APPROXIMATION OF FUNCTIONS
BY MEANS OF LIPSCHITZ FUNCTIONS

J. H. MICHAEL
(received 24 May 1962)

1. Introduction

Let Q denote the closed unit cube in R*, The elementary area A(f) of a
Lipschitz function f on @ is given by the formula

an=[ i+ 3 (L)} o

In [1], C. Goffman has shown that 4 is lower semi-continuous with respect
to the %, norm and admits a lower semi-continuous extension to a func-
tional 4 defined on the class of all functions summable on @. Thus for a
summable f
A(f) = inf [liminf A (f)],
r—00

where the infimum is taken over all sequences {f""} of Lipschitz functions
that converge .%; to f.

Denote by 2 the set of all infinitely differentiable functions on R" with
compact support. Let £* denote the set of transformations p = (yy, * - *, ¥)
from R™ to R* such that each y, € 2.

The functional A can also be characterised by

) A(f) = sup [sz dx+f Prads)

where the supremum is taken over all y € 2"+ such that spt y C Int(Q) and
n+1
sup [E {yi(=) }”]

In [2], T proved the following theorem.

Let f be summable on Q and such that 4(f) < co. Then, for each ¢ > 0,
there exists a Lipschitz function g on Q such that the set {#;xeQ and
f(x) # g(x)} has measure less than ¢ and A(g) < A(f) + «.

In the present paper, a similar theorem is proved for a more general func-
tional ¥, but unfortunately I can only prove the theorem for continuous

134

https://doi.org/10.1017/51446788700027877 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700027877
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functions. I take a functional ¥ on the class of Lipschitz functions, extend
it by lower semi-continuity to the class of summable functions and then
show that for each continuous f on Q, with ¥(f) < o and each & > 0,
there exists a Lipschitz function g on Q which agrees with f except on a set
of measure less than ¢ and is such that ¥{g) < P(f) + &

The functional ¥ is defined on the Lipschitz functions in the following way.

Let ¢ be a non-negative, real-valued continuous function on R*, p be a
norm for 2"+, « be an integer that is either 0 or 1 and 5 be a non-negative,
strictly increasing, unbounded, continuous function on the non-negative
reals. Let 4, p, « and 5 be such that:

() (&) 2 $(&) when &) Z &L -« &l = 184

(ii) there exist constants A and B such that

18]l = 4 + Bg(&) for all &eR™;

(iii) there exists a continuous function § on the # X n real matrices
such that
$(& - X) < $(£) - 6(X)
for every £ € R" and every » X n matrix X;
(iv) for every open set U of R* and every locally Lipschitz function fon U,

O [ glerad iz = n [sup (3 % wido+ | puada]].

i=lJ 7

@) = [sup (3 | ff"ﬁdzﬂ [ voncd]].

i=1

where in each case the supremum is taken over all y e 2" with spt
vCU and p(yp) = 1;

{v) p is translation invariant; ie., if pe2™ and »({) = ¢({ + 4),
then p(») = p(y);

(vi) p(y) = pleryr, * * *) Epa¥Puia) for all peP™** and all 4 = +1,---,
€y = :i: 1.

Define

¥(f) = [, dlgrad f)dz

for every Lipschitz function fon Q. It is shown in [4], that when ¥'is extended
to the summable functions by lower semicontinuity, one has for each con-

tinuous £,
() =1 [sup {Hf faw‘ dz + af '»”n+ldz}] ,

where the supremum is taken over all p e @™ with spt v C Int(Q) and
ply) = 1.
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A simple example of such a ¢, p, etc. is
n i
se =[] = e
n+1 }
ply) = sup [Z{% ] ,
a=0, nt)=t and 6(X)= [z zx] .

i=1 j=1

If one uses the same p and #, but puts
n . 3
s =[1+ 38
«=1and 6(X) = [1 4 3%, 37, X%} one obtains the area functional;
e, ¥(f) = 4(f).

Another example is given by

&) =3 I&P,

=1
where p is a real number > 1,

o) = [, (B mtares)es]

n n p—l
a=0, pf)=# and 6(X)= 2{2 [X“|nl(p—1)}

j=1 \i=1
»
) dx

2. Preliminaries

Thus
of

ox;

() = fo (2

for a Lipschitz f.

Let U be an open set of R, #(U) denotes the set of all locally summable
real-valued functions on U. % (U) denotes the subset of £ (U) consisting of
all locally Lipschitz functions. For each fe.#(U) and each open subset V'
of U, define

a,v)y=sup[3 [ 12 antaf poncs]
and

I}, V) = sup [z fa"‘ ]

where in each case the supremum is taken over all ye 2"+ with spt y C V
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and p(y) = 1. The definition of A and I' is extended to arbitrary Borel
subsets B of U by putting

A(f, B) = inf A(4, V)
and

I(, By = inf I'(f, V),
where each infimum is taken over all open subsets V of U containing B.
For each Borel subset B of U, define

@(f, B) = n{A(f, B)}-

#(B) = @(f, B),

then we will show in 2.13, that x is a non-negative completely additive
Borel measure.

When fe Z(U), V is an open subset of U with d(V,~ U) > 0andrisa
positive integer with (v/#)-r* < d(V,~ U), we will use (as in [2]),
the symbol £ (f) to denote the integral mean

@ = [ [ fw + £)dg - e,

0

If we put

which is defined for zeV.
Integral means have the following properties:

21 If feZ(U), then S ,(f) is continuous and hence locally summable
onV.

2.2 If f is continuous, then .#_(f) has continuous first order partial deriva-
tives.

23 If feZL(U) and is bounded, then £,(f) is Lipschitz.
24 If fex'(U), then

= ) = ()

everywhere in V.

25 If fe#£(U), then £, (/) » f almost everywhere in V and for every
compact set C,

[olf = #hide >0 and [ If — £ 4L/} 1dz >0

as 7 — o,
A, I and @ have the following properties:

26 If f, ge £(U) and B is a Borel subset of U, then A(f + g, B) =
A{f, B) + I'(g, B).

2.7 If fe#(U), Bis a Borel subset of U and $ is a real number, then

I'(f, B) = |BII'(f, B).
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2.8 If feX"(U) and B is a Borel subset of U, then

(f, B) = [, $(grad f)dz
The following theorems establish some further properties of @, I" and A.

2.9 THEOREM. I} f, [ e Z(U) and V is an open subset of U such that f and
each ) is summable on V and if

[y 1f = fondz >0
as r > oo, then
liminf A(f", V) = A(f, V)

=00

and
lim inf @(f", V) = &(f, V).

=00

ProoF. Take ¢ > 0 or N > 0 according as A(f, V) is finite or infinite.
There exists g € D" such that p(y) = 1, spt y CV and

2 f%dx—}—af Ypuade > A(f, V) —e or N.

$=1

Then
lim inf A (f*, V) = lim [ f o a""dx +a f w,,+1dx]
r-+00 Lim]l

—2 %dz+af Yppde > A(f,V) —eorN.
fmlJy
2.10 THEOREM. If fe Z(U), C is a compact subset of U and ®(f,C) s
finite, then
lim sup A{S,(f), C} = A(f, C),

lim sup A[£,(5,(1)}, C] < A(4, C),
lim sup &{5,(f), C} < &}, C)

and
lim sup @[S {4, ()}, C] < &(f, C).

£-+00

Proor. Take ¢ > 0 and let V be a bounded open subset of U containing
C and such that

(1) A(L,V) < A( C) + }e.

By the usual procedure for integral means one can easily show that
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AL (), Cr = A(LT)
for sufficiently large r and
AL LN} Cl = AL V)

for sufficiently large . From these inequalities and (1), the theorem imme-
diately follows.

2.11 TuroreMm. If fe A (U) and C is a compact subset of U, then
A{f — 2D, C} > n7{$(0) - m(C)},
Al = FALN} C1 = 7 (0) - m(C)},
P{f — F.(1), C} > $(0) - m(C)
and

Plf — IS (N}, C1 = ¢(0) - m(C)

as r —» 0.

ProoF. It follows from 2.4 and 2.5, that 2/dz {5, (f)} — of/0x; almost
everywhere on C. Also, there exists a constant K such that

d 2

for all sufficiently large » and almost all z e C. Let L > 0 be such that
(&) = L for all £ for which |§| £ K, -+ -, |£,]| £ K. Then

¢{gradf —grad (N} = L
for all sufficiently large » and almost all z ¢ C, and

Lm ¢{grad f — grad £, (f)} = $(0)

00

for almost all € C. Therefore, by bounded convergence,

lim | {grad  — grad £,(f)}dz = $(0) - m(C).

00

Suppose that ®{f — #2(f), C} does not approach ¢(0) - m(C). Then there
is an increasing sequence {r,} of positive integers such that

(1) lim @{f — S7(f), C} — $(0) - m(C) = 8 # 0.
But by 2.4 and 2.5
[ llgrad f — grad 43 (A)|1dz > 0

as § — 00, so that there exists a subsequence {p,} of {r,} such that
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lim [grad f — grad 3 ()] = 0

200

almost everywhere in C. But there is a constant K’ such that }jgrad f —
grad £} (f)Il < K’ almost everywhere in C.
Hence

Lim | 4 {grad f — grad L3}z = $(0) - m(C)

contradicting (1).
2.12 THEOREM. If ge X (U) and C is a compact subset of U, then

I'lg —4,(g),Cl—~>0
as r - o and

Ig—S4{5,(e)}C1 >0

as r —» 0.

ProoF. Let g denote either £, (g) or #2(g) and suppose that Ig — g,
C] does not approach zero. Then there exists an increasing sequence {7,} of
positive integers such that

(1) limIfg — g, C]l=a > 0.
By 2.11, .m
lim o? {grad ¢(g — g)}dz = $(0) - m(C)

for every positive integer ¢, hence there exists a subsequence {p,} of {r,}
such that

@) lim | {grad t(g — g>)}dz = $(0) - m(C)
But
Tit(g — g), C} = tI'(g — g, C) >

as ¢ — oo, contradicting (2).
2.13 THEOREM. If fe Z(U) and we put
u(E) = 8(f, E)
for every Borel subset E of U, then p is a completely additive Borel measure.

Proor. We begin by proving
(a) if V3, Vg, - - - are open subsets of U, finite or countable in number and
V=V,uV,u---, then
w(V) S Sull).

To prove (a), we take an increasing sequence {C,} of compact sets such that
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C,CV for all » and lim,, Int(C,) = V. Let ¥°, be a finite subcollection
of the V,’s that covers C,. We can assign to each We ¥, a compact subset
P, (W) of C, such that P (W)L W and

C,=U P, (W).

weY,

Put ¥, = {P,(W); We?¥",}. Since each of the functions £i(f) is locally
Lipschitz,

o), C = [ #{erad s2p)az

= 3 [ #rad st = 3 o020, C)

cee, Ce%,

so that by 2.9 and 2.10,
o{f, Int(C,)} = 3 &(£, C)

CE¥,

o(1V) = Eﬂp(f, V).

for all r, hence

Next we prove
(b) if V, W are disjoint open subsets of U, then

pVoW)=ul)+ puW).

To prove this, let {4,} be a sequence of compact sets such that 4, SV u W
for all » and lim,, Int(4,) =V u W. Then

7~ 00

O(LV o W)=1lmo(4,)

r—00

= lim lim sup ®{#3(f), 4,}

=00 300

= lim lim sup[@{#%(f), V n Int (4,)}

e + OLYH), W A Int(4,)}]
= lim [®{f, V n Int(4,)} + D{f, W n Int(4,)}]

=00

= 81, V) + B(f, W).
If we now define for every subset 4 of U,
u*(4) = inf u(V),

where the infimum is taken over all open subsets ¥ of U containing 4, we
obtain a Caratheodory outer measure with u*(V) = u(V) for open sets V.
Thus 4 is completely additive on the Borel sets.

2.14 THEOREM. If } e L(U),N > 0 and we put
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fn(@)=f@) i —N=f@x)<N
=N if flx)>N
=—N if flx)<~—N

then fn € Z(U) and D(fy, B) < D(f, B) for every Borel subset B of U.

Proor. (1) When fis locally Lipschitz on U, the theorem follows immedia-
tely from 1 (i).

(ii) When f is arbitrary and B is an open interval such that BC U and
O{f, Fr(B)} = 0, we have

(fy, B) < lim inf [(£2(/)}y, B]
and by (i), < lim, inf ®[F%(f), B] < ®(/, B).
(iii) When f and B are arbitrary. We can assume @{f, B) < . Take
& > 0. There existsanopenset Vwith BCVC Uand @(f, V) <®(f, B) + .
Let Z, be the subset of R! consisting of all ¢ for which the set

Ay={x;zelV and z, =t}

has @(f,4,,) = 0. Put Z=).,Z,. Then R'~ Z is countable. There
exists a countable collection _# of open intervals with their union containing
V, with the coordinates of their vertices all in Z and with

204 J) <®(LV)+ L

Je g

D(fw. V) §JEZ}¢(fN- J)

Then

and by (i)

élgdi(f,]) <P, V)+1

Thus @(fy, V) is finite. There now exists a countable collection #* of
mutually disjoint open intervals with

v=uJ

Jeg*

and with @{f, Fr(J)} = ®{fy, Fr(J)} = 0 for all J € #* Now

O(y, B) S 3 Bl. )
and by (ii) g
= 3 9(.)) S 9(.7)

< ®(f, B) + e
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3. Some approximation theorems

3.1. THEOREM. Let C be a compact subset of R™ and f be a locally summable
function on R* such that @(f, C) is finite. Let ¢ > 0. There exists a Lipschitz
function g on R* with compact support and such that the set

{z;xeC and [f(x)+#g(x)}
has measure less than e.
Proor. For each positive integer 7, put

7 = 2.

Let V be a bounded upen set such that CCV and &(f, V) < . Each
f) is Lipschitz on V, f) — f in the %, topology on V and

) lim sup @(f, V) < oo,

so that by 1 (ii),

@) lim sup | [1 + |lgrad f|*]tdz < oo.
r—o0 | 4

Let Jy, J;,**, J, be a finite number of mutually non-overlapping closed
cubes such that, if we put W = [J%_, J,, we have C C Int(W) and WC V.
By (2) and [2] 4.3, each of the functions

file) = f(z) if ze],

=0 if z é]l;
belongs to the class & of [2]. Hence, the function
»
"= Z f;
fm1

belongs to & and by [2] 3.1, there exists a Lipschitz function g on R* with
compact support and agreeing with f* except on a set of measure less than e.
Since f* agrees with f almost everywhere on C, g is the required function.

3.2 LEMMA. Let f be continuous on R™ with compact support and g be
Lipschitz on R™ with compact support. For each n > 0, put
1y(z) = glx) it |Hz) —egl=)l =7
= f(z) —nsgn {f(x) — g(2)} if If(=z) —gl@)l =,
B,={r;zeR* and 0 < |f(z) —g(x) <n}
Then
&(f,, E) < ®(f, E) + P(g, B, n E).
for every Borel set E.
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ProoF. (i) Suppose first of all that E is open. Put
1= 2.

Then f — f uniformly on R", hence there exists an increasing sequence
{r,} of positive integers such that

1
(@) — 1)l < 5

for all z € R™. Let s, be such that 1/s, < 35 and for each s = s;, put

1
P =t for ltlé—s—
1 1 1
= sgnt for —<|t| <n— —
; sgnt for S-Il_n :

=t—(n—§) sgnt for |¢ gn——:—.
B (z) = glx) + p{f" () — g(2)}

and

1 1
G, = {x;xeR" and T < ({7 () — glx) <7 5

Then A®) — f, uniformly on R" so that for each open set U,
(1) &(f,, U) < lim inf &(A®, U).
$—+00

But since A® is Lipschitz,
B(h, U) = fv¢(grad ) de
= Jyoq $lErad Bz + [, $(grad h)da
= [p.q Blerad fo)dz + | | d(grad g)de
= o, U) + @(g, U n B,).
Thus, it follows from (1), that for every bounded open set U,
(2) B(f,, U) < 0(f, U) + B(g, U ~ B,).

Let ¢ > 0. There exists an increasing sequence {U,} of bounded open sets
such that each U, is contained in E and
limU, = E.

=00

Then
(f,, E) = lim @(j,, U,)

=00
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and by (2)

r-»00

= o(/, E) + ¥(g, B, n E).

(ii) / and E are arbitrary. Take ¢ > 0 and let V' be an open set con-
taining E and such that

O, V) < 0(f, E) + }e

and

@, B,nV)<®(g, B,nE)+ }e.
By (i)

D(f,, V) S O, V) + (g, B, V),
hence

®(f, E) < O}, E) + 0(g, B, n E) +=.

3.3 THEOREM. Let C be a compact subset of an open set U and let | be
continuous on U and such that ®(f, C) s finite. Let £ > 0. There exists a
Lipschitz function fo on U such that:

(i) the set {z; z € C and f(x) # fo(x)} has measure less than €, and

(i) D(fy, C) < @1, C) + =

Proor. Let C, be a compact set, contained in U and with C in its interior.
There exists a continuous function f, on R* with compact support and agree-
ing with f on C,. Evidently
(1) ?(f, C) = 2/, C).

By 3.1, there exists a Lipschitz function g on R™ with compact support and
such that, if

A={&;zeC and f(x) #glr)}
then

@) m(4) < 3.
Let # > 0 be such that, if
B={r;zeR" and 0 < |f(z) —glx)| <7n}

and
D={z;zeR* and [f(z) —g(x)| =2}
then
3) m(D) =0
and
) P(g B) < {e.
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Define
o @ =8@) i IhE) —g@l S

= fi(z) — nsgn{f(z) —g(x)} if [f(2) —gl) =7
Then by 3.2,

0(/,,C) =P(/,C) + P(g,. Bn ()
and therefore by (1) and (4)
() P(f,, C) = O(1, C) + fe.
Now it follows from 2.6, that
Pig + F1(f: — 8), C} = n[A{F7(R), C} + g — #3(e), C}),
hence, by 2.10, 2.12 and (),
(7) lim sup &{g + F7(f, — g), C} < O(f, C) + {e.

Put
E,={mzecR and [S(f, — g)l(x) # 0}
and
E={r;zeR* and f,(z) #g(z)}.

Then Fr{E) C D and, since by (3) D has measure zero,
(8) lim sup m(E, ~ E) = 0.

=00

Thus, by (7) and (8), we can choose an 7, such that if f, = g + #7 (fo — &),

then

P(fo, C) < @(£,C) + ¢
and
) m(E, ~ E) < }e.
Then

{z;zeC and f(z) #fo(x)}CA v (E, ~E)

and by (2) and (9) has measure less than &. Since f, is Lipschitz, this com-
pletes the proof.

4. Approximation of functions on Q

In this section, the final approximation theorem as described in the intro-
duction, is proved (4.2).

The functional ¥ was defined in the introduction for Lipschitz functions

on the unit cube @ by
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() = [, blerad f)dz = (1, Q) = B{f, Int(Q)}-

It follows immediately from 2.9 that ¥ is lower semi-continuous on the
Lipschitz functions with respect to #; convergence. Therefore, ¥ extends
to a lower semicontinuous functional on the set of functions that are summa-
ble on Q. Thus, for a function f summable on @

W(f) = inf [lim inf ¥(f"))],

=00

where the infimum is taken over all sequences {{*} of Lipschitz functions
that converge %, to f. It follows immediately from 2.9, that

2{f, Int(Q)} = ¥(f)-

4.1 THEOREM. Let f be continuous on Q and such that O{f, Int(Q)} is finite.
Let ¢ > 0. There exists a Lipschitz function g on Q such that the set

{z;ze@Q and [(z)# g(x)}
has measure less than ¢ and
D(g Q) <P, Int(Q)} + ¢

Proo¥. Let |[f(z)] S K for allz € Q. Let a= (4,4, -, ) and for each
te[0,3], put
Q,={2(x —a)+a,xeQ}
Let D be the set of all £ € (0, }) for which @{f, Fr(Q,)} = 0. The complement
of D in (0, 4) is countable. Let £, € D be such that 0 < §, < },

(1) m(@~Q,) < }e
and
®  eIm@~0) <0+ (Y +8)
)
Let £, € D be such that £ <# < },
(3a) h— >33 —4)
and
(3b) 0(X) =1+ 6(I)
for all matrices X such that
(% - tl)
Ko =%l = 00

for all 7, j. By 3.3, there exists for each positive integer r a Lipschitz
function g on Int(Q) such that
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miz;zeQ, and f(z) #g"(@)} <
and
(4) D", 0Q0,) <P(, Q) +r %

We can assume that [g*"(z)| < K, for all e Int(Q). Then g*? — f in the
%, topology so that by 2.9,

lim inf @(g*, Q) = @(f, Q)

and
lim inf (g, Q,) = D(/, @4,)-
But by (4),
lim sup @(g*, Q,)) = D(f, Q)
so that
lim sup @(g"", Qq ~ Qto) =9 Qtl ~ Qto)'

r—00

Hence, one can choose a large r, put & = g and obtain

() mz;zeQ, and f(z) £ h@)} < }e,
®) Bk Q,) < B(1 Q) + 3
and
g B0, ~ Q) < {1+ 00} (¥ +3) ke
For each z € Q define »(z) by
ze€ Fr{Qv(z)}'
Then

fp(z) — »(z')] = ||z — 2|
for all z,2’ € Q. For z € Q ~ Q,, define

_[t—-4t)  4—&
p(x) = [v(::)(%_ ™ + 1= tn] (x — a) + a.
Then p maps Q@ ~ @, onto @, ~Q, . Also
_1 — bolt, — %) % — 1ty . .
0= [ Th i v
Then
®) ip6e) = p1 = (Y +1) tle — =1

for all z,2" e @~ @,, and
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\/

©) 50 — 270 = (3

for all y,y" € Q, ~ Q,,. Define
g@)=hz) if zeQ,
= Mp)} if zeQ~0Q,.

Then g is Lipschitz on Q and by (1) and (5) the set {z; x € Q and f(z) # g(z)}
has measure less than e. For almost all z € Q ~ @, , we have

¢(grad g) = ¢{(grad &) - J (=)},
where J(z) denotes the Jacobian matrix of p. Therefore, by 1 (iii),

+3) lly ~ ¥/l

(10) ¢(grad g) < $[{grad A(y)}ympia] - 6{J (@)}
But
o, Lk — ¢4 h—t (G —t) o
o= s T 1o G & e
hence
e o Gt
Oz, to(% - to

so that by (3b) and (10)

J‘Qw‘o‘ﬁ(grad g)dr < {1 4 6(I)} fo~ o $[{grad A (y)}y—pim1dz

and by (9)

" /)
=0+ 00) (7 ) [ drlerad i) 2 o

to

— {1+ 6(I)} (‘/ +3) fq &(grad h)dy

2ty o~ Qe
which by (7), < 4e. Then

P Q) <P Q) + de = P(h Q) + 3¢
and by (6), < @/, Int(Q)} + =

4.2 COROLLARY. If f is continuous on Q and such that P(f) is finite and if
& > 0, then there exists a Lipschitz function g on Q such that the set

{x;xeQ and f(x) # g(x)}

has measure less than ¢ and

Ple) < ¥() + e
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4.3 THEOREM. If [ is continuous on Q, then

o{f, Int(Q)} = ¥(f).

Proor. It is sufficient to prove that ¥{f) < &{/, Int(Q)}. We can assume
that @{f, Int(Q)} is finite. Let {f(z)| < K for all ze (. By 4.1, there exists
for each » a Lipschitz function g on Q such that

m{z;ze€Q and f(z) #gM(z)} <r?
and

B(e", Q) < Bf, Int(Q)} + r.

Because of 2.14, we can assume that [g"”(z)| < K for all z€ Q. Then g —f
in the %, topology so that

Y (f) < lim inf B(g, Q)

r-»0Q

¥(f) = o/, Int(Q)}.

hence
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