m > x > 0,
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i: m dt = -

Jx dt 0(0
dt

Jx
d

dt
dt.

On making /n -» oo, we get

Now, by using (4.16) and Minkowski's inequality, we obtain

(4.17)

where

and

E2 =

Since (2.2) holds,

f,{ 0(0

In order to handle Ei, observe that

(Am L (^)
K • > d t \ 0 ( 0

From (4.18) and (2.2),

0(0

(4.19) rf (t<Kt)xlp'\ ^myip' (\ A B\
dt \ 0(0 ) - 0(0 \ / P't t) 0(0 '

where C = 1 + A + B is actually independent of p. Thus

I p

dx := CI.

The hypothesis (2.7) shows that / is not infinite. If / = 0, then £2 = 0
and consequently the inequality (2.8) follows from the inequality for E\.
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When 7 ^ 0 , the proof of the theorem is completed by using Lemma (b),
changing the order of integration and using Holder's inequality, much as in
the treatment of (4.10) of Theorem 1.

Finally, we shall get

(4.20) E2 < (Cp)p f°° V(s)p ds.
Jo

On substituting the estimates for E\ and Ei in (4.17), we get

where C = 1 + A + B.
This completes the proof of Theorem 2.

REMARK. It is desirable to prove Theorem 1 and Theorem 2 without
requiring the convergence of integrals in (2.3) and (2.7). It is more natural to
assume the convergence of the integrals on the right side of (2.4) and (2.8).
However, we have not succeeded in obtaining such proofs.
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