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THE SOLUTION OF SOME INTEGRAL EQUATIONS
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Abstract

Algorithms are developed by means of which certain connected pairs of Fredholm integral
equations of the first and second kinds can be converted into Fredholm integral equations
of the second kind. The methods are then used to obtain the solutions of two different
sets of triple integral equations that occur in mixed boundary value problems involving
Laplace's equation and the wave equation respectively.

1. Introduction

In two previous papers [1], [2] we have discussed certain classes of Fredholm
integral equations of the first kind that arise in the investigation of solutions to
some dual-triple-quadruple integral and series equations. In those papers we
presented constructive methods for reformulating the integral equations as Fred-
holm integral equations of the second kind from which the solutions of the
original equations can be found.

In this paper we extend the discussion to another class of linked pairs of
integral equations of the first and second kinds which occur naturally in the
investigation of some three-part boundary value problems in which Dirichlet,
Neumann and Robin-type boundary conditions are imposed on the three differ-
ent portions of the boundary.

As a simple illustrative example, consider the problem of finding the axially
symmetric potential function tf>(r, z) which satisfies the equation
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204 John F. Ahner and John S. Lowndes I21

the mixed boundary conditions

• 0 - . 0 ) = / ( r ) , 0 < r < a ; <f>2(r,0) = -g(r), a < r < b; (1.2)

4>(r,0)-p<l>z(r,0) = h(r), b < r < oo

and is such that <f> -* 0 as r2 + z2 -> oo.
It can be shown that a suitable form for the solution of the problem is given by

-ejQ(tr)d£, (1.3)

where the function A(£) is such that the integral in (1.3) exists as an improper
integral and that it tends to zero as r2 + z2 -» oo. Furthermore, from the
boundary conditions (1.2), the unknown A(£) must satisfy the following set of
triple integral equations

f°0 0 < r < a,

a < r < b,

b < r < oo.

(1.4)

(1.5)

(1.6)

Triple integral equations of this type do not seem to have been treated in the
literature (cf. the integral equations discussed by Sneddon [6]).

We shall show that the problem of solving such sets of equations can be
transformed into that of solving a connected pair of Fredholm integral equations
of the first and second kinds of the type

P(X)MX) +{ja
bfi(y) + j " f2{y))K{x, y) dy = g(x), 0 < a < x < b,

(1.7)

r(x)f2(x) +{fbf1(y)+fdf2(y))K(x,y)dy = h(x), c<x<d,
\Ja Jc I

(1.8)

where b < c.
In the above equations g(x), h(x), r(x) and p(x) are known functions, fi(x)

and f2(x) are the solution functions to be determined and the kernel function can
take either of the forms

K(x,y) = Lc(x,y:a), o = min(x,y), (1.9)

K(x,y) = Mk(x,y:d), X = max( *,>>), (MO)

where the precise definitions of Lo and Mx will be given in Sections 2 and 3,
respectively.
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[ 3 ] The solution of some integral equations 205

In Sections 2 and 3 we show that the problem of solving the pair of equations
(1.7) and (1.8) can, in each case, be reduced to that of solving a Fredhohn integral
equation of the second kind. To illustrate the use of the algorithms developed in
these sections we then solve, in Section 4, some general triple integral equations
which include equations (1.4) to (1.6) as a special case and in Section 5 we discuss
some triple integral equations that arise in mixed boundary value problems
involving the wave equation.

2. Integral equations with the kernel La(x, y : 0)

We first of all consider the problem of finding the solution functions /x(x) and
f2(x) which satisfy the pair of integral equations

g(x), o<x<a, (2.1)

r(x)f2(x) = h(x), b<x<c,

(2.2)
where a < b, a = min(jc, y), g(x), h(x) and r(x) are given functions such that
r(jc) =£ 0, x e [b, c] and in general the kernel function takes the form

L0(x,y:a)= f%(t)Pl(t,x)p2(t,y)dt, 0 < a < 0 < c. (2.3)
'a

In the above definition <f>(t) is a given non-zero function and the pt(t,x),
i = 1,2 are the known kernel functions of the integral operators

/ , ( ' , *)/(0 A, (2.4)
y

fS
Pi(x,t)f(t)dt, 0 < y ^ x ^ S ^ c ,

y

which are assumed to have unique inverses denoted by (P,(y, 6))"1 and
(/"„•*(Y.fi))"1, respectively.

With the above definition for La(x, y:0) we see that (2.1) and (2.2) can be
written as

0<x<a, (2.5)

° Ly(x, y : 0)f,(y) dy + { jT L,(x, y:0)+£ Lx(x, y:0)}f2(y) dy

+ r(x)f2(x) = h(x), b<x<c. (2.6)
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On inverting the orders of the integrations in these equations and using the
definitions (2.4) we find that they can be expressed in the operational forms

P1(0,x)«(*)[Pa*(x,a)/1(x) + P2*(b,c)f2(x)] = g(x), 0 < x < a,
(2.7)

^ ( 0 , a)*(x)P?(x, a)A(x) + i\(0, b)${x)P2*{b, c)f2(x)

+ P1(b,x)4>(x)P2*(x,c)f2(x) + r(x)/2(x) = h(x), b<x<c.

(2-8)

To avoid any possible confusion with our notation, it follows from the definitions
(2.4) that the first expression appearing on the left hand side of (2.7) is given by

(0, x)<t>(x)Pf(x, a)A(x) = f* Pl(t, *)*(/)( J^ P2(t, y)A(y) dy) dt.

A similar interpretation holds for the second term in (2.7) as well as the various
integral operators in (2.8).

From (2.7) we have that

<t>(x)P2*(x, a ) A ( x ) = M O , * ) ) " l g ( * ) - <t>(x)P2*(b,c)f2(x), 0 < x < a

(2.9)

and eliminating <j>(x)P2*(x, a)fi(x) between this equation and (2.8) we obtain,
after some simplification, the equation

Px{a, b)4>(x)P2*(b, c)f2(x) + P^b, x)*(x)Pf{x, c)f2(x)

+ r(x)f2(x) = G(x), b<x<c, (2.10)

where G(x) is the known function

G(x) - * ( * ) - A(0, «)(Pi(0, x))"1g(x). (2.11)

Inverting the orders of the integrations in (2.10) and using (2.3) we arrive at the
following Fredholm integal equation of the second kind for the determination of

r(x)f2(x)+fbLo(x,y:a)f2(y)dy = G(x), b < x < c. (2.12)

When /2(x) has been found from this equation the solution function fx(x) can
be evaluated from (2.9) in the form

0<x<a. (2.13)
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3 . I n t e g r a l e q u a t i o n s w i t h t h e k e r n e l M x ( x , y : d )

We next consider the pair of integral equations

p(x)Ul(x) + { £ Ul(y) + f' u2{y)^Mx{x, y:d)dy = g(x),

0 < a < x < b, (3.1)

h(x), c<x<d, (3.2)

where b < c, \ = max(x, y), ux(x) and u2(x) are the required solution functions
and g(x), h(x) and p(x), where p(x) i t O , x 6 [a, b], are prescribed functions.

In general the kernel function Mx(x, y: d) is defined by

Ma(x,y:P) = fHt)pl(x,t)p2(y,t)dt, 0 < a < 0 < </, (3.3)

where ^(f) is a given non-zero function and />,(-*> t), i = 1,2 are the known
kernel functions of the integral operators defined by (2.4). It will be noted that
the arguments of the functions pt in (3.3) are transposed with those in (2.3);
however, we can still use the same definitions (2.4) for the integral operators /»,
and P/ \

With the above definition for Mx(x, y.d), \ = max(x, y), we can invert the
orders of the integrations in (3.1) and (3.2) and use the definitions (2.4) to find
that the pair of equations can be written in the operational forms

p(x)Ul(x) + Pl*(x,b)^(x)P2(a,x)u1(x) + Pl*(b,d)4>(x)P2(a,b)u1(x)

+ Pl*(c,d)t(x)P2(c,x)u2(x) = g(x), a<x<b, (3.4)

P?(x,d)xl/(x)[P2(a,b)u1(x) + P2(c,x)u2(x)] = h(x), c < x < d.
(3.5)

Solving (3.5) for \js(x)P2(c, x)u2(x) and substituting the result into (3.4), we
obtain, after a little simplification, the equation

+ P 1 * ( b , c ) 4 , ( x ) P 2 ( a , b ) u 1 ( x ) = G ( x ) , a < x < b ( 3 . 6 )

where

G(x) = g(x) - P*(c,d){P*(x, d)Y1h(x) (3.7)

is a known function.
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Interchanging the orders of the integrations in (3.6) and using (3.3), we get the
following Fredholm integral equation of the second kind which determines the
function ux(x):

p(x)u1(x)+JbMx(x,y:c)u1(y)dy = G(x), a < x < b. (3.8)
Ja

When ux(x) has been found from this equation the solution function u2(x) can
be found from (3.5) when written in the form

2\x) — \r2\c,x))

c<x<d. (3.9)

4. Triple integral equations involving the Hankel transform

As an application of the algorithm described in Section 2 we consider the
following general set of triple integral equations

S^_a2aA{x) = 0, 0 < x < a, (4.1)

) = g(x), a<x<b, (4.2)

) = 0, b< x < oo, (4.3)

where /i, v, a, /? and k are real constants such that 2(a — /?) > |/t — v\, g(x) is a
prescribed function, A(x) is the solution function to be determined and

$,,„/(*) = 2«*-jT tl-J2v+a(xt)f(t) dt (4.4)

denotes the modified operator of the Hankel transform [6] with the inversion
formula

•V,« = W . . (4.5)
With / = h = 0 and p = (kr)/2 it is easily seen that the triple integral

equations (1.4) to (1.6) are a special case of (4.1) to (4.3) when a = \ and
P = n = v = 0.

In order to reduce the above triple integral equations to a connected pair of
Fredholm integral equations of the first and second kinds we introduce two, as
yet unknown, functions fi(x) and f2(x) defined by the equations

) = fM, 0 < x < a,

= / 2 ( x ) , b<x<oo. (4.6)
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Applying the inversion formula (4.5) to (4.2) and (4.6) we find that

A(x) = 2-2px2fi{ f fx(y) + f g(y) + f /2(y))yl+2f>Jr(xy)dy. (4.7){ £ a }
On substituting this expression for A(x) into (4.1) and (4.3) and interchanging

the orders of the integrations, we find that the equations take on the forms

{} gl(x), 0 < x < a, (4.8)

W +f"f2(y)]jLV(x,y:O)dy + kf2(x) = g2(x), b < x < <x>,

(4.9)
where

ii(x) = - / * 8(y)^(x, y:0)dy, g2(x) = -(" g(y)LV(x, y.0)dy,

(4.10)

are known functions. The kernel of the equations is given by

, y:0) = 2«-nx-2y+2' [°° tx-^"-^J(xt)Jv{yt) dt, (4.11)

_ _ Y _ _ a ) , - r - i

(4.12)

where a = min(x, y), y = i(/i + v) - (o - /?), 2(a - )8) > |/x - v\. The expres-
sion (4.12) is proved in the appendix and is similar to the result stated by
Williams [7].

It will be seen that (4.8) and (4.9) are precisely of the same type as the pair of
equations discussed in Section 2.

On comparing the definitions of the kernel functions (2.3) and (4.12) we see
that we must take $(t) = 1 and the kernel functions /?,, / = 1,2, to be

i t ) { 2 ~ ' 2 ) " " T " 1 ' 1 + ' + a ' , (4-13)

Associated with these kernel functions we can define the integral operators

P?{x,8)f(x) = xATj^^.^acajjc-^x), (4.16)

i>2(£,x)/(x) = x/iM_o>F_y(£)x)x-1/(x), . (4.17)

P2*(x,8)f(x) = % . M . T ( x , S ) / ( x ) , (4.18)

where y = }(/x + v) - (a - /?).
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210 John F. Ahner and John S. Lowndes 181

In the above expressions /,, „ and Kv a are the modified Erdelyi-Kober
operators of fractional integration which are defined in [4] by

f <*2 - ' 2 )°"V+ 2Y(0^, « > o, (4.19)

(4.20)

= (-l)V1+2'i»i{*1+«'-'>tf,_,>a+,(*,«)/(x)}, a < 0,
(4.22)

where

1 d 1
Sd =

x 2 i

*„„(*, S)f(x) = | g ^ jf* (r2 - x*)'-V-^+")/(0 dt, a > 0, (4.21)

and s is a positive integer such that 0 < a + s < 1, when a < 0.
The inverse operators are defined by

(4.23)

From the above definitions it follows that the integral operators (4.15) to (4.18)
possess the inverses given by

if{x), (4.25)

(x), (4.26)

% ^ ) . (4.27)

Using the above results and the general method of solution given in Section 2,
we find from (2.12) with r(x) = k, that the function f2(x) which satisfies the pair
of equations (4.8) and (4.9) is the solution of the Fredholm integral equation of
the second kind

= G(x), b < x < oo (4.28)

with

dt, a = min(jc,.y) (4.29)
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where the pt(t, x), i = 1,2, are given by (4.13) and (4.14) and the free term is the
known function

where g^(x) and g2(*) are defined by (4.10).
Once / 2 (x) has been found from the above integral equation we have, on using

(2.13), that fx(x) is given by

0 < JC < a. (4.31)

Finally, having determined fi(x) and f2(x), we see that the solution function
A(x) of the triple integral equations (4.1) to (4.3) is given by (4.7).

5. Triple integral equations involving the Kontorovich-Lebedev transform

To illustrate an application of the general method given in Section 3 we shall
consider an extension of the triple integral equations solved in [3], special cases of
which occur in three-part boundary value problems involving the wave equation.
These are the equations

/"°° tsinh{irt)A(t)Kil(px)dt = 0, 0 < x < a, (5.1)

IT1 J0

- ^ - f tswh(2nt)T(a + it)T(a - it)A{t)Kit{px) dt = s(x),

a<x<b, (5.2)

) dt = °> b < x < x>,
IT2 Jo

(5.3)

where 0 ^ a < b < co, 0 < 2a < 1, k is a constant, s(x) is a prescribed func-
tion, Kit(px), Re(/>) > 0, is the modified Bessel (Macdonald) function and A(t)
is the solution function to be determined.

Two results which we shall find useful are as follows. The Kontorovich-Le-
bedev transform of the function f(y), 0 < y < oo, is defined by

y-1f(y)Kil(py)dy, Re(/>) > 0, (5.4)
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with the inversion formula

f{y) = —2r tsiah(vt)F{t)Kll(py)dt. (5.5)

A transform result is

(a + it)T(a - it)K,,(px)Ku{py)dt

,y. oo), 0 < 2a < 1, Re(/>) > 0,

(5-6)

where

J
/.00 e"2/>'

' — dt, X = max(x, y).

(5.7)

We now show that the set of equations (5.1) to (5.3) can be converted into a
pair of Fredholm integral equations of the type considered in Section 3.

To this end we introduce two functions wx(x) and u2(x) defined by the
equations

•2- H t s i n h ( i r t ) A ( t ) K J p x ) d t = x 1 - a e - p x u 1 ( x ) , a < x < b ( 5 . 8 )
IT1 J0

= xl-ae-pxu2(x), b < x < oo (5.9)

and from (5.1), (5.8) and (5.9), we find, on using the reciprocal formulae (5.4) and
(5.5), that the function A(t) is given by

A{t) = (jf* Ul(y)+f" u2{y)}y-ae-<>yKit{py)dy. (5.10)

After substituting this expression for A(t) into (5.2) and (5.3), inverting the
orders of the integrations and making use of the results (5.6) and (5.7), we see that
they become the pair of integral equations

Ul(y) j

1 1 1 - ) ]. x'ae'pxs(x), a < x < b,
Lit

(5.11)

= 0, b< x < oo, (5.12)
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where

Pi(*)-£[r(i-a)]V-a%-" (5.13)
and these are the type of integral equations discussed in Section 3.

Using the general results of that section and taking i|/(/) = e~2f", p^x, t) =
p2(x, t) = (t - x)~( a + 1 / 2 ) , it follows that the kernel function is

, y : oo) = ̂  MOPii*, t)Pi(y,') dt, X = max(x, y).(5.14)

Associated with the functions />,, / = 1,2, we have the Abel-type integral
operators

P(y, x)f(x) = f (x - ty(a + l/2)f(t) dt, 0 < 2a < 1, (5.15)
Y

P*(x,8)f(x) =(S(t- xY(a+1/2)f(t)dt, 0 < 2« < 1, (5.16)
J

f
Y

((t- xY(a+1/2)

which possess the inverses

(P(y,x)rf(x) = ^ - i / ; (x - tV-^Mdt, (5.17)

(5-18)

Following Section 3, we find on using the above results and (3.8), that the
required solution function ux(x) can be found from the following Fredholm
integral equation of the second kind

Pl(x)Ml(x) + jf* M{»(x, y : b)u,{y) dy = ^ \ m x-e-"s(x)t

a<x<b, (5.19)
where px(x) is given by (5.13) and

(5.20)
When «j(x) has been determined, we see from (3.9) that the second solution

function can be calculated from the equation

, x)Y1P(a, b)Ul(x) (5.21)

x - b)l / 2 —a i \ - ' / - ' • ?
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214 John F. Ahner and John S. Lowndes [12 ]

Finally, knowing ux(x) and u2(x), the solution function A{t) of the triple
integral equations (5.1) to (5.3) can be found from (5.10).

Appendix

THEOREM.

•'o

(

(A.I)

fi > y, v > y and a = min(jc, >»).

PROOF. In terms of the modified operator of the Hankel transform (4.4), we can
express the Weber-Schafheitlin discontinuous integral [5, p. 100] in the form

) H{x - y)> ( A - 2 )

where /x > y > —1 and H(x) denotes the Heaviside unit-function.
Operating on both sides of the above equation with the Erdelyi-Kober operator

Iiy,,_Y(0, y) and making use of the result [6]

C 1." = I

we see that it becomes

- yj\.
(A.4)

When written out in detail, it is found that (A.4) and (A.1) are identical when
v > y and the result of the theorem is proved.
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