Canad. Math. Bull. Vol. 14 (4), 1971

ISOMORPHISMS IN SUBSPACES OF c_0

BY

ROBERT H. LOHMAN

A Banach space X is said to be subspace homogeneous if for every two isomorphic closed subspaces Y and Z of X, both of infinite codimension, there is an automorphism of X (i.e. a bounded linear bijection of X) which carries Y onto Z. In [1] Lindenstrauss and Rosenthal showed that c_0 is subspace homogeneous, a property also shared by l_2 , and conjectured that c_0 and l_2 are the only subspace homogeneous Banach spaces. In that paper no mention was made of subspaces of c_0 .

In this note we show that a closed, infinite dimensional subspace X of c_0 is subspace homogeneous if and only if X is isomorphic to c_0 . This is also shown to be equivalent to a " c_0 sandwich property." Thus in the particular case $X \subseteq c_0$ our result lends support to the conjecture of Lindenstrauss and Rosenthal. We follow the notation and terminology of [1] and rely heavily upon the following results of [2]:

(1) A closed, complemented subspace Z of c_0 is either finite dimensional or isomorphic to c_0 .

(2) Every closed, infinite dimensional subspace of c_0 contains a closed, complemented subspace isomorphic to c_0 .

THEOREM. Let X be a closed, infinite dimensional subspace of c_0 . The following are equivalent:

(a) $X \approx c_0$

(b) X is subspace homogeneous

(c) X satisfies the " c_0 sandwich property": If Z is a closed subspace of X with dim $X/Z = \infty$, there is a subspace Y such that $Z \subseteq Y \subseteq X$ and $Y \approx c_0$.

Proof. (a) \Rightarrow (b). This follows immediately from the results of [1].

(b) \Rightarrow (c). Let Z be a closed subspace of X with dim $X/Z = \infty$. By (2), X contains a subspace W such that $W \approx c_0$. Consequently, there is an isomorphism T from Z into W. If TZ is of finite codimension in W, then by (1) we have $Z \approx TZ \approx W \approx c_0$. If TZ is of infinite codimension in W, then by (b), T has an extension to an automorphism \tilde{T} of X onto X. Letting $Y = \tilde{T}^{-1}(W)$, we see that $Z \subset Y$ and $Y \approx c_0$.

(c) \Rightarrow (a). By (2), X contains a closed, complemented subspace W such that $W \approx c_0$. We can write $X = W \oplus Z$, where Z is a closed subspace of X. Since dim $X/Z = \infty$, there is a subspace Y such that $Z \subset Y \subset X$ and $Y \approx c_0$. Since Z is complemented in X, Z is complemented in Y. By (1), Z is finite dimensional or $Z \approx c_0$. In either case, we have $X \approx c_0$.

ROBERT H. LOHMAN

REFERENCES

1. J. Lindenstrauss and H. P. Rosenthal, Automorphisms in c_0 , l_1 and m, Israel J. Math. 7 (1969), 227-239.

2. A. Pełczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.

KENT STATE UNIVERSITY, KENT, OHIO