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1. Introduction
It is well known that two mutually related summability methods for a

sequence sn(n = 0, 1, 2, ...) are any Cesaro method (C, y) of order y>0 and
the Abel method (A). The notation used in this statement is that of Hardy
((1), pp. 96-7, 71) and the statement itself can be amplified as follows. Sum-
mability (C, 7), y>0, of sn implies (i) sn — o(ny), (ii) summability (A) of sn.
Also, as a conditional converse of this result, we have Offord's result ((3),
first part of Theorem 2), that hypothesis (i), and hypothesis (ii) suitably
strengthened, together imply summability (C, y), y>0, of sn. It is the object
of this note to bring to light a second pair of summability methods mutually
related like the methods (C, y) and (A), by following an argument which is
essentially similar to Offord's but differs sufficiently from Offord's in details
to justify a separate and self-contained treatment of the second pair of methods.

In the notation of two earlier papers by the present author and others
(2), (4), this second pair of methods, called the logarithmic methods (/) and
(L), is defined as follows. A sequence sn is summable (/) to sum S, or briefly,

if (So+Si +-+~^)I log(n+l)-»S(«->oo);
\ 2 n+lj

while the sequence is summable (L) to S, or,

sn^S (L),
if

the numerator of the left-hand member of the last relation being a power
series convergent (absolutely) for | J C | < 1 . In more general circumstances,
when the sequence tending to £ in (1) is merely bounded, we write

sn = 0(1) (0;
and, similarly, when the function tending to S in (2) is just bounded, we write

sn = 0(1) (L).

In connection with definitions (1) and (2) the following facts are known ((1),
47
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p. 87; (2), Theorem 3, 4). The method of summability (/) is equivalent to the
Riesz method (R, log(n+l), 1) in Hardy's notation. Also, summability (/)
of sn to sum S implies (i) sn = o(n log «), (ii) sn->S (L). The purpose of the
present note is, briefly, to obtain a result (Theorem 2) in which hypothesis (i),
and hypothesis (ii) suitably augmented, together make sn summable (/) to 5.
The augmented hypothesis (ii) may be related to a strengthened form of sum-
mability (L) defined as follows in analogy with a strengthened form of sum-
mability (A) discussed by Hardy ((1), p. 381).

Suppose that sn(n = 0, 1, 2, ...) is such that

= soz+ £i
2

zB+l+ +
2 n + l

is a power series with circle of convergence \ z\ = 1, and further

F(z)
l o g ( l - z ) - 1

subject to the condition

*S uniformly when z-»l

(3)

Then we write
sn^S (L, a,

so that, in the particular case a = /? = 0, the last relation becomes sn-*S(L).
Similarly we write

if - ^ _, = 0(1) uniformly when z->l as in (3).
l og ( l - z )

In virtue of a theorem of Montel's quoted by Offord ((3), p. 475), we see from
definitions (3) and (4) that

sn-+S(L) and sn = 0(1) (L, a, p) together imply sn-+S ( I , a, 0). (5)
Theorem 1 of this note contains implicitly the main result in Theorem 2

and embodies a technique used by Offord to treat (A) summability ((3),
Theorem 1) with the necessary modification which makes it applicable to (L)
summability. Theorem 1 is preceded by lemmas which mark certain stages in
its proof. In the proofs of the theorems and the lemmas, K, K', M, N each
denote a positive constant independent of the complex variable z and the
positive integral variable n, while s is such a constant supposed (as usual)
to be arbitrarily small, all these constants being not necessarily the same at
each occurrence.

2. Lemmas
Lemma 1. Let sjn = 0, 1, 2, ...) be a sequence such that

F(z)=soz+ S-l
2

z + ...+
2 n + l
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has a circle of convergence \z\ = 1. Then a necessary and sufficient condition
forsn^S(l)is

f / - ( z ) -S log( l -z ) - 1 ,
— — — :L—r dz = o (log ri), n-*co.

J |z | = i-n-« (1 — z)z" log(l — z)
Proof. Firstly, the above integral is

y f y !» ^ \ z
n + i

o \v = oL~.: = 2ni t ^

by Cauchy's theorem. Secondly, the right-hand member being o(logn) is
equivalent to sn-*S(l) by definition (1). These two statements together prove
Lemma 1.

Lemma 2. Let F(z) be defined as in Lemma 1. Then

sa = o(n log n) implies F[ 1 e'9) = o(« log /;), /i->oo.

Proof. If z = 1 - - e'9,

1

where v0 is chosen so that L^-' <elogv. for v ^ v0, on the assumption
v + l

sn = o{n log «). With this assumption, we have then

i f(rie»)<(,-iz|,-fiij|
n \ n I o v+ l

0 V + l

vo V

= A : 1 - £ | z | 2 l o g ( l - j z | ) = A : 1 - 8 / ' l - -Ylog l /n .

The last inequality is the one required.

Lemma 3. Let F(z) be defined as in Lemma 1. Also, for z0 and zt such that
0 < | z0 | < 1 a m / 0 < | z | < l , /e/ MJ </e^«e

rfw, (6)

£Ft(w)dw, (7)

E.M.S.—D
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choosing some path of integration within | z | = 1. Then sn = o{n\ogn), n->co,
implies

1 t>\
e I = o(log TJ). (8)

« /
Proof. The first relation of (8) follows from a combined application to

(6) of Lemma 2 and the maximum-modulus principle.
To prove the second relation of (8), we substitute for F{z) in (6) its expression

as a power series and get, integrating term by term,

,(z) = F1(z0) +
JzoV = 0 V+1

v £ 0, v # n - l (V + 1)(V — «

Once more integrating term by term, we get F2(z) in the form

F2{z) = F2(z0) + K{z - z0) + ?*=± (z log z - z) - ^ i (z0 log z o - z0)

v # n-2

Since 5n = o(n log n) we can choose v0 so that

z v ~ n + 2 .
(9)

I— Ĵ < e lOg v for v ̂  v0, i—H-1 <M for v<v0.
v—1 v+1

We then get from (9), taking z = I 1 I e'e and letting n-> oo,
V n)

/vo-l n-3 oo

= O(l)-o0ogn)+[ E + E + I I zv-"+2

= o(log /7) + 2 1 + E 2 + I 3 (say). (10)
Now

Therefore,

E <v t ' o ( n - v - l ) ( « - v - 2 ) ( f I _ V o ) ( I I _ V o _ = o (i\ (11)
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Similarly,

\<2ee
vo(«-v-l)(n-v-2)

<2e£log«{— + — +...+ * 1

112 2.3 («-vo-l)(«-vo-2)J

<2eelogn. (12)

Lastly, in the same way,

| I 3 | < 2 « £ !1 ' (v

1 ( V V \ >
= 2e£ I 2, + 2^ I —

\v = 0 v = n+l/(l

log (v + ri)

<2ee{log 2 + log n + o(l)}. (13)

Using (11), (12) and (13) in (10), we get the second relation of (8).

3. Theorems
Theorem 1. Suppose that a sequence sn(n = 0, 1, 2, ...) is such that

sn = o(n log ri) and hence
00 .

0 12+1

has circle of convergence \ z \ = 1. If then n is any positive number, however
small, a necessary and sufficient condition for sn->S (/) is as follows:

f
Je

x
(14)

where

= f 1 j e'fl, c = co(tf) and c, =

are constants independent of n.

Proof. It is obvious that, if we suppose the sequence sn replaced by sn — S,
we shall have 5" = 0, the condition sn = o{n log n) remaining unaffected. We
shall make this supposition for simplicity. Then, by Lemma 1, a condition
necessary and sufficient for ^-^O (/) is

rr-^Ti =0('°g")- (15)
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On the other hand, whatever be the constants c0 and c1; we have

f
J|| = | = !-«-»

J | z | = 1-n-i ^0 V + l

n—2
= o(log») (16)

by hypothesis. From (15) and (16) we see that a condition necessary and
sufficient for sn-*0 (/) is

where C is the circle | z | = 1 — n~x and c0, cx are any constants. Comparing
the above condition with (14) for S = 0, we note that it suffices to prove:

\J
c.

w h e r e

(1 - z ) log (1-z)

C is t h e a r c : z = I 1 - - ) ew, t]^6^ 2n-r\,
n

(17)

and c0, Ci are constants suitably chosen.
To determine such a choice of c0, ct we write

6 ( z ) = n VT^Ti ^T +co(l-z) + c1(l-z)2
)

(1-z) log (1-z)
and make

e(e*)=e(e-*)=O. (18)
Obviously c0, ct are determined uniquely and independently of n by means
of (18). Further, if we write

zt = re1", z2 = re'"1 where r = 1 - -, (19)
n

then, by (18),

a s ^ o r
(r—^e" z 1 - e " '

this relation being true also with z2 and — rj in place of Zj and f7 respectively.
Letting r-»l — 0, we get then

( 2 0 )

Having denned O(z) by the condition (18), we proceed to complete the
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proof by establishing (17) in the form

Q{z)dz = o(log II), (21)
z" + 1

where z, and z2 are given by (19) and the path of integration is the circle
| z | = 1— n~l. Integrating twice by parts the integral of (21), and using the
definitions of /\(z), F2{z) in (6), (7) respectively, we get

'(z)I?| + | P

In the first and the second terms of the right-hand member, we use the estimates
for Fj(z) and F2(z) in (8) along with the estimates for Q(zx\ Q(z2) and Q'(zt),
Q'(Z2) g'ven by (20). The result is

IC12 F(z) , I f-'2

-^- , Q(z)dz = o(n log n)0(n~ ') + o(log «)+ F2(z)Q"(z)rfz

|J*. z U.-.
= o(n log n)0{n~') + o(log n) + o(log «). (22)

The passage from (22) to the last step is justified by the fact that, on the path
of integration, Q"(z) is bounded while F2(z) = o(log «) by (18). And the last
step leads obviously to (21), thus completing the proof.

Theorem 2. Suppose that a sequence sn(n = 0, 1, 2, ...) is such that

(i) sn = o(nlogn), «->co

and therefore F(z) = £ —— z " + 1 has circle of convergence \z\ = 1. Suppose
o n + 1

also that
(ii) Hz) = 0 ( - j ) uniformiy when I z I <1 , I am z I ^»f. (23)

l o g ( l - z )

Then sn-*S(l) whenever sn^>S(L).

Proof. As in the proof of Theorem 1, we may take 5 = 0. Starting then
with the assumption sn->0(L), we have to prove that sn->0(l) on the further
hypotheses (i), (ii) of Theorem 2. We know (by Theorem 1) that, on hypothesis
(i), a necessary and sufficient condition for sn-*0 (/) is (14) with 5 = 0. Thus
in order to conclude that sn-*0 (/) it only remains to prove that hypothesis (ii)
and 5n-»0 (L) together imply (14) with S = 0, or more particularly,

. r—
Je = o ( l -

(24)

h = f ~ V(z){co(l-z) + Cl(l-z)2} £ =O(l)fz = ( l - -)e'
9, «-»«].

(25)
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To prove (25) we observe that, for z = I 1 1 e'B,

\I2\ ^ | c o

= 121+122 (say).
Here the integrand of/21 is bounded as «->oo. For,

IV"- - <2e

as we have already seen, and, on account of (23),

(26)

— + — +.. .) =2k.
1.2 2.3 ;Therefore, in (26),

whence (25) follows at once.
Thus we have finally to prove (24). To this end, we write the integral in

(24) as

F(z) dz _ r , T
= \\ log"+ L__Lf7TI

KJ 0 = 0 J log nj \L
-z) log(l-z) 1 zn+1 (27)

where

and nn is chosen so that

z = | l - - ] e M , n^

/-•(z)

log(l-z)- 1
<efor z = ( 1- i

log«0

(28)

A choice of n0 as in (28) is possible because of our initial assumption in->0 (L)
and its implication corresponding to (5). Since (28) is true a fortiori with n0

replaced by n, we see that, in (27),

/ , , <e
f—

Jo

1 -
1

1 - 1 —

<2se floU
Jo L

ndd ftoh

N being a constant independent of n and 6. Hence, integrating the last
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integral, we obtain

/ n I <2eeN log{1 (NlogH V N2 log

N2 log

n\ VI
log2 nj J

/ «2 \i
<2eeiVlog2 1 +

\ N2 log2 nj

)}. (29)

We treat similarly I12 in (27), but using(23) instead of (28),and get the result:

Nndd

<2&lVe l \ _ — = 2kNe(log n + log log «) = o(log «). (30)

Now we use (29) and (30) in (27) to obtain (24) which, along with (25) earlier
proved, concludes the proof as already observed.

The following deduction from Theorem 2 is obvious.

Corollary. Ifsn(n = 0, 1, 2, ...) is a sequence such that

sn = o(n log n),

F(z)

00 C

V Z

log(l-z)-1 log(l-z)-1

as z-*\ along any path within \z\ = 1, then sn-+S(J).

The author is indebted to Prof. C. T. Rajagopal for his kind help in the
preparation of this note.
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