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Introduction

The definitions of the various proper homotopy groups correspond to three main
geometrical ideas: sequences of spheres converging to a Freudenthal end (Brown
groups); infinite cylinders giving the mobility of spheres towards a proper end (Cerin-
Steenrod groups); sequences of spheres, each one movable to the next one following a
proper end (Cech groups). The Brown and Cech groups have a rather complex structure
and the calculations of these groups are very difficult (see [4]). The Cerin-Steenrod
groups have a much simpler structure and this fact eases the computations.

These proper homotopy groups of a space X are usually defined fixing one end of X
and missing the others. Therefore it seems interesting to define groups which give
information of how the ends of X are related to each other. In other words, the study of
the mobility of spheres in X from one end to another (see remark 2.2.(a)). In [1] we
defined the cylindrical p-homotopy groups which are proper homotopy invariants
associated to a given finite set of proper ends. In particular these groups generalize the
Cerin-Steenrod groups. In this paper we work out some cylindrical p-homotopy groups
and study the mobility of spheres in open surfaces.

In a subsequent paper we will prove that the cylindrical p-homotopy groups define
proper homotopy functors with good properties as consequence of having proved that
these groups are included in the general theory of cofibrations of Baues (see [2]). Also
the cylindrical p-homotopy groups have a translation into the pro-homotopy category
Ho(Pro-Top, Top) via the Edwards-Hastings embedding (see [8] and [12]). This
viewpoint can be used to simplify some proofs (Proposition 1.1 and Proposition 1.3).
We wish to thank T. Porter for his useful talks on this aspect of proper homotopy
theory.

A proper map (p-map) is a continuous map f:X-*Y such that f~l(K) >s compact for
each KcY closed and compact. Proper homotopy (p-homotopy), proper homotopy
equivalance, etc. are defined in the natural way.

B" and S"'1 stand for the canonical ball and sphere in the Euclidean space W; these
spaces are based by *eS"~l. The unit interval is denoted by /.

Given a natural number r, T[r~\ is the space obtained identifying the origins of r
copies of the half line U + = [0, oo). We assume that T[r~\ is linearly embedded into U2 in
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such a way that the identification point is the origin of U2. T[r,k] is the topological
product T[r] x Uk. We identify T[f] with T[r,0].

Given the topological spaces X and Y, [X, Y] is the set of homotopy classes of
continuous maps and [_X, Y~\p is the set of p-homotopy classes of p-maps.

A base T[r, fc]-tree on A" is a p-map u: T[r,k]-*X. Henceforth T[r,k] is T[r, fc]-based
by the identity map. If (Y,y0) is compact, the product YxT[r,k] is T[r,fc]-based by
«o(z) = 0'o.4 The set

[S"xTlr,kluo;X,u]p

of p-homotopy classes of p-maps preserving base trees, under the relation of p-
homotopy relative to these base trees, is a group if n ^ l and an abelian group if «^2.
These groups are called the cylindrical p-homotopy groups and they are denoted by
7iJ[r'k\X,u) or, when there is no cause for confusion, by iiJ}Ttk\X). These groups can be
generalized to pairs (X, A) with A<=X closed and they are p-invariants. The basic facts
on nl(-) are collected in [1]. When r = l and /c=0, 7tJ( —) are the Cerin-Steenrod
groups (see [5, 1]) which we denote by nn(X, u).

1. The groups Jin
r(r k)( 71s, h\)

If we consider T[r, k] as an Euclidean set in Uk + 2 we can define

S[r,k-ll = {zeT[r,k];\z\=l}

where "| |" is the Euclidean norm. This space is homeomorphic to the join S*"1*

Proposition 1.1. There is a canonical bijection

k]; T[s, fc]]p-[S[r, k - l];5[s, h-1]]

Proof. By the Edwards-Hastings embedding theorem ([8, 6.2.7]) the set
[T[r,k]; T[s, hj]p can be identified with the set ft of (pro-Top, Top)-homotopy classes of
(pro-Top, Top)-maps between the spaces T[r, k] and T[s, h] embedded in (pro-
Top, Top). Now these spaces are contractible and their end neighbourhoods are
S[r, k— l ] x R + and S [ s , d - l ] x R + respectively; then ft is in bijection with
[S[r,fc-l];S[s,Ji-l]].

Remark 1.2. It will be useful to give an explicit description of *P. If

given a p-map / : T[r, k] -+ T[s, h] we can find <5>0 such that /(£i[r,k])c£a[s,h]. By
using the canonical retraction p:Es[s,K]-*Ss[s,h — 1] we get a map J:Sd[r,k-Y]->
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Sa[s, fi-1]. If f'-.Sfck-l^Sfoh-l] is given by f'(z) = l/S\f(dz)\, we have

Proposition 1.3. / / u: T[r, k] -* T[s, h] is a base tree and

is a map whose homotopy class is ¥([«]) there is a canonical isomorphism

0: n?r'kKns, h], u)^nJLMav(S[r, k -1], S[s, h -1 ] , /„).

Proof. As in the proof of Proposition 1.1, the Edwards-Hastings embedding theorem
provides an isomorphism

Now the result follows from the Duality Theorem ([11, 6.2.38]).

Corollary 1.4.

(a) n^'-k\

(b) n^'-k\Tll,h],u) = 0 (compare with Theorem 4.1).

(c) 7in
rtrl( T[s, h],u)^ Y\' 7tn(V

s ~lSh), where V s " ' Sh is the wedge of s -1 copies of Sh.
(d) nT

n
l2'k\T[2,hiu)^nn(Map(Sk,S"),/„).

Corollary 1.5.

(a) T[r~] has the same p-homotopy type as T[s] if and only if r = s.

(b) If k^l, T[r,k~] and T[s] have the same p-homotopy type if and only if r = s= 1.

(c) / / h,k^.l and r , s ^ 2 , T[r,k] and T[s,/i] have the same p-homotopy type if and

only if r = s and h = k.

Remark 1.6. According to 1.4(d) the calculations of nll2'k\T[_2,K],u) rely on the
calculations of the Hurewicz groups of the maps space Map(S\ Sh). These groups have
been studied in [9] and [10] and from these works we can state:

(a) 7r[[2 | 2 1(r[2,2],u)^Z/2pZ where p is the degree of /„. This proves that our groups
depend on the tree u.

(b) If h=l, 3 and 7, n^l2'k\T[2,h],u) does not depend on u. Moreover this group is
isomorphic to nn{Sh) © nn+k(S

h).

(c) If k^5,

Proposition 1.7. Let e: T[r, k] -* T[s, hi] by the p-map defined by
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e(z) = (0,0>|z|,0)...,0)elR2xfR*.

1 = 7rn(V
s"1S'1) and G2 = nk+n(\/°-1 Sh) are abelian groups, then 7rn

r[p-('1(r[s)/j],e)~

Proof. Firstly the image of e by the bijection of Proposition 1.1 is the constant map
*. By Proposition 1.3 and by the corresponding homotopy equivalences

n?''k\Tls, h], e) ^ / M a p f V S\ V S")> *)• (*)

Now fixing a sphere Sk in the wedge Vr ' Sk we get the cofibre sequence

r-2 r-1

v sk-> v sk^sk

which gives a weak fibration

( s-l \ /r-1 s-1 \ /r-2 s-1 \

S*. V S*J-»Mapf V S\ V S*J-»Map( V S*. V S*J (II)

([13, II.8.8]). As the cofibre sequence admits an obvious coretraction, the homotopy
exact sequence of (II) splits. Therefore (I) is isomorphic to

nn[ Mapfe V S*\ A @ nluapCy S\ V Sh), *

Inductively we prove that (I) ̂  @T i H, where

S"

Finally, it is proved in [9] that H^G.

2. A pull-back theorem

In this section we fix a base tree u:T[r]-»X. Given l ^ i ^ r let j,:U + -*T[r] be the
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canonical embedding of U + as the ith branch of T[r] and u, = uo j ( . The base point of
X will be x0 = u(0).

Theorem 2.1. For each l<i<r let

the morphism defined by p,([/]) = [/'] where f' = f \ S" x {0}. / /

is the pull-back of {p,} there is an epimorphism y:n*lr\X,u)->G such that p,oy = <U;, where
= [/°7,] . Furthermore, if r ^ 2 and 7tn + j(X,x0) = 0, y is an isomorphism.

Proof. The morphism y is given by the pull-back universal property. We next prove
that y is epimorphism.

Given (g1,g2,...,gr)eG we take a representative ft for each g,ejrn(X,U;). The
restrictions f \ S" x {0} (1 g i ̂  r) define the same element [n] e 7tn(X,x0). Then there are
homotopies G, relating n and fi\Skx {0}. The gluing of Gt and /j provides [ /] such that

Assuming the extra hypotheses, if y [ / ] = 0 then tO;[/i] = 0 and we have p-maps
Jt:B

n+l x R + ^ X which extend f = f°ji ( lgr '^r) .
Now, if we regard S" + 1 as the gluing of two copies of Bn + 1, nn+l(X,xo) = 0 implies

that

/ 1 |B n + 1 x {0} u/ilB"*1 x {0}:Sn+l^X (2^i^r)

extends to Ju:B
n + 2-+X. It is obvious that {fi,Ju} gives a p-extension / : B n + 1 x T[r]->

X of/.

Remarks 2.2. (a) It is easy to find (X,u) such that 7tn+1(X)^o and y is not injective.
For instance let X be constructed by gluing two copies of B2xU+ along S1 x {0}. If
u:M->X is the natural map t->(*,r) it is not hard to prove that S1 x U-*X defines a
non-trivial element of n\{2\X, u). But n^X,^ is obviously trivial for i= 1,2.

(b) Also we can find spaces with 7tn + 1(.Y)#0 and y is an isomorphism. For instance
X = S2xU and u(t) = (*,0- By Corollary 4.2, jT1(Z,u,) = 7r[121(X,u) = l.

(c) Note that Theorem 2.1 remains true for n = 0.

Corollary 2.3. / / nn(X,xo)=0 = nn+i(X,x0) then
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Corollary 2.4. Let {8^. nn(X,u)-*H) be the push-out of

and suppose that nn + 1(A
r, x0) = 0. T/ien {oif, 1 ^ i g r} induces the isomorphism nl{r\X, u)

Y\ri= i nn{X,«,-) if and only if H is trivial.

Corollary 2.5. / / u: r|>]->IR* is any base T\f]-tree

3. Mobility

Given two maps u,v:Sk^X and a path a running from «(*) to v(*) we say that u and y
are tx-homotopic if there is a homotopy H:SkxI^>X such that H0 = u, H1 = v and

Given /I, fieX we say y4 is (<x,ri)-movable to B if each u:(S",*)->(A,a0) is a-homotopic,
in A", to a map u:(S",*)-»(B,a1) where ao = a(0) and <X! = a(l). If i:A-*X and j:B-*X are
the canonical inclusions the above definition is equivalent to a^i^n^A,oc0)cj^nn(B,aj).
where a # denotes the base point changing isomorphism associated to a.

When y+(v) = a#i!)c(/i) it is said that /x is a-movable to v and a is a path of mobility
from n to v.

We say a is not an n-mobility path from A to B if the only element of nn(A,a0)
movable to 71,(1?, o^) is the unity. Otherwise we say a is a path of n-mobility. Finally a is
a path of trivial n mobility if each element of nn(A, <x0) is a-movable to each element of

Remarks 3.1.

(1) An element ^enn(A,<x0) can be a-movable to several elements of 7rn(fi, ax). If
A = B = Si and X is the cone over /iJjjB then any path from A to B has trivial
1-mobility.

(2) If n, n' e nn(A, a0) are a-movable to B then fi + n' (the product if fc=l) is
a-movable to B.

(3) If a,a':I->X are homotopic paths, rel. {0,1}, then a-mobility is equivalent to
a'-mobility.

(4) The a-mobility relation is not reflexive: If A = A' = S\ X = A v A' and {*} =
An A', given generators \i e n^A, •) and v = [a]G7t1(/l', *) then n is not v-movable
to itself.

(5) If X, A and B are path-connected it is a simple exercise to prove that any
a:(I,0,l)-*(X,A,B) is a path of trivial n-mobility if and only if i^nn(A,a)=0 =
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We next study the mobility between two components of the boundary of a compact
surface.

Proposition 3.2. Let S be a compact surface and a:I-*S such that ao = a(0) and
a i =a(l) belong to dS. Then:

(a) / / 7Tj(S) is abelian and S^B2, we can choose generators of 7r,(3S, a0) and
^ ( d S . a J such that the only elements a-movable are those which have the same
multiplicity.

(b) / / S = B2, a is a path of trivial l-mobility.

(c) / / n^S) is non-abelian and a0 and a! are in two components Vo and Ft of dS, a is
not an l-mobility path.

(d) / / n^S) is non-abelian and a0 and al belong to the same component VcdS then a
is a path of l-mobility if and only if it is homotopic, rel. dS, to a path a' contained
in V. In that case, there are generators of Ki(V,a0) and ^ ( K ^ i ) such that the
a-movable elements are those which have the same multiplicity.

Proof.

(a) Since n^S) is abelian, S is homeomorphic to Sl x / or to the Moebius strip. If a0

and a! belong to the same component VcdS, let £ be an arc in V which runs
from at to a0.

It is easy to prove that fienl(V,a0) = nl(V,ai) is a-movable if and only if it is
co-movable where co = eoa. But co#[_n~] = (o~1 ofioco = fi.

If ao6 Vo and at e Vu where Vo and Vv are different components of dS, then S is
homeomorphic to S ' x / . Given |i = [u]e7T1(K0,a0) and /i' = [«']6 7t1(V1,a1),
Hurewicz's Theorem implies that [a ~ i o « o a] = [u'] if and only if a " ' o u o a and u'
are homologous cycles. Therefore n is a-movable to y! if and only if they give the
same homology class.

(b) It is obvious.

(c) Assume that dS has more than two components. If Vo and Vx are two of such
components and ^GTi^Ko.ao) is a-movable to ^en^{Vua.^) then n and \i have
representatives which are homologous cycles. But this statement is in contradic-
tion with the structure of H^S).

If dS has exactly two components then S has the homotopy type of a wedge of
three or more copies of S1. Now, assuming the l-mobility of a it is not hard to
find a non-trivial relation in n^S) which leads to contradiction.

(d) The proof uses the same arguments as the above cases.

Definition 3.3. Let « :T [ r ] -» I be p-map and Uj.U + ->X ( l g i g r ) be the restriction
to the ith branch of T[r~\. We say Ui]ena{X,u,) is movable to lfj}enn(X,Uj) if there
exists a natural number meN such that [f'{]enn(X,u,(mi)) is uy(m)-movable to
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[/}] e nn(X, Ujinij)) where m, and m, are the points of the branches i and j which have
norm m, f\ = /• | S" x {m,}, f)=fj\Snx {nij} and u./m) = u | [0, m,] u [0, m,].

Remark 3.4. If [_/j] is movable to [/;] in (X, u) then /, | S" x {m,} is ufj(m)-movable to
fj| S" x {mj} for anymeW.

The following results are only restatements of those of Section 2. We give them
without proof.

Proposition 3.5. With the notation of Theorem 2.1, given [/,]e«n(X,u,) ( l g i
([/i]» [/2]» • • •, C/J) eGif and only if [/•] is movable to Ifj] in (X, u) for each pair i, j .

Corollary 3.6. With the hypotheses of Corollary 2.4 we have:

(a) nl{r\X,u) is in 1-1 correspondence with the elements

such that Ifi] is movable to [/y] in (X, u) for each pair i, j .
(b) H=l if and only if, given a;enn(X,u;) and <Xjenn(X,Uj), af is movable to a,- in

Corollary 3.7. Let S be a compact surface, xteS — 8S (1 ^ i ^ r ) and X = S—{xx,...,xs}
. Then:

(a) n?'\X,u)=0 if n^2.
(b) / / itiiXjCo) is abelian, n\lr\X,u)~Z when X=£U2. If X = K2, n\{r\X,u)^Qf Z.
(c) / / TI^AT, x0) is non-abelian we have

(c j n\[r\X, u)^Z i/ a// the branches of T[f] define the same proper end of X
and there is a p-homotopy which carries u into a neighbourhood of that end.

(c2) 7t[[rl(Ar,M) = l otherwise.

Proof. As nn+l{X, xo) = 0 if n^ 1, Theorem 2.1 says that nl{T\X, u) is the pull-back of
the Cerin-groups nn(X,Ui). In [7] it is shown an isomorphism yV:nn(X,ui)-mn(FrUi),
where Fr I/, is the boundary of a cylindrical neighbourhood [/, of the end defined by u,.
Now (a) follows easily.

By Corollary 3.6, each element of n\{r\X, u) is uniquely determined by an element

(Uiiuii ...,[/j)e ri *!(*,«,)
i = i

such that [fl] is movable to {Jj\ for each pair i, j . Let e(i) be the proper end defined by
u, and let I/, be a cylindrical neighbourhood of e(i) such that f^S1 x [m, oo)) <= C/,- where
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m is sufficiently large. If pf: L/,->Fr [/, is the natural projection, the isomorphism 4* of
[7] is given by ^ ( [p j ) = [p,°/;] and it is easy to prove that Pi°fi\Sl x {m} is a-movable
to pjofj\Sl x {m} where a is the path M | [ 0 , m j u [0,mj] deformed by p, and pj. Then (b)
and (c) follow from Proposition 3.2 applied to S —(J;=1 Ut.

The result from [7] used in the proof of the previous corollary can be applied again
to prove the following lemma.

Lemma 3.8. Let X be the complement of an interior point of a compact surface
distinct from S2. Then the canonical restriction

is injective for any ray w: U+ -*X.

Corollary 3.9. / / the extra hypothesis

is added to Corollary 3.7 then

(a) n*{r\X, u) = 0 (n ̂  2).

(b) / / the branches of T[r~\ miss the ends defined by {x!,. . . , x,} then nj[r\X,u)^
n\[r\X',u) where X' = S — {xq + l,...,xs} and then it follows as Corollary 3.7.

(c) Otherwise nllr\X,u)=\.

Proof (a) and (b) follow as in Corollary 3.7 (nl(X) = nl(X')).

(c) If uio goes towards xjoedS it is easy to prove (using again [7]) n{(X,u,0) = 1. Then
Theorem 2.1 gives n\l'\X,u)^Y\{^~QXPi>ieA} where A is the set of branches which go
towards points of {xq+l,...,xs}. We conclude by applying Lemma 3.8.

4. Product theorem

In this section the spaces are Hausdorff and T is T[r,k].

Theorem 4.1. Let (X, x0) be a based compact space. Given a noncompact space Y and
a T-tree u'\ T—> Y there is a natural bisection (isomorphism if n^. 1).

mn(X,x0)xnZ(Y, u') (n^O)

where u: T->X x Y is u(z) = (xo,u'(z)).

Proof. Given f:S"xT-+X x Y we define

= (LA ° hi, Uil)£nJLX,x0) x nT
n(Y,u')

where pt:X xY->X and p2.XxY->Y are the natural projections, j:Sn^>S"xT is
j{z) = (z, v0) and /j = P ; ° / (i = 1,2). It is easy to prove that is an isomorphism if n^. 1.
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On the other hand if ([fcj, [h2])enn(X,x0) x n^(Y,u') we take the p-map h:S"xT-+
X x Y given by Hz, v) = (hl(z), h2(z, v)). Then cp([/i])=([/ii],[^2]), so (p is epijective.

Finally, if (?([/]) = <?([/']) there are homotopies H1:S"x {v0} x I->X and H2: S"xTx
l-*Y (H2 proper) such that

Hl(z,vo,0) = fl°j(z); Hl(z,v0,\) = f\oj(z); Hl(*,vo,s) = xo;

H2(z, v0,0) = f2(z, v); H2(z, v,l) = f'2(z, v); H2(*, v, s) = u'(v).

These conditions allow us to define the map

H\ = fi u / ' , uHy.Snx(Tx {0, 1} u{x0} x I)^X.

B y t h e H . E . P . w e c a n e x t e n d H\ t o H ^ S " x T x I - + X . T h e n

H = (HuH):S"xTxI->Xx Y

is a homotopy between ft and / 2 . Notice that H is proper: For each compactum K a Y,
H-\XxK)^H2

l(K).

Corollary 4.2. Let X be compact and path-connected and Y noncompact.

(a) Then [U+; y] p~[R+;X x T\p ( [ / ] e [ R + ; Y]p is ca/W a proper end o/ K See
[6]).

(b) / / u: T->X x y is any T-tree and u' = p2ou,

nT
n{X xY,u)^nn{X,x0) x nT

n(Y,u').

Proof.

(a) It follows from Theorem 4.1 with n = 0, T= R+.

(b) The proof of Theorem 4.1 with n = 0 shows that u and {x0} xu' are p-homotopic
maps. Now it follows from [1; Theorem 2].

Remark 4.3. The following examples show that there is no generalization of
Theorem 4.1 in a natural way when X is noncompact. Given (R, id) we can consider
(U2, u) and (U2, u') where u = idxid and u' = 0xid. Then, from Corollary 1.4 and Remark
1.6, nT

l
l2-°\U,u)=l, n\~l2A1(M2,u)^Z and n\{2-°\U2,u')^Z@Z.

In spite of the above remark, the following product theorem involving noncompact
spaces can be proved.

Theorem 4.4. Let (X,x0) be a based space, compact or not. If u:U + -*X xU+ is
u{t) = (xo,t) then nn{X x U + u)^nn(X,x0), (»^ 1).

Proof. Given / : S " x i + - » I x R + we denote by / 0 the restriction Pi ° / |S B x {0}:
"^X where pt:X x U+-+X is the natural projection. It is easy to prove that
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given by ¥([/]) = [/0] is an epimorphism.
In order to prove that *P is injective, we assume that ¥([ / ] ) = [/0] = D?o] = lP(IJf])-

Then there is a homotopy F between f0 and g0. The new map

F:S"xU+xI^XxU +

given by F(z,s,t) = (F(z,t),s) is a p-homotopy, rel. u, between / 0 and g0 where
/ 0 , | 0 :S n x U + ->X x U+ are given by /0(z, s) = (/0(z), s) and go(z,s) = (go(z),s). It suffices to
prove that / 0 and g0 are p-homotopic, rel. u, to / and g respectively. We will find the
p-homotopy between / 0 and / The other p-homotopy is analogous.

Firstly, we consider the map H:S"xU+x I->X xU+ given by

H(z, s, r) = (Pi o f(z, s),ts+(l- t)p2 o /(z, s)).

H is a homotopy, rel. u, between / and J{z,s) = {pl o/(z, s), s).
In fact H is a p-homotopy: Let K c X be a compactum. Given any soe R+ and a net

{(zawe need to find a cluster point in this set. But {(z6 ts)} a S" x I so it suffices to give a
cluster point of {ss}.

We know that {p^of(zdsi)}<^K and

tiSt < tgSg + (1 - ta)p2 o / (z , , Sf) g s0.

Then we can assume that limtjSj exists. If limf^^O then limsa exists and it is a cluster
point. Only the case limt^ = 0 remains. But then

lim p2 o f(zs, ss) ̂  lim {tssd + (1 - ts)p2 o f(zs, ss)} ^ s0

and there exists ^0
 s u ch t n a t P2°/(z«.s<i)6[0>so + 1] f°r a ny <5^^o- So f(zd,ss)eKx

[0,so + 1] for any 5 ^ ^ 0 and {sa} has a cluster point because / is a proper map.
Finally, we define

by G(z,s,t)=(p1o f(z,ts),s). Then G is a homotopy between / and /0> rel- ", and it is a
p-map because

G-\Kx [0,s0])cS"x [0,s0] x /

for any compactum K<=Y and soeR + .

Remarks 4.5.

(a) Theorem 4.4 fails if a general tree replaces U+ (see Remark 4.3).
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(b) Theorem 4.4 with X compact is proved in [7].

(c) For n=0, it is proved in [6] that if X and Y are noncompact T2-locally
ff-compact and path-connected then X x Y has only one proper end.

When y = R+ the topological conditions on X can be dropped and we can obtain the
following particular result.

Theorem 4.6. Let X be a path-connected space. Then any two p-maps a,/?:R+->
X x IR+ are p-homotopic.

Proof. Let p^.X x M + -*X and p2:X x R + ->IR+ be the natural projections. Given the
points a = p1a(0) and b = pl/l(0), define the p-maps

by the formulae

To prove the theorem it suffices to show that there are p-homotopies a ~ a ~ a0 ~ fto ~
/?. By using the same arguments as the above theorem, it can be seen that H:
U+ x I^X x R+ defined by

H(v,t) = (Plcc(v),tv + (l -t)p2a(v))

is a p-homotopy from a to a. Similarly, G(v,t) = (pla{tv),v) is a p-homotopy between a
and a0. But if /;:/->A" is a path from a to b, it is obvious that F(v,t) = (n(v),t) determines
a p-homotopy from a0 to ^0, and this completes the proof.

Remark 4.7. Theorem 4.6 fails if the T2 condition is dropped: if X = [0, oo) with the
indiscrete topology, no(X xU+) has the continuum cardinality and no(X,xo) is trivial.
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