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Introduction. The simplest examples of figures which possess inner orienta­
tion are a sensed line, and a plane in which a sense of rotation is specified. 
Suppose two sensed lines, which intersect in a finite point, are given in a 
definite order. Then there is only one way in which the first can be rotated 
to coincide with the second without passing through the second. In this way, 
two ordered, sensed lines determine a sense of rotation in the plane which 
contains them. The theorems proved below are essentially generalizations of 
this result to spaces of higher dimension, and the corresponding results con­
cerning outer orientation. This concept is also simply illustrated in two 
dimensions: a line divides the plane into two parts; it has outer orientation 
if these two parts are given a definite order. In three dimensions, a line is 
given outer orientation by specifying a sense of rotation around it, while a 
plane is given outer orientation by assigning an order to the two parts into 
which it divides the space. 

This paper is concerned with the section Es (of dimension s), and the join 
Et, of two flat submanifolds Ev and Eq of an ^-dimensional affine space. I 
shall demonstrate the following results: 

(i) Suppose the section is not null or improper. If pq + st is even, then (a) an 
inner orientation in the join E t is determined if inner orientations are given in 
Ep, Eq, and their section Es; and (b) an outer orientation around the section 
Es is determined if outer orientations are given around Ep, Eq, and their join 
Et. If pq + st is odd, the results are true if Ep and Eq are ordered. 

(ii) The corresponding results when the section is null or improper are obtained 
by replacing pq + st by pq + st + p + q. 

The notation used follows the kernel-index method described by Schouten 
in his recent books (1; 2), which also provide most of the terminology. The 
only geometric objects appearing in this paper are vectors, each of which 
has a kernel consisting of a capital Latin letter, usually with an index below 
or above it. The initial letters of the alphabet are reserved for contravariant 
vectors, and the last few letters for covariant vectors. The components of a 
vector in a given co-ordinate system are denoted by its kernel with the in­
dices of the co-ordinate system on the right. Thus 

ix< (X' = V, 2',..., »') 
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z 

are the components of the covariant vector Z in the co-ordinate system 
(V). Like K', X' is one of the running indices of the system, while 1', . . . , n' 
are the fixed indices. Each co-ordinate system has its own running and fixed 
indices. 

Sections 1 and 3 discuss flat submanifolds, giving some familiar results 
which are required. Outer and inner orientation are defined in §2 with re­
ference to the covariant and contravariant domains belonging to a submani-
fold. The result (i)(a), which was given by Schouten, is proved in §4. Finally, 
the remaining results are obtained and illustrated with simple examples. 

1. The domains of a flat submanifold. The set of points with co-ordinates 
satisfying a number of linear equations is called a flat submanifold. If n — p 
of these equations are independent, the submanifold can be considered as an 
affine space of dimension p, or Ep. When all the equations, say xKUK

u + Pu 

= 0(u = p + 1, . . . , n), are independent, they are a null form of the Ep. 
For each u, the UK

U are the components in (K) of a covariant vector; these 
u 

n — p linearly independent vectors U span a covariant domain. The vectors 
of this domain will be said to belong to the Ep. 

If BlUK
u = 0(b = 1, . . . , p), and KKUK

U + Pu = 0, then x' = ^Bl + KK 

belongs to the submanifold for all rjb. If the matrix [Bl] has rank p, xK = r)bBb 

+ KK is a parametric form of the Ep} and the sets rjb may be used as co-ordinates. 
The contravariant vectors B with components Bl in (K) span a contravariant 

& 
domain which will be said to belong to the submanifold. 

A p-direction, or improper Ep-i, may be regarded either as the set of all sub-
manifolds parallel to a given Ep, or as their common * 'points at infinity." 
Since parallel submanifolds have the same covariant and contravariant do­
mains, we may also say that these domains belong to the ^-direction, which 
is called their support. 

2. Inner and outer orientation. Two sets of ordered, linearly independent 
contravariant vectors G and 

i 

H = AG (i,j = l , . . . , n ) 
J 3 i 

are said to have the same screw-sense if the determinant 

> 0 , 
i j i 

and opposite screw-senses if 

< 0 . 

The screw-sense of the set G may be identified with the sign of the deter-
i 

minant 
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\G"\ 

if the allowed co-ordinate transformations 

xK' = x'A? +AK' (K = 1, . . . , n; *' = 1', . . . , n') 

are restricted to those with determinant \AK
K\ positive. The space is then 

oriented, and is said to have an inner orientation (or screw-sense)—that fixed 
by the contra variant basis (or measuring) vectors (1, p. 7; 2, p. 12; 3, p. 5) 
of an allowed co-ordinate system. 

Orientation in any flat submanifold Ep is defined in the same way: if 77& 

(b = 1, . . . , p) are rectilinear co-ordinates for the Ep, a screw-sense is fixed 
in the Ep by an ordered set of p linearly independent quantities 

B (0 = 1, . . . , p) 

which are contravariant vectors with respect to transformations of the rjb. 
These will be called contravariant vectors in the Ep, and may be represented 
by pairs of points of the Ep. Any such point-pair also represents a contra­
variant vector in the Enj and in this way an isomorphic correspondence can 
be set up between the contravariant vectors in the Ep and the contravariant 
vectors in the En belonging to the Ep(5, p. 20). For example, if 

x' = v
b'B'y+K' (V = 1', . . . ,p') 

is a parametric form for the submanifold, the contravariant vectors with 
components By in (K) correspond to the contravariant basis (or measuring) 
vectors e of the co-ordinate system (6') in the Ev. Through this correspond-

ence, an ordered set of vectors 

B (b = 1, . . . , p) 
6 

spanning the domain belonging to the Ep fixes a screw-sense in the Ep. The 
set 

C = AB (b, c = 1, ...,p) 
c c b 

determines the same screw-sense if the determinant 

\A\ > o. 
I c I 

Inner orientation in a submanifold Ep could therefore be defined in terms 
of the contravariant vectors belonging to it. The equivalent considerations 
for covariant vectors suggest the following definition: an outer orientation 

u 

around an Ep is defined by an ordered set U of n — p covariant vectors 
spanning the covariant domain belonging to the Ep. If 

V u y 

Y = U A (u,y = l,...,n — p)r 
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y u 
the outer orientations determined by the Y and the U are defined to be the 

v 

same or opposite according as the determinant \A\ is positive or negative. 
u 

With these definitions, it is clear that orientation of an Ep is essentially a pro­
perty of its ^-direction. 

To each set of n independent contravariant vectors G corresponds a 
j i 

reciprocal set of covariant vectors W satisfying 

GK WK = ÔÎ 
i 

By this correspondence, an ordered set of n linearly independent covariant 
vectors fixes an inner orientation in the En. 

Given an Ep, let xK = y\vBK
y + KK (y = p + 1, . . . , n) be a parametric 

form of an En-V with no direction in common with the Ep. This means that a 
contravariant vector cannot belong to both the Ev and the En-P, and so their 
contravariant domains span the contravariant domain of the En. If a covariant 
vector X is represented (1, p. 7; 2, p. 10; 3, p. 5) by the parallel hyperplanes 
xKXK = c, xKXK = c + 1, the figure intersects the En-P in the points r]y{BK

yX^) 
= c — KKXKf r}y(BlXK) = c — KKXK + 1, which represent a covariant vector 
in the En-P with components BK

VXK in (y). If X belongs to the EPJ BK
yXK 

cannot vanish for all y, for X would then have zero transvection with every 
contravariant vector belonging to the Ep or the En^pj and hence to every 
contravariant vector in En. Thus an isomorphic correspondence can be set 
up between the covariant vectors belonging to Epy and the covariant vectors 
in the En-P. Since an ordered set of n — p linearly independent covariant 
vectors in the En^p fixes a screw-sense in it, an outer orientation of the Ev 

determines an inner orientation in the En-P.1 The latter can be any En-P with 
no direction in common with the Ep.

2 

This result is illustrated by the example of §6, where the line a plays the 
role of the Ev, and the plane a that of the En-V. An outer orientation around 
a is fixed by the covariant vectors U and V, which are respectively represented 
by the ordered pairs of parallel planes in, w2 and pi, p2. Their intersections with 
a, the parallel lines shown in Figure 3, are the representations of the corres­
ponding covariant vectors in cr; B and C are the reciprocal set of contravariant 
vectors in a. 

3. The sections and joins of flat submanifolds. Consider an Ep with 
a null form xKUK

u + Pu = 0 (u = p + 1, . . . , n), and a parametric form 
xK = 7]bBl + KK (b = 1, . . . , p). Consider also an Eq with a null form 
xKVv

K + Qv = 0 (v = q + 1, . . . , n), and a parametric form xK = £CC* + LK 

^chouten used this property to introduce outer orientation (1, p. 5; 2, p. 7; 3, p. 4), and 
then gave my definition as a property (3, p. 6). 

2The En-v may also be considered as that arising by reduction of the space with respect 
to the ^-direction of the Ep (3, p. 21). 
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(c = 1,. . . , g). Then BK
hU? = 0 for each u and b, CK

cV
v
k = 0 for each v and 

c, KKUK
U + P* = 0 for each w, and Z/FÏ + Çp = 0 for each v. From these 

conditions, the following lemma may be proved: if the n X (2n — p — q) 
matrix 

3^[u:\v:] 

has rank n — si, then (i) 0 < S\ < p, p + q — n < si < q\ (ii) the (p + q) 
X w matrix 

- t e l 
tos raw& /i = £ + q — s\m, (iii) there exist numbers 

(d = 1, . . . , si) such that 

DK = x'Bl = f CCC 
d d d 

are a complete set of solutions of the equations DKZ — 0. 
The method of proof was outlined by Schouten (2, p. 8, Examples 1.2, 

1.3). 
In the same way, if the (n + 1) X (2n — p — q) matrix 

has rank n — sy then (i) — 1 K s K P,p + q — n < s < g; (ii) the (p + q + 1) 
X n matrix 

w w 

s; (iii) there are numbers \f/U} <j)v (w = 1, . . . , n — t) such 

w w 

w w v w 

wK = m*u= vK<t>v 
are a complete set of solutions of the equations AWK = 0. 

There are three possibilities regarding the section of Ep and Eq: (i) they have 
a finite point in common; (ii) they have no finite point in common, but there 
is a common direction; (iii) they have no common point or direction. These 
cases correspond to different values of Si and s. 

(i) si = s} implying s T^ — 1. If 

has rank t = p + q 
that 

and 
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(z — s + 1, . . . , n) are any n — s linearly independent columns of Œ, then 
xKZ\ + Rz = 0 is a null form of the section, which is therefore an Es. If 
MK are the co-ordinates of any point of the section, and 

Dl = D\ 
d 

then xK = wdDK
d + MK is a parametr ic form of the section. So the contra-

var ian t domain of the section is the set of vectors which belong to both Ev 

and Eg. 
Defining 

w 

w:= wK 
and 

w w 

Sw = P " *« = Qv 4>„, 

xKWK
w + Sw — 0 is a null form of the join, which is therefore an Et. If NK a re 

the co-ordinates of any point of this Eu and F){f = 1, . . . , t) any t indepen­
den t linear combinat ions of the rows of A (or T), then xK = dfFK

f + NK is a 
parametr ic form of the join. T h e set of covar iant vectors which belong to bo th 
Ep and Eq is the covariant domain of the join. 

(ii) si = s + 1, 5 9^ — 1. 
Since the equat ions 

[x«\l]ti = 0 

are inconsistent, Ev and Eq have no finite point in common. However, t h e 
vectors with components DK belong to Ev and Eq, and span a con t rava r i an t 

d 

domain of dimension si, so it is na tura l to consider the suppor t of this domain 
as the section of Ep and Eq. This is consistent with our usual conception of 
parallel manifolds, for if Ev is parallel to a submanifold contained in Eqi t h e 
section will be the ^-direction of the Ep. In general only a submanifold of Ev 

will be parallel to a submanifold of Eq: for instance, two planes in an E± m a y 
have a single common direction. T h e covar iant domain of the section is t he 
set of vectors which have zero t ransvect ion with every vector of the contra-
var ian t domain. If Z\ are any n — S\ — n — s — 1 linearly independent 
columns of S, the vectors with these components in (K) span the covar iant 
domain. 

Null and parametr ic forms of the join, and hence bases for its domains, a re 
obtained exactly as in (i). There , however, t linearly independent rows of A 
may be chosen from V, bu t in this case the last row of A mus t be used. 

(iii) Si = 0, s = — 1 . 
The equat ions [xK |l]0 = 0 are inconsistent, and the equat ions DKS = 0 have 

no non-zero solution. This means t h a t Ev and Eq have no point or direction in 
common. T h e previous procedure gives null and parametr ic forms of the 
join, which is thus an Ep+q+i. 
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4. Orientation in the join when the section is a proper Es. The 
simplest case occurs when the section is a single point, so that si — s = 0, and 
I = p -j- q. An inner orientation for the join is fixed by an ordered set of con­
tra variant vectors spanning the domain of the join. Any parametric form of 
the join specifies such a set; hence, from the previous section, the rows of T 
may be taken. We must remember, however, that Ep and Eq do not uniquely 
specify the rows of T. On the other hand, the set of contra variant vectors 
does not need to be unique, provided that the ambiguity does not affect the 
screw-sense determined. 

Suppose an inner orientation is specified in both Ev and Eq. For the ordered 
set of t contravariant vectors, take any set fixing the given orientation in Ep, 
followed by any set fixing the orientation given in Eq: 

B, . . . , B; C, . . . , C. 
1 p i g 

Any two sets chosen in this way are related by a transformation with positive 
determinant, and so specify the same orientation in the join. This selection 
implies the ordering of Ev and Eq. If pq is even, this ordering is irrelevant, 
because the set 

C, . . . , C\ B, . . . , B 
1 q 1 p 

is changed into the above set by a permutation with the same parity as pq; 
the determinant of the corresponding transformation is ( — l)pq. 

We are now ready to consider the more general case in which Si = s > 0. 
The choice of contravariant vectors belonging to the join must be modified 
because the rows of T are not linearly independent. When pq + st is even, an 
orientation in the join of Ev and Eq is determined by specifying orientations in 
EPJ Eq, and their section Es; this is true when pq + st is odd if EP and Eq are 
ordered (2, p. 8, Example I. 5). 

Choose first any set of Si vectors D which determines the given orientation 
d 

in the section ; then choose any set of p — s\ vectors 

G ( g = Sl + 1, . . . , / > ) 
0 

such that the set D; G determines the given orientation in Ev\ finally choose 
d g 

any set of q — S\ vectors 

H {h = Sl + 1, . . . , q) 
h 

such that the set D; indéterminés the given orientation in Eq. The set D; G\ H 
d h d s h 

is changed into the set D; H; G by a transformation with determinant 
d n o 

(_1) (*-»)<«-«> = (_ i ) ^ - ^ So Ev and Eq need not be ordered if pq + st is 
even. The necessity of fixing a screw-sense in the section is seen by the effect 
of interchanging two of the vectors D. To preserve the given orientations in 

d 
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Ep and Eq, we could, for example, simply interchange two of the G, and inter-
o 

change two of the H. The resulting three interchanges in the whole set give a 
h 

set specifying the opposite orientation in the join. 
If p = Si = s, giving an orientation in Es also gives an orientation in Ep. 

In all the results, it is to be understood that when p or q equals Si, the chosen 
orientations are consistent with each other. When the section is proper, the 
theorems are then trivial. 

5. Orientation in the join when the section is improper or null. 
The appropriate changes when the section is improper or null lead to the follow­
ing theorem: if pq + st + p + q is even, an orientation in the join of Ep and 
Eq is determined by specifying orientations in EP1 EQ1 and their section Es (unless 
this is null) ; but if pq + st + p + q is odd, Ev and Eq must be ordered. When 
p (or q) equals si = s + 1, it is sufficient to give an orientation in Eq (or EP) 
and to order Ev and Eq. 

The changes in the proof of the theorem are due to the dimension of the 
contra variant domain of the section now being 5 + 1 , and to the fact that no 
/ rows of r are linearly independent. Choose (i) a set of 5 + 1 vectors D which 

d 

fixes the given screw-sense in the section, (ii) a set of p — 5 — 1 vectors G 
o 

such that the set D; G fixes the given screw-sense in Ep, (iii) a set oi q — s — 1 
d g 

vectors H such that D\ H fixes the given screw-sense in Eqj and (iv) a vector A 
h d h 

which may be represented by a point in Ep and a point in Eq(d = 1, . . . , S\\ 
g = si + 1, . . . , p\ h = Si + l , . . . , g ) . From cases (ii) and (iii) of section 3, 
these t vectors span the contra variant domain of the join. 

As in the previous case, it is obvious that the arbitrariness in the choice of 
the D, G, and H will not affect the orientation determined in the join. Suppose 

d o h 
A and A are two different selections of the last vector, and let 
1 2 

(1) A = %D + OG + VH+ A A. 
2 d g h l 

The determinant of the transformation between the two sets is then A. Let 
ZK(K = 1, . . . , n) satisfy TZK = 0, but not AZK = 0. Choose the ZK so that 
ZKLK — ZKKK — 1, and put b = ZKKK. Then the ZK are the components of a 
covariant vector Z represented by the parallel hyperplanes ZKxK = b, which 
contains EP1 and ZKxK = 6 + 1 , which contains Eq. Taking the transvection 
of Z and each side of (1) gives A = 1. Thus the choice of A does not affect 
the orientation given in the join. 

Ep and Eq need not be ordered if the sets D\ G\ H; A and D; H; G; —A 
d g h d h g 

define the same orientation in the join. The determinant of the transformation 
between these sets is (-l)(*-«-i>(ff--i)+i = (_i)*«+«<+*+*. 
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FIGURE 1. (p = q = 1, 5 = 0). 

FIGURE 2. (p = q = 1, s = — 1). 

Figures 1 and 2 illustrate simple applications of this result. In the first, the 
set D\ A fixes a screw-sense in the plane which is the join of the parallel lines. 
The sense of D is determined by a specified orientation in the section, and the 
sense of A by ordering the lines. 

In the second, an orientation is fixed in a 3-dimensional space by specifying 
senses for the skew lines a and ft. The sets of vectors H; G; A and G; H; A 

1 1 1 2 2 2 

are both measuring vectors for co-ordinate systems with right-handed axes, 
showing that it is unnecessary to order the lines. The parallel planes TT and p, 
which are only drawn to help visualize the 3-dimensional figure, are a represen­
tation, in this case, of the covariant vector Z used in the proof. Z is uniquely 
determined when n = L 
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6. Orientation around a proper section. The analogous considerations 
for covariant vectors lead to certain theorems on outer orientation. If the 
section of Ev and Eg is a proper ESi an outer orientation around the section is 
determined if outer orientations are given around Ep, and EQ1 and their join Eu 

provided that Ev and EQ are ordered when pq + st is odd. Of course, when 
the join is the whole space, we do not have to give an outer orientation around 
it (cf. §4 when s = 0). 

FIGURE 3. (p = q = 2, 5 = 1). 

As an example in E3, consider two planes TT and p whose section is a line 
a. Figure 3 shows their intersections with some plane a that does not contain 
a. According to the theorem, giving outer orientations to 7^ and p, in that 
order, fixes an outer orientation around a, which in turn fixes an inner orienta­
tion in a. Let the ordered pair of parallel planes T\ and ir2 represent a co-
variant vector U which determines the outer orientation around 7r; and simi­
larly pi and p2 represent V which determines the orientation around p. The 
screw-sense in a is that given by the contra variant vectors B and C; the outer 
orientation around a is thus a clockwise rotation when seen from this side of a. 

7. Orientation around an improper or a null section. When the 
section Es is improper, or null, its covariant domain has dimension n — S\ 
= n — s — 1. Suppose Ev and Eq are ordered, and that outer orientations 
are given around Ep, Eq, and their join. Choose n — s — 1 covariant vectors 

w 

as follows: (i) a set W which specifies the outer orientation around the join 
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(w = 1, . . . , n — t) ; (ii) a vector Z, the support of which contains the direc­
tions of both Ep and Eq, and the sense of which is determined by the order 

X 

Ep, Eq; (iii) a set X (x = n — t + 2, . . . , n — p) of t — p — 1 vectors such 
ID X 

that the set W; Z; X specifies the outer orientation around Ep; and (iv) a 
V 

set Y(y = n — t + 2, . . . , n — q) of/ — g— 1 vectors such that the set 
w y 

W; Z; Y specifies the outer orientation around Eg. The vector Z is the same 
x y 

as that used in §5. If t = p + 1 (or q + 1) the set X (or F) does not appear; 
w 

and if t = n, the set ^F does not appear. Suitable alterations to the proof in 
§5 show that this set determines an outer orientation around the section. 

W V X 

Changing the order of Ep and Eq gives a set W; — Z; 'Y; 'X, where the sets 
y x y x 

'Y, 'X are related to the sets F, X by transformations with negative deter­
minants. The order of Ep and Eg is therefore irrelevant if (t — p — 1) (t — q 
— 1) + 1 is even, that is, if pq + st + p + q is even. 

In general, then, w/^n pq -\- st -\- p -\- q is even, an outer orientation around 
the {null or improper) section of Ev and Eq is determined if outer orientations are 
specified around EV1 around Eq, and around their join unless this is the whole 
space; when pq + st + p + q is odd, an order must also be assigned to Ep and 
Eq. If t — p + 1 (or t = q + 1), an orientation around the section is deter­
mined by the orientation around Eq (or Ev). When t = p + 1 = g + 1, it is 
sufficient to give an orientation around the join and to order Ev and Eq. 

The covariant domain of a null section has dimension n, so an outer orienta­
tion of a null section may be interpreted as an inner orientation for the En. 
Figure 2 illustrates the case of skew lines in an E3; suppose a and /3 are given 
the outer orientations shown by the arrowed circles. For the covariant vectors 

FIGURE 4. 
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of the theorem, the set Z, X, Y reciprocal to A, H, G may be chosen. Alterna-
2 2 2 

tively, taking the lines in the opposite order, the set — Z, T , 'X reciprocal to 
A, —G, —H may be chosen. These sets are the measuring vectors of co-

i i l 

ordinate systems with left-handed axes. 
The theorem may also be applied to two parallel lines a and fi in a plane -K 

in an £ 3 (Figure 4). An outer orientation around the direction of a and {$ 
is determined by giving an outer orientation to ir and assigning an order to a 
and j8. The conditions respectively determine the senses of the contravariant 
vectors A and B. Rotating A into B gives an outer orientation for any line 
parallel to a and /3. 

In conclusion, I should like to thank the National Research Council for 
the award of a Postdoctorate Fellowship. 
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