ORIENTED FLAT SUBMANIFOLDS IN AN AFFINE
SPACE

M. J. ENGLEFIELD

Introduction. The simplest examples of figures which possess inner orienta-
tion are a sensed line, and a plane in which a sense of rotation is specified.
Suppose two sensed lines, which intersect in a finite point, are given in a
definite order. Then there is only one way in which the first can be rotated
to coincide with the second without passing through the second. In this way,
two ordered, sensed lines determine a sense of rotation in the plane which
contains them. The theorems proved below are essentially generalizations of
this result to spaces of higher dimension, and the corresponding results con-
cerning outer orientation. This concept is also simply illustrated in two
dimensions: a line divides the plane into two parts; it has outer orientation
if these two parts are given a definite order. In three dimensions, a line is
given outer orientation by specifying a sense of rotation around it, while a
plane is given outer orientation by assigning an order to the two parts into
which it divides the space.

This paper is concerned with the section E; (of dimension s), and the join
E,, of two flat submanifolds E, and E, of an n-dimensional affine space. I
shall demonstrate the following results:

(1) Suppose the section is not null or improper. If pq + st is even, then (a) an
inner orientation in the join E, is determined if inner orientations are given in
E,, E,, and their section Eg; and (b) an outer orientation around the section
E; is determined if outer orientations are given around E,, E,, and their join
E.. If pq + stis odd, the results are true if E, and E, are ordered.

(i1) The corresponding results when the section is null or improper are obtained
by replacing pq + st by pg + st + p + q.

The notation used follows the kernel-index method described by Schouten
in his recent books (1; 2), which also provide most of the terminology. The
only geometric objects appearing in this paper are vectors, each of which
has a kernel consisting of a capital Latin letter, usually with an index below
or above it. The initial letters of the alphabet are reserved for contravariant
vectors, and the last few letters for covariant vectors. The components of a
vector in a given co-ordinate system are denoted by its kernel with the in-
dices of the co-ordinate system on the right. Thus

Zn N =1,2,. .., )
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z
are the components of the covariant vector Z in the co-ordinate system
(«"). Like «’, N’ is one of the running indices of the system, while 1/,...,7n/
are the fixed indices. Each co-ordinate system has its own running and fixed
indices.

Sections 1 and 3 discuss flat submanifolds, giving some familiar results
which are required. Outer and inner orientation are defined in §2 with re-
ference to the covariant and contravariant domains belonging to a submani-
fold. The result (i)(a), which was given by Schouten, is proved in §4. Finally,
the remaining results are obtained and illustrated with simple examples.

1. The domains of a flat submanifold. The set of points with co-ordinates
satisfying a number of linear equations is called a flat submanifold. If n — p
of these equations are independent, the submanifold can be considered as an
affine space of dimension p, or E,. When all the equations, say x*U* + P*
=0(u=p+4+1,...,n), are independent, they are a null form of the E,.
For each u, the U/* are the components in (k) of a covariant vector; these

n — p linearly independent vectors l} span a covariant domain. The vectors
of this domain will be said to belong to the E,.

If ByUX=00B=1,...,p), and K*'U¥* + P* = 0, then x* = n°By + K"
belongs to the submanifold for all #°. If the matrix [B}] has rank p, x* = 5B}
+ K"is a parametric form of the E,, and the sets n® may be used as co-ordinates.
The contravariant vectors B with components Bj in (k) span a contravariant

b
domain which will be said to belong to the submanifold.

A p-direction, or improper E, 1, may be regarded either as the set of all sub-
manifolds parallel to a given E,, or as their common ‘‘points at infinity.”
Since parallel submanifolds have the same covariant and contravariant do-
mains, we may also say that these domains belong to the p-direction, which
is called their support.

2. Inner and outer orientation. Two sets of ordered, linearly independent
contravariant vectors G and

i
i

H=AG Gji=1,...,1)
1

J

i
are said to have the same screw-sense if the determinant

>0,

1
A
7

and opposite screw-senses if

< 0.

i

A

3

The screw-sense of the set G may be identified with the sign of the deter-
i

minant
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H

if the allowed co-ordinate transformations
x¢ = x"4Y 4+ 4% k=1,...,m; =1,...,n)

are restricted to those with determinant [4%| positive. The space is then
oriented, and is said to have an inner orientation (or screw-sense)—that fixed
by the contravariant basis (or measuring) vectors (1, p. 7; 2, p. 12; 3, p. 5)
of an allowed co-ordinate system.

Orientation in any flat submanifold E, is defined in the same way: if 7°

(b =1,...,p) are rectilinear co-ordinates for the E,, a screw-sense is fixed
in the E, by an ordered set of p linearly independent quantities
E B=1...,p)

which are contravariant vectors with respect to transformations of the 7°.
These will be called contravariant vectors in the E,, and may be represented
by pairs of points of the E,. Any such point-pair also represents a contra-
variant vector in the E,, and in this way an isomorphic correspondence can
be set up between the contravariant vectors in the E, and the contravariant
vectors in the E, belonging to the E,(3, p. 20). For example, if

x* = 9"By + K" @ =1,...,9)
is a parametric form for the submanifold, the contravariant vectors with

components By in (k) correspond to the contravariant basis (or measuring)

vectors e of the co-ordinate system (') in the E,. Through this correspond-
b'

ence, an ordered set of vectors
B b=1,...,p)
b
spanning the domain belonging to the E, fixes a screw-sense in the E,. The
set
b
C=A4B (bye=1,...,p)
c c b

determines the same screw-sense if the determinant
b

A

c

> 0.

Inner orientation in a submanifold E, could therefore be defined in terms
of the contravariant vectors belonging to it. The equivalent considerations
for covariant vectors suggest the following definition: an outer orientation

u
around an E, is defined by an ordered set U of n — p covariant vectors
spanning the covariant domain belonging to the E,. If

Ig=l1;/1i u,y=1,...,n—p)>
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v u
the outer orientations determined by the ¥ and the U are defined to be the

v
same or opposite according as the determinant |4
u

is positive or negative.

With these definitions, it is clear that orientation of an E, is essentially a pro-
perty of its p-direction.
To each set of # independent contravariant vectors G corresponds a
; i

J
reciprocal set of covariant vectors W satisfying

By this correspondence, an ordered set of # linearly independent covariant
vectors fixes an inner orientation in the E,.

Given an E,, let x*=9'B, + K* (y=p+ 1,...,n) be a parametric
form of an E,_, with no direction in common with the E,. This means that a
contravariant vector cannot belong to both the E, and the E,_,, and so their
contravariant domains span the contravariant domain of the E,. If a covariant
vector X is represented (1, p.7; 2, p. 10; 3, p. 5) by the parallel hyperplanes
x*X, = ¢, x*X, = ¢ + 1, the figure intersects the E,_, in the points 7?(B,X.)
=c¢c— KX, "(B;X,) = c— KX, + 1, which represent a covariant vector
in the E,_, with components B;X, in (y). If X belongs to the E,, B,X«
cannot vanish for all y, for X would then have zero transvection with every
contravariant vector belonging to the E, or the E,_, and hence to every
contravariant vector in E,. Thus an isomorphic correspondence can be set
up between the covariant vectors belonging to E,, and the covariant vectors
in the E, ,. Since an ordered set of # — p linearly independent covariant
vectors in the E,_, fixes a screw-sense in it, an outer orientation of the E,
determines an inner orientation in the E,_,.! The latter can be any E,_, with
no direction in common with the E,.?

This result is illustrated by the example of §6, where the line « plays the
role of the E,, and the plane ¢ that of the E,_,. An outer orientation around
a is fixed by the covariant vectors U and V, which are respectively represented
by the ordered pairs of parallel planes 71, w2 and p1, p». Their intersections with
o, the parallel lines shown in Figure 3, are the representations of the corres-
ponding covariant vectors in o; B and C are the reciprocal set of contravariant
vectors in o.

3. The sections and joins of flat submanifolds. Consider an E, with

a null form x*U*+ P*=0 (wu=p+1,...,n), and a parametric form
x*=n’By+ K" (b=1,...,p). Consider also an E, with a null form
Vi+ Q=0 w=q+1,...,n), and a parametric form x* = £C; + L"

ISchouten used this property to introduce outer orientation (1, p. 5; 2, p. 7; 3, p. 4), and
then gave my definition as a property (3, p. 6).

2The E,-, may also be considered as that arising by reduction of the space with respect
to the p-direction of the E, (3, p. 21).
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(c=1,...,q). Then ByU* = 0 for each  and b, C;V; = 0 for each v and
¢, KU} + P* = 0 for each u, and L"V, + Q° = 0 for each ». From these
.conditions, the following lemma may be proved: if the n X 2n — p — q)
matrix

[l
)
—

(U Vi
has rank n — s1, then (i) 0 < s1 < p,p+¢g—n<s1< ¢ (ii) the (p + ¢)

X n matrix
_ B_z]
r= [C:

has rank t, = p 4+ g — s1; (iil) there exist numbers
X ¢
d d
(d=1,...,s) such that
D" = x'B; = ¢°C;
d a d
are a complete set of solutions of the equations D*E = 0.
The method of proof was outlined by Schouten (2, p. 8, Examples 1.2,

1.3).
In the same way, if the (n + 1) X (2n — p — q) matrix

hasrankn — s, then (1) —1 < s<p,p+qg—n<s<q; Q)the(p+qg+1)

X n matrix
_ T
A= [L‘ - K]
w w

hasrankt = p + q — s; (iii) there are numbers Yy, ¢, (w = 1,...,n — t) such
that

pP* ¢u = Qu b0,
and

4 w o W
W, = U Yu= Vid,
are a complete set of solutions of the equations AW, = 0.

There are three possibilities regarding the section of E, and E,: (i) they have
a finite point in common; (ii) they have no finite point in common, but there
is a common direction; (iii) they have no common point or direction. These
cases correspond to different values of s; and s.

(i) s1 = s, implying s = —1. If
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(z=s4+1,...,n) are any n — s linearly independent columns of ©, then
x*Zi 4 R? = 0 is a null form of the section, which is therefore an E,. If
M" are the co-ordinates of any point of the section, and
D; = D*,
d
then x* = w?D; + M"* is a parametric form of the section. So the contra-
variant domain of the section is the set of vectors which belong to both E,
and E,.
Defining

WZ) = Wx
and
Sw=Pu‘l/u= Qv¢vr
W 4+ 8* = 0 is a null form of the join, which is therefore an E,. If N* are
the co-ordinates of any point of this £, and Fy(f = 1,...,£) any ¢ indepen-
dent linear combinations of the rows of A(or I'), then x* = §’F; + N" is a
parametric form of the join. The set of covariant vectors which belong to both
E, and E, is the covariant domain of the join.
@11) si=s+1,s # —1.
Since the equations
[x51]2 = 0

are inconsistent, E, and E, have no finite point in common. However, the
vectors with components D" belong to E, and E,, and span a contravariant
a

domain of dimension sy, so it'is natural to consider the support of this domain
as the section of E, and E,. This is consistent with our usual conception of
parallel manifolds, for if E, is parallel to a submanifold contained in E,, the
section will be the p-direction of the E,. In general only a submanifold of E,
will be parallel to a submanifold of E,: for instance, two planes in an E, may
have a single common direction. The covariant domain of the section is the
set of vectors which have zero transvection with every vector of the contra-
variant domain. If Z; are any # — s; = n — s — 1 linearly independent
columns of ZE, the vectors with these components in (k) span the covariant
domain.

Null and parametric forms of the join, and hence bases for its domains, are
obtained exactly as in (i). There, however, ¢ linearly independent rows of A
may be chosen from T, but in this case the last row of A must be used.

(iii) 51y =0, s = —1.

The equations [x*[1]Q = 0 are inconsistent, and the equations D*E = 0 have
no non-zero solution. This means that £, and £, have no point or direction in
common. The previous procedure gives null and parametric forms of the
join, which is thus an E, 1.
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4. Orientation in the join when the section is a proper E,. The
simplest case occurs when the section is a single point, so that s; = s = 0, and
t = p + ¢. An inner orientation for the join is fixed by an ordered set of con-
travariant vectors spanning the domain of the join. Any parametric form of
the join specifies such a set; hence, from the previous section, the rows of T
may be taken. We must remember, however, that E, and E, do not uniquely
specify the rows of T'. On the other hand, the set of contravariant vectors
does not need to be unique, provided that the ambiguity does not affect the
screw-sense determined.

Suppose an inner orientation is specified in both E, and E,. For the ordered
set of ¢ contravariant vectors, take any set fixing the given orientation in E,,
followed by any set fixing the orientation given in E,:

B,...,B;C,...,C.
1 p 1 [
Any two sets chosen in this way are related by a transformation with positive
determinant, and so specify the same orientation in the join. This selection
implies the ordering of E, and E,. If pq is even, this ordering is irrelevant,
because the set
¢...,C;B,...,B
¢ 1

1 4
is changed into the above set by a permutation with the same parity as pgq;
the determinant of the corresponding transformation is (—1)?%

We are now ready to consider the more general case in which s; = s > 0.
The choice of contravariant vectors belonging to the join must be modified
because the rows of T' are not linearly independent. When pq + st is even, an
orientation in the join of E, and E, is determined by specifying orientations in
E,, E,, and their section Eg; this is true when pq + st is odd if E, and E, are
ordered (2, p. 8, Example 1. 5).

Choose first any set of s; vectors ? which determines the given orientation

in the section; then choose any set of p — s; vectors

G (g=81+1,...,p)

g

such that the set D; G determines the given orientation in E,; finally choose
a g

any set of ¢ — s; vectors

H h=s1+1,...,9

h

such that the set D; H determines the given orientation in E,. The set D; G; H

d h d g &

is changed into the set D; H;G by a transformation with determinant
a b g

(=1)#—=9 = (—1)p-%¢ So E, and E, need not be ordered if pg + st is

even. The necessity of fixing a screw-sense in the section is seen by the effect

of interchanging two of the vectors D. To preserve the given orientations in
a
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E, and E,, we could, for example, simply interchange two of the G, and inter-
g

change two of the H. The resulting three interchanges in the whole set give a.
h

set specifying the opposite orientation in the join.

If p = s1 = s, giving an orientation in E; also gives an orientation in E,.
In all the results, it is to be understood that when p or ¢ equals s,, the chosen
orientations are consistent with each other. When the section is proper, the
theorems are then trivial.

5. Orientation in the join when the section is improper or null.
The appropriate changes when the section is improper or null lead to the follow-
ing theorem: if pqg + st + p + q is even, an orientation in the join of E, and
E, is determined by specifying orientations in E,, E,, and their section E; (unless
this is null); but if pqg + st + p + q is odd, E, and E, must be ordered. When
p (or q) equals s; = s + 1, it is sufficient to give an orientation in E, (or E,)
and to order E, and E,.

The changes in the proof of the theorem are due to the dimension of the
contravariant domain of the section now being s 4+ 1, and to the fact that no
t rows of T are linearly independent. Choose (i) a set of s + 1 vectors e which

fixes the given screw-sense in the section, (ii) a set of p — s — 1 vectors G
g

such that the set D; G fixes the given screw-sense in E,, (iii) asetof ¢ — s — 1
a g

vectors H such that D; H fixes the given screw-sense in E,, and (iv) a vector 4
h d h

which may be represented by a point in E, and a point in E,(d = 1, ..., s1;
g=s1+1,...,p;h=5s1+1,...,¢q). From cases (ii) and (iii) of section 3,
these ¢ vectors span the contravariant domain of the join.

As in the previous case, it is obvious that the arbitrariness in the choice of

the D, G, and H will not affect the orientation determined in the join. Suppose
d ¢ h

A and A are two different selections of the last vector, and let
1 2

1) A=3D+O6G+VH+ AA.
2 d g h 1
The determinant of the transformation between the two sets is then A. Let
Z(k =1,...,n) satisfy T'Z, = 0, but not AZ, = 0. Choose the Z, so that
Z.L"— Z,K" =1, and put b = Z,K". Then the Z, are the components of a
covariant vector Z represented by the parallel hyperplanes Z,x* = b, which
contains E,, and Zx* = b + 1, which contains E,. Taking the transvection
of Z and each side of (1) gives A = 1. Thus the choice of 4 does not affect
the orientation given in the join.
E, and E, need not be ordered if the sets D; G; H; A and D; H; G; — 4
d g h d h g

define the same orientation in the join. The determinant of the transformation
between these sets is (—1)@=s—D (@=s—D+1 = (—])Pe+sir+e,
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L

FIGURE 1.

FIGURE 2. (p =¢=1,5s = —1).

Figures 1 and 2 illustrate simple applications of this result. In the first, the
set D; A fixes a screw-sense in the plane which is the join of the parallel lines.
The sense of D is determined by a specified orientation in the section, and the
sense of 4 by ordering the lines.

In the second, an orientation is fixed in a 3-dimensional space by specifying

senses for the skew lines a and 8. The sets of vectors H; G; A and G; H; A
1 1 1 2 2 2

are both measuring vectors for co-ordinate systems with right-handed axes,
showing that it is unnecessary to order the lines. The parallel planes = and p,
which are only drawn to help visualize the 3-dimensional figure, are a represen-
tation, in this case, of the covariant vector Z used in the proof. Z is uniquely
determined when # = ¢.
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6. Orientation around a proper section. The analogous considerations
for covariant vectors lead to certain theorems on outer orientation. If the
section of E, and E, is a proper E;, an outer orientation around the section is
determined if outer orientations are given around E,, and E,, and theiwr join E,,
provided that E, and E, are ordered when pq + st is odd. Of course, when
the join is the whole space, we do not have to give an outer orientation around
it (cf. §4 when s = 0).

T U]

Ty m LS

FIGURE 3. (p = ¢=2,5s =1).

As an example in Ej;, consider two planes = and p whose section is a line
a. Figure 3 shows their intersections with some plane ¢ that does not contain
a. According to the theorem, giving outer orientations to 7= and p, in that
order, fixes an outer orientation around «, which in turn fixes an inner orienta-
tion in ¢. Let the ordered pair of parallel planes m; and . represent a co-
variant vector U which determines the outer orientation around =; and simi-
larly p; and p; represent V which determines the orientation around p. The
screw-sense in ¢ is that given by the contravariant vectors B and C; the outer
orientation around « is thus a clockwise rotation when seen from this side of o.

7. Orientation around an improper or a null section. When the
section E; is improper, or null, its covariant domain has dimension 7 — s;
=n — s — 1. Suppose E, and E, are ordered, and that outer orientations
are given around E,, E,, and their join. Choose # — s — 1 covariant vectors

w
as follows: (i) a set W which specifies the outer orientation around the join
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(w=1,...,n —1); (ii) a vector Z, the support of which contains the direc-
tions of both E, and E,, and the sense of which is determined by the order

E,, E,; (iii)aset)z( x=n—t4+2,...,n—p)of t —p — 1 vectors such
that the set I/’Il}; Z; )Z( specifies the outer orientation around E,; and (iv) a
set Iy/(y=n—t+2,...,n—q) of £t — g — 1 vectors such that the set
ﬁ/; Z; v specifies the outer orientation around E,. The vector Z is the same
as that used in §5. If t = p + 1 (or ¢ + 1) the set )g (or 11}) does not appear;

w
and if ¢ = #n, the set W does not appear. Suitable alterations to the proof in
§56 show that this set determines an outer orientation around the section.

w v z
Changing the order of E, and E, gives a set W; —Z;'Y; 'X, where the sets

z z
! Ijﬁ', 'X are related to the sets 11}, X by transformations with negative deter-
minants. The order of E, and E, is therefore irrelevant if ¢ — p — 1) (¢t — ¢
— 1) 4+ liseven, that is, if pg + st + p + ¢ is even.

In general, then, when pq + st + p + q is even, an outer orientation around
the (null or improper) section of E, and E, is determined if outer orientations are
specified around E,, around E,, and around their join unless this is the whole
space; when pq + st + p 4+ q is odd, an order must also be assigned to E, and
E,lft=p+4+1 (ort =g+ 1), an orientation around the section is deter-
mined by the orientation around E, (or E,). When ¢t = p 4+ 1 =¢g+ 1, it is
sufficient to give an orientation around the join and to order E, and E,.

The covariant domain of a null section has dimension #, so an outer orienta-
tion of a null section may be interpreted as an inner orientation for the E,.
Figure 2 illustrates the case of skew lines in an Ej; suppose a and 8 are given
the outer orientations shown by the arrowed circles. For the covariant vectors

FIGURE 4.
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of the theorem, the set Z, X, ¥ reciprocal to 4, H, G may be chosen. Alterna-
2 2 2

tively, taking the lines in the opposite order, the set —Z, 'Y, ‘X reciprocal to

A, —G, —H may be chosen. These sets are the measuring vectors of co-
1 1 1

ordinate systems with left-handed axes.

The theorem may also be applied to two parallel lines @ and 8 in a plane =
in an E; (Figure 4). An outer orientation around the direction of @ and B
is determined by giving an outer orientation to = and assigning an order to «
and 8. The conditions respectively determine the senses of the contravariant
vectors 4 and B. Rotating 4 into B gives an outer orientation for any line
parallel to « and 8.

In conclusion, I should like to thank the National Research Council for
the award of a Postdoctorate Fellowship.
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