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Abstract

In this paper, high-gain cavity backed patch antenna arrays are proposed based on low tem-
perature co-fired ceramic technology at 140 GHz. By introducing a substrate integrated cavity
to the patch antenna element, the gain is enhanced by 3.3 dB. Moreover, a rectangular ring is
loaded around the patch for better impedance matching and further gain enhancement. The
final simulated maximum gain of the proposed antenna element is 9.8 dBi. Based on the pro-
posed high-gain antenna element, a 4 × 4-element array and an 8 × 8- element array are pre-
sented. The 4 × 4-element array shows a measured maximum gain of 16.9 dBi with 9.5 GHz
bandwidth (136.2–145.7 GHz) and the 8 × 8-element array shows a measured maximum gain
of 21.8 dBi with 9.8 GHz bandwidth(136.7–146.5 GHz), respectively.

Introduction

A 140-GHz band or D-band (110–170 GHz) has been utilized for many applications by the
Federal Communications Commission such as radio astronomy, satellite communications,
and industry, scientific and medical (ISM) band (around 122 GHz) applications. For future
high-rate wireless communications, the D-band is very promising among terahertz frequency
bands. So far, several long-range D-band wireless communication systems have been success-
fully demonstrated [1, 2]. Traditional high-gain Cassegrain antennas are utilized to compen-
sate the high propagation loss in these systems. However, this kind of antenna is bulky and not
suitable for highly integrated systems.

In recent years, new types of high-gain antennas with low-profile properties are emerging
[3–6] in the D-band driven from high-gain and high-integration requirements. Diffusion
bonding technology is using several thin metal layers to construct hollow waveguide and radi-
ating structures which shows high radiation efficiency. A 32 × 32-element array shows more
than a 38 dBi gain with over 60% efficiency and a 64 × 64-element array shows more than a
43 dBi gain with over 50% efficiency [3]. Substrate integrated waveguide (SIW) uses via
holes to construct a dielectric filled waveguide-like transmission line and electromagnetic
wave can be confined in SIW by properly choosing the via diameter and spacing [7]. SIW
can be easily implemented using low temperature co-fired ceramic (LTCC) technology
which can be traced back to 1980s [8]. In the last two decades, antennas based on LTCC tech-
nology received much researchers’ attention [9–12] promoted by the SIW structure. To date,
LTCC technology is more mature than diffusion bonding technology and shows great vitality.
However, the relatively high permittivity of LTCC will constrain the energy and reduce
antenna gain. Several solutions have been used in literature to solve this problem. Open air
cavities have been introduced in array design in [13], resulting in a 1–2 dB gain enhancement.
In [14], electromagnetic band-gap (EBG) structure have been used to suppress surface waves
yielding a 4-dB gain enhancement. However, EBG structure requires a large area to achieve its
performance.

In this paper we firstly proposed a cavity backed patch antenna element using LTCC tech-
nology at 140 GHz. Substrate integrated cavity (SIC) is introduced to suppress surface waves
and improve the gain performance. Furthermore, a rectangular ring is introduced around
the patch for better impedance matching. Based on the high-gain antenna element, a 4 × 4
element array and an 8 × 8-element array are presented afterward. Finally, the comparison
of simulated and measured results of the two arrays are shown.

Antenna configuration

Figure 1 shows the layer configuration of the proposed LTCC antennas. The antennas are con-
structed by eight substrate layers and five metal layers. The thicknesses of each substrate layer
and metal layer are 0.096 and 0.01 mm, respectively. Ferro A6M is used as the substrate mater-
ial with a permittivity of 5.9 and a loss tangent of 0.002. Metals are set to silver with a
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conductivity of 6.1 × 107S/m. All the simulations in this paper are
taken in the full-wave simulation software Ansys HFSS.

Element design

An exploded view of the proposed element antenna model built in
HFSS is given in Fig. 2(a). The element only uses Sub 3–8 sub-
strate layers and M2-5 metal layers. A rectangular patch is placed
on M5 layer with a rectangular ring loaded around it. A slot is
etched on M4 metal layer to excite the radiation patch. The energy
is fed by an aperture etched on M3. A SIC is constructed in Sub
5–6 layer for gain enhancement. Two reference antennas are also
given in Fig. 2(a) for comparison. Antenna 1 is an antenna with
only a patch on M5 layer. As compare to antenna 1, a SIC around

the patch is added in antenna 2. Detailed dimensions of the pro-
posed antenna element in Fig. 2(b) can be found in Table 1. All
the three antennas are with the same total size of 2 mm × 2.5 mm.

Figure 3 shows the simulated results of the three antennas.
Considering array design, we should keep the refection coefficient
of an antenna element below −15 dB. Antenna 1 shows a narrow
−15 dB bandwidth with the lowest gain of 6 dBi among these
three antennas. This is mainly caused by surface waves due to
the high permittivity. Surface waves are prevented by using the
SIC [15–16], hence the maximum gain of antenna 2 is improved
to about 9.3 dBi. However, antenna 2 shows a poor impedance
matching. By introducing a rectangular ring, the proposed
antenna gives a −15 dB bandwidth of 8.4 GHz (135.9–
144.3 GHz). The ring loading shifts down the upper resonant fre-
quency from 149.3 to 142.5 GHz and improves the impedance
performance. On the other hand, the ring loading is also a radi-
ating component which has the same current direction with the
center patch. Thus, the maximum gain is further improved to
9.8 dBi at 145 GHz.

Arrays configuration

Two antenna arrays are built with a scale of 4 × 4 and 8 × 8 based
on the proposed high-gain element antenna. Figs 4(a)–4(b) gives
two explosion views of the arrays, respectively. Figures 4(c)–4(e)
gives three top views of the radiation part of the 8 × 8-element
array. These parts of the 4 × 4-element array are a quarter that
of the 8 × 8-element array which are not shown here. WR-06
waveguide with UG-387 flange is used in both arrays to feed
the energy. Figure 4(f) shows the transition part from WR-06
to the SIW feeding network. As shown in Fig. 4(e), some adjacent
SIWs are sharing one via holes wall resulting in a compact feeding
network [17]. The radiation elements are spaced with 1.5 mm
(0.7- wavelength at 140 GHz) intervals and they are fed with
equal phase and amplitude by the feeding network.

Fig. 1. Layer configuration of the proposed arrays in LTCC.

Fig. 2. Array element. (a) Exploded view of the models in HFSS (antenna 1, antenna 2,
and the proposed antenna element). (b) Dimensions of the proposed antenna
element.

Table 1. Dimensions of the proposed antenna element (unit: mm).

Par. a c1 c2 c3 d0 d1 d2 d3 d4 l1

Value 0.75 1.5 0.61 0.9 0.24 0.165 0.34 0.455 0.21 0.44

Par. l2 l3 l4 s1 s2 r0 w0 w1 w2

Value 0.38 0.84 0.76 0.5 0.385 0.06 0.1 0.08 0.385

Fig. 3. Simulated |S11| and gains of the three antenna elements.
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Results and discussions

The proposed 4 × 4-element and 8 × 8-element antenna arrays
were fabricated by LTCC process. Photographs of the fabricated

prototypes are shown in Fig. 5. The overall dimensions of the
4 × 4-element array and the 8 × 8-element array are 20 mm ×
35 mm and 18.2 mm × 33.15 mm, respectively. Actually, the over-
all size of the two arrays is designed in the same dimensions.
However, due to the fabrication area limitation, there is a little
change in the 8 × 8-element array which does not effect on the
array performance.

Fig. 4. Views of the 4 × 4-element array and the 8 × 8-element array. (a) Exploded view
of the 4 × 4-element array; (b) exploded view of the 8 × 8-element array. (c) Top view
of M5 and via holes in Sub 7–8. (d) Top view of M4 and via holes in Sub 5–6. (e) Top
view of M3 and via holes in Sub 3–4. (f) WR-06 to SIW transition.

Fig. 6. Measurement setup.

Fig. 7. Simulated and measured |S11| and gains. (a) 4 × 4-element array. (b) 8 ×
8-element array.

Fig. 5. Fabricated antenna arrays. (a) 4 × 4-element array. (b) 8 × 8-element array.
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The impedance matching performance of the proposed anten-
nas was measured by Ceyear AV3672B vector network analyzer
with frequency extension module AV3646A. The radiation char-
acteristics were measured in an anechoic chamber with a far-field
measurement system (As shown in Fig. 6). The simulated and
measured reflection coefficients are compared in Fig. 7. The simu-
lated −8 dB bandwidth of the 4 × 4-element array is 9.5 GHz
(135.8–145.3 GHz) while the measured bandwidth is 9.5 GHz
(136.2–145.7 GHz). The simulated −8 dB bandwidth of the 8 ×
8-element array is 9.4 GHz (136.2–145.6 GHz) while the mea-
sured bandwidth is 9.8 GHz (136.7–146.5 GHz). The measured
|S11| shows more ripples and larger reflection than the simulated
ones, this may be due to some fabrication errors.

The simulated and measured gains are also compared in Fig. 7.
For the 4 × 4-element array, the maximum simulated gain is
17.5 dBi at143 GHz, while the measured maximum gain is
16.9 dBi at 143 GHz. For the 8 × 8-element array, the maximum

simulated gain is 22.7 dBi at 142 GHz, while the measured max-
imum gain is 21.8 dBi at 140 GHz. The simulated gains of the 4 ×
4-element array and 8 × 8-element array at 140 GHz are 17.5 and
22.7 dBi with radiation efficiency of 60.8 and 47.2%, respectively.
The measured gain of the 4 × 4-element array at 140 GHz is
16.3 dBi. The measured radiation efficiencies can be calculated
by comparing the simulated directivity and the measured gains.
It can be estimated that the measured efficiencies are 46.1 and
38.3% at 140 GHz for the 4 × 4- and 8 × 8-element array,
respectively.

The simulated and measured normalized radiation patterns in
the E-plane and the H-plane of the two antennas are shown in
Figs 8(a)–8(b). In most cases, the measured beam patterns
match well with the simulated ones and the cross polarizations
stay at almost the same level of the simulated ones in both the
E-plane and the H-plane for both arrays. However, there exist
some differences in the side lobe level of the 144-GHz H-plane

Fig. 8. Simulated and measured radiation patterns in the E-plane and the H-plane at 136, 140, and 144 GHz. (a) 4 × 4-element array. (b) 8 × 8-element array.

Table 2. Comparison with other published 140-GHz LTCC antenna arrays

Ref. Type No. of Elements BW (GHz) (%) Size Gain (dBi) Efficiency (%)

[5] Slot array 4 × 4 130.2–158.8 (19.8) n.a. 16.3 55

[18] Slot array 8 × 8 126.8–147.8 (15.3) 15.1 × 10.8 21.3 35

[19] Grid array 240 137–147 (7)a n.a. 17.6 65b

This work Patch array 4 × 4 136.2–145.7 (6.67) 6 × 5.78 16.9 46.1

This work Patch array 8 × 8 136.7–146.5 (6.9) 12.52 × 11.78 21.8 38.3

a|S11|≤ −5 dB.
bsimulated.
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for both arrays. In such high frequencies, this is primarily because
of the feeding setup near the antenna in measurement.

The characteristics and performances of the proposed arrays
and other published 140 GHz LTCC antenna arrays are listed in
Table 2 for comparison. As compared to [5], the proposed 4 ×
4-element array gives a higher gain for the same scale. As com-
pared to [18], the proposed 8 × 8-element array gives a higher
gain and higher radiation efficiency. The proposed arrays merit
high gain property and are suitable for 140 GHz wireless
communications.

Conclusion

This paper proposed a 4 × 4-element and an 8 × 8-element cavity
backed patch antenna array at 140 GHz based on LTCC technol-
ogy. By introducing a SIC and a rectangular ring load to the
antenna element, a high gain of 9.8 dBi is achieved. Measured
results show that the 4 × 4-element array possesses 9.5-GHz band-
width (136.2–145.7 GHz) with a maximum gain of 16.9 dBi and
the 8 × 8-element array possesses 9.8-GHz bandwidth (136.7–
146.5 GHz) with a maximum gain of 21.7 dBi. In general, the pro-
posed antennas have the potential to be used for 140 GHz wireless
communications.
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